
KEGGgraph: a graph approach to KEGG PATHWAY in R
and Bioconductor

Jitao David Zhang and Stefan Wiemann

October 1, 2024

Abstract

We demonstrate the capabilities of the KEGGgraph package, an interface between KEGG
pathways and graph model in R as well as a collection of tools for these graphs. Superior to
preceding approaches, KEGGgraph maintains the pathway topology and allows further anal-
ysis or dissection of pathway graphs. It parses the regularly updated KGML (KEGG XML)
files into graph models maintaining all essential pathway attributes.

1 Introduction

Since its first introduction in 1995, KEGG PATHWAY has been widely used as a reference knowl-
edge base for understanding biological pathways and functions of cellular processes. The knowl-
edge from KEGG has proven of great value by numerous work in a wide range of fields [Kanehisa et al., 2008].

Pathways are stored and presented as graphs on the KEGG server side, where nodes are
molecules (protein, compound, etc) and edges represent relation types between the nodes, e.g.
activation or phosphorylation. The graph nature raised our interest to investigate them with pow-
erful graph tools implemented in R and Bioconductor [Gentleman et al., 2004], including graph,
RBGL and Rgraphviz [Carey et al., 2005]. While it is barely possible to query the graph character-
istics by manual parsing, a native and straightforward client-side tool is currently missing to parse
pathways and analyze them consequently with tools for graph in R.

To address this problem, we developed the open-source software package KEGGgraph, an
interface between KEGG pathway and graph object as well as a collection of tools to analyze,
dissect and visualize these graphs.

The package requires KGML (KEGG XML) files, which can be downloaded from KEGG
REST web service (https://rest.kegg.jp/) without license permission for academic pur-
poses. To demonstrate the functionality, in ’extdata/’ sub-directory of KEGGgraph we have pre-
installed several KGML files.

1

https://rest.kegg.jp/

2 Software features

KEGGgraph offers the following functionalities:
Parsing: It should be noted that one ’node’ in KEGG pathway does not necessarily map to

merely one gene product, for example the node ’ERK’ in the human TGF-Beta signaling pathway
contains two homologues, MAPK1 and MAPK3. Therefore, among several parsing options, user
can set whether to expand these nodes topologically. Beyond facilitating the interpretation of path-
ways in a gene-oriented manner, the approach also entitles unique identifiers to nodes, enabling
merging graphs from different pathways.

Graph operations: Two common operations on graphs are subset and merge. A sub-graph of
selected nodes and the edges in between are returned when subsetting, while merging produces a
new graph that contains nodes and edges of individual ones. Both are implemented in KEGGgraph.

Visualization: KEGGgraph provides functions to visualize KEGG graphs with custom style.
Nevertheless users are not restricted by them, alternatively they are free to render the graph with
other tools like the ones in Rgraphviz.

Besides the functionalities described above, KEGGgraph also has tools for remote KGML
file retrieval, graph feature study and other related tasks. We will demonstrate them later in this
vignette.

3 Case studies

We load the KEGGgraph by typing or pasting the following codes in R command line:

> library(KEGGgraph)

3.1 Get KGML files

There are at least two possibilities to get KGML (KEGG XML) files:

• Manual download from KEGG REST API, documented at at https://www.kegg.jp/
kegg/rest/keggapi.html.

• Automatic retrieval from KEGG REST API, available at https://rest.kegg.jp, with
the function retrieveKGML.

To retrieve KGML file automatically, one has to know the pathway identifier. KEGG pathway
identifiers have the form of [a-z]3-4[0-9]5, where the three- or four-alphabet code represent the
organism and the five digits represent pathways. The same pathway in different species share
the five-digit code, which is the first parameter accepted by retrieveKGML. The second parameter
required is the alphabet-code of the organism.

For example, the following codes retrieve p53 signaling pathway, which has the digit-code
04115, of the species Macaca fascicularis , or crab-eating macaque, which has the three-alphabet
code mcf:

2

https://www.kegg.jp/kegg/rest/keggapi.html
https://www.kegg.jp/kegg/rest/keggapi.html
https://rest.kegg.jp

> tmp <- tempfile()
> retrieveKGML("04115", organism="mcf", destfile=tmp, method="auto", quiet=TRUE)

Pathways and their identifiers can be browsed in the KEGG website https://genome.jp/
kegg, or found with any search engine.

3.2 Parsing and graph feature query

First we read in KGML file for human MAPK signaling pathway (with KEGG ID hsa04010):

> mapkKGML <- system.file("extdata/hsa04010.xml",
+ package="KEGGgraph")

Once the file is ready, we can either parse them into an object of KEGGPathway or an object of
graph. KEGGPathway object maintains the information of the pathway (title, link, organism, etc),
while graph objects are more natural approach and can be directly plugged in many other tools. To
convert the pathway into graph, we use

> mapkG <- parseKGML2Graph(mapkKGML,expandGenes=TRUE)
> mapkG

A graphNEL graph with directed edges
Number of Nodes = 265
Number of Edges = 876

Alternatively we can parse the KGML file first into an object of KEGGpathway, which can be
later converted into the graph object, as the following lines show:

> mapkpathway <- parseKGML(mapkKGML)
> mapkpathway

KEGG Pathway
[Title]: MAPK signaling pathway
[Name]: path:hsa04010
[Organism]: hsa
[Number] :04010
[Image] :http://www.genome.jp/kegg/pathway/hsa/hsa04010.gif
[Link] :http://www.genome.jp/dbget-bin/show_pathway?hsa04010
--
Statistics:

136 node(s)
171 edge(s)
0 reaction(s)

--

3

https://genome.jp/kegg
https://genome.jp/kegg

> mapkG2 <- KEGGpathway2Graph(mapkpathway, expandGenes=TRUE)
> mapkG2

A graphNEL graph with directed edges
Number of Nodes = 265
Number of Edges = 876

There is no difference between graph objects derived from two approaches.
The option ’expandGenes’ in parsing controls whether the nodes of paralogues in pathways

should be expanded or not. Since one ’node’ in KEGG pathway does not necessarily map to only
one gene/gene product (e.g. ’ERK’ maps to MAPK1 and MAPK3), the option allows expanding
these nodes and takes care of copying existing edges.

Another option users may find useful is ’genesOnly’, when set to TRUE, the nodes of other
types than ’gene’ (compounds, for example) are neglected and the result graph consists only gene
products. This is especially desired when we want to query network characteristics of gene prod-
ucts. Its value is set to ’TRUE’ by default.

The following commands extract node and edge information:

> mapkNodes <- nodes(mapkG)
> nodes(mapkG)[1:3]

[1] "hsa:5923" "hsa:5924" "hsa:11072"

> mapkEdges <- edges(mapkG)
> edges(mapkG)[1]

$`hsa:5923`
[1] "hsa:22800" "hsa:22808" "hsa:3265" "hsa:3845" "hsa:4893" "hsa:6237"

Edges in KEGG pathways are directional, that is, an edge starting at node A pointing to node
B does not guarantee a reverse relation, although reciprocal edges are also allowed. When listing
edges, a list indexed with node names is returned. Each item in the list records the nodes pointed
to.

We can also extract the node attributes specified by KEGG with getKEGGnodeData:

> mapkGnodedata <- getKEGGnodeData(mapkG)
> mapkGnodedata[[2]]

KEGG Node (Entry 'hsa:5924'):
--
[displayName]: RASGRF1, GRF1...
[Name]: hsa:5924
[Type]: gene
[Link]: http://www.genome.jp/dbget-bin/www_bget?hsa+5923+5924
--

4

An alternative to use gettKEGGnodeData is

> getKEGGnodeData(mapkG, 'hsa:5924')

KEGG Node (Entry 'hsa:5924'):
--
[displayName]: RASGRF1, GRF1...
[Name]: hsa:5924
[Type]: gene
[Link]: http://www.genome.jp/dbget-bin/www_bget?hsa+5923+5924
--

, returning identical results.
Similarly the getKEGGedgeData is able to extract edge information:

> mapkGedgedata <- getKEGGedgeData(mapkG)
> mapkGedgedata[[4]]

KEGG Edge (Type: PPrel):
--
[Entry 1 ID]: hsa:5923
[Entry 2 ID]: hsa:3845
[Subtype]:

[Subtype name]: activation
[Subtype value]: -->

--

Alternatively the query above can be written as:

> getKEGGedgeData(mapkG,'hsa:627~hsa:4915')

KEGG Edge (Type: PPrel):
--
[Entry 1 ID]: hsa:627
[Entry 2 ID]: hsa:4915
[Subtype]:

[Subtype name]: activation
[Subtype value]: -->

--

For KEGGNode and KEGGEdge objects, methods are implemented to fetch their attributes, for
example getName, getType and getDisplayName. Guides to use these methods as well as
examples can be found in help pages.

5

This case study finishes with querying the degree attributes of the nodes in the graph. We ask
the question which nodes have the highest out- or in-degrees. Roughly speaking the out-degree
(number of out-going edges) reflects the regulatory role, while the in-degree (number of in-going
edges) suggests the subjectability of the protein to intermolecular regulations.

> mapkGoutdegrees <- sapply(edges(mapkG), length)
> mapkGindegrees <- sapply(inEdges(mapkG), length)
> topouts <- sort(mapkGoutdegrees, decreasing=T)
> topins <- sort(mapkGindegrees, decreasing=T)
> topouts[1:3]

hsa:5594 hsa:5595 hsa:1432
26 26 13

> topins[1:3]

hsa:5923 hsa:5924 hsa:10125
26 26 26

3.3 Graph subset and merge

We demonstrate the subsetting of the graph with 25 randomly chosen nodes of MAPK pathway
graph:

> library(Rgraphviz)
> set.seed(123)
> randomNodes <- sample(nodes(mapkG), 25)
> mapkGsub <- subGraph(randomNodes, mapkG)
> mapkGsub

A graphNEL graph with directed edges
Number of Nodes = 25
Number of Edges = 6

The subgraph is visualized in figure 1, where nodes with in-degree or out-degree in red and
others in grey.1. And in the example we also demonstrate how to convert KEGG ID into other
other identifiers via the Entrez GeneID. More details on the conversion of IDs can be found on
page 13.

Another common operation on graphs is merging, that is, combining different graphs together.
It is inspired by the fact that many KEGG pathways embed other pathway, for example MAPK

1The makeAttr function is used to assign nodes with rendering attributes, whose code can be found in the Rnw
file.

6

> outs <- sapply(edges(mapkGsub), length) > 0
> ins <- sapply(inEdges(mapkGsub), length) > 0
> ios <- outs | ins
> ## translate the KEGG IDs into Gene Symbol
> if(require(org.Hs.eg.db)) {
+ ioGeneID <- translateKEGGID2GeneID(names(ios))
+ nodesNames <- sapply(mget(ioGeneID, org.Hs.egSYMBOL, ifnotfound=NA), "[[",1)
+ } else {
+ nodesNames <- names(ios)
+ }
> names(nodesNames) <- names(ios)
> nAttrs <- list();
> nAttrs$fillcolor <- makeAttr(mapkGsub, "lightgrey", list(orange=names(ios)[ios]))
> nAttrs$label <- nodesNames
> plot(mapkGsub, "neato", nodeAttrs=nAttrs,
+ attrs=list(node=list(fillcolor="lightgreen",
+ width="0.75", shape="ellipse"),
+ edge=list(arrowsize="0.7")))

MAP3K6

DUSP16

CASP3

FGF2CRKL

PPP3CB

MKNK2
ATF4

CACNG2
CACNG5

ACVR1C

PPP3CA

MAP4K3

STK4

CACNG4

FLNAFGF16

MAPK8IP1

CACNA1C

RASGRP2

PLA2G2A

DUSP3

AKT1FLNB
MAPKAPK5

Figure 1: A random subgraph of MAPK signaling pathway

7

signaling pathway embeds 6 pathways including Wnt signaling pathway. mergeGraphs provides
the possibility to merge them into one graph for further analysis. Next we merge MAPK and Wnt
signaling pathway into one graph. The graphs to be merged should be organized into a list, and it is
commandary to use ’expandGenes=TRUE’ option when parsing to make sure the nodes are unique
and indexed by KEGGID.

> wntKGML <- system.file("extdata/hsa04310.xml",package="KEGGgraph")
> wntG <- parseKGML2Graph(wntKGML)
> graphs <- list(mapk=mapkG, wnt=wntG)
> merged <- mergeGraphs(graphs)
> merged

A graphNEL graph with directed edges
Number of Nodes = 386
Number of Edges = 1628

We observe that the node number in the merged graph (386) is less than the sum of two graphs
(265 and 148 for MAPK and Wnt pathway respectively), reflecting the crosstalk between the path-
ways by sharing nodes.

3.4 Using other graph tools

In R and Bioconductor there’are powerful tools for graph algorithms and operations, including
graph, Rgraphviz and RBGL. The KEGG graphs can be analyzed with their functionalities to de-
scribe characterisitcs of the pathway and to answer biological relevant questions.

Here we demonstrate the use of other graph tools with asking the question which nodes are
of the highest importance in MAPK signalling pathway. To this end we turn to relative between-
ness centrality [Aittokallio and Schwikowski, 2006, Carey et al., 2005]. Betweenness is a central-
ity measure of a node within a graph. Nodes that occur on many shortest paths between other
vertices have higher betweenness than those that do not. It is scaled by the factor of (n-1)(n-2)/2
to get relative betweenness centrality, where n is the number of nodes in the graph. Both measure-
ments estimate the importance or the role of the node in the graph.

With the function implemented in RBGL, our aim is to identify most important nodes in MAPK
signalling pathway.

Note: the current version of RBGL (version 1.59.5) reports the error that BGL_brandes_betweeness_centrality
not available for .Call() for package “RBGL”. Therefore the execution has been suppressed for
now.

> library(RBGL)
> bcc <- brandes.betweenness.centrality(mapkG)
> rbccs <- bcc$relative.betweenness.centrality.vertices[1L,]
> toprbccs <- sort(rbccs,decreasing=TRUE)[1:4]
> toprbccs

8

hsa:4214 hsa:2885 hsa:5605 hsa:5604
0.2685233 0.2467144 0.2366450 0.2366450

We identify the top 4 important nodes judged by betweenness centrality as MAP3K1 (hsa:4214),
GRB2 (hsa:2885), MAP2K2 (hsa:5605) and MAP2K1 (hsa:5604) (the mapping between KEGG
ID and gene symbol is done using biomaRt, see page 14). In figure 2 we illustrate them as well as
their interacting partners in MAPK pathway.

4 Other funtionalities

Besides the ability to parse and operate on KEGG PATHWAY graph objects, the KEGGgraph
package also provides functionalities to complement tasks related to deal with KEGG pathways.
We introduce some of them here, for a full list of functions please see the package help file:

> help(package=KEGGgraph)

4.1 Parsing chemical compound reaction network

KEGG PATHWAY captures two kinds of network:the protein network and the chemical network.
The protein network consists relations (edges) between gene products, while the chemical network
illustrate the reactions between chemical compounds. Since the metabolic pathway can be viewed
both as a network of proteins (enzymes) and as a network of chemical compounds, metabolic path-
ways can be viewed as both protein networks and chemical networks, whereas regulatory pathways
are always viewed as protein networks only.KEGGPathway provides methods to access this net-
work.

We show the example of Glycine, serine and threonine metabolism pathway.

> mapfile <- system.file("extdata/map00260.xml",package="KEGGgraph")
> map <- parseKGML(mapfile)
> map

KEGG Pathway
[Title]: Glycine, serine and threonine metabolism
[Name]: path:map00260
[Organism]: map
[Number] :00260
[Image] :http://www.genome.jp/kegg/pathway/map/map00260.gif
[Link] :http://www.genome.jp/dbget-bin/show_pathway?map00260
--
Statistics:

144 node(s)
371 edge(s)

9

> toprbccName <- names(toprbccs)
> toprin <- sapply(toprbccName, function(x) inEdges(mapkG)[x])
> toprout <- sapply(toprbccName, function(x) edges(mapkG)[x])
> toprSubnodes <- unique(unname(c(unlist(toprin), unlist(toprout), toprbccName)))
> toprSub <- subGraph(toprSubnodes, mapkG)
> nAttrs <- list()
> tops <- c("MAPK3K1","GRB2","MAP2K2","MAP2K1")
> topLabels <- lapply(toprbccName, function(x) x); names(topLabels) <- tops
> nAttrs$label <- makeAttr(toprSub, "", topLabels)
> nAttrs$fillcolor <- makeAttr(toprSub, "lightblue", list(orange=toprbccName))
> nAttrs$width <- makeAttr(toprSub,"",list("0.8"=toprbccName))
> plot(toprSub, "twopi", nodeAttrs=nAttrs, attrs=list(graph=list(start=2)))

MAPK3K1
MAP2K1

MAP2K2

GRB2

Figure 2: Nodes with the highest relative betweenness centrality in MAPK pathway (in orange)
and their interacting partners (in blue).

10

68 reaction(s)
--

> reactions <- getReactions(map)
> reactions[[1]]

KEGG Reaction(rn:R08211)
--
[Name]: rn:R08211
[Type]: irreversible
[Substrate Name]: cpd:C00576
[Product Name]: cpd:C00719

Figure 3 shows how to extract reactions from the pathway and to build a directed graph with
them.

4.2 Expand embedded pathways

Function parseKGMLexpandMaps is a function to handle with pathways embedding other path-
ways. For example, pancreatic cancer pathway embeds 9 other pathways including MAPK and
ErbB signaling pathway, cell cycle and apoptosis pathway, etc. To parse them into one graph, the
users only have to download the KGML file and feed the file name to parseKGMLexpandMaps,
the function parses the file, analyze the embedded pathways, download their files from KEGG
REST API service automatically (alternatively a local repository can be specified for KGML files)
and merge the individual pathways into a single graph. For example, the following single line
parses MAPK signaling pathway with all its embedded pathways

> mapkGembed <- parseKGMLexpandMaps(mapkKGML)

As its name suggests, function subGraphByNodeType subsets the graph by node type, the
nodes to subset are those of the type given by the user. It is useful when the KGML file was parsed
with ’genesOnly=FALSE’ option and later on the user wants only certain kind of node, ’gene’ for
example, remained. The following example shows how to use it.

> mapkGall <- parseKGML2Graph(mapkKGML,genesOnly=FALSE)
> mapkGall

A graphNEL graph with directed edges
Number of Nodes = 277
Number of Edges = 891

> mapkGsub <- subGraphByNodeType(mapkGall, "gene")
> mapkGsub

11

> chemicalGraph <- KEGGpathway2reactionGraph(map)
> outDegrees <- sapply(edges(chemicalGraph), length)
> maxout <- names(sort(outDegrees,decreasing=TRUE))[1:3]
> nAttrs <- list()
> maxoutlabel <- as.list(maxout); names(maxoutlabel) <- maxout
> nAttrs$label <- makeAttr(chemicalGraph, "", maxoutlabel)
> nAttrs$fillcolor <- makeAttr(chemicalGraph, "lightblue", list(orange=maxout))
> nAttrs$width <- makeAttr(chemicalGraph,"0.8", list("1.8"=maxout))
> plot(chemicalGraph, nodeAttrs=nAttrs)

cpd:C00065

cpd:C00037

cpd:C00188

Figure 3: Reaction network built of chemical compounds: the orange nodes are the three com-
pounds with maximum out-degree in this network.

12

A graphNEL graph with directed edges
Number of Nodes = 265
Number of Edges = 876

4.3 Annotation

translateKEGGID2GeneID translates KEGG identifiers (KEGGID) into Entrez GeneID. For
example, if we want to find the Entrez GeneID of the nodes in MAPK pathway having the highest
relative betweenness centrality, the following codes do the job.

> toprbccKEGGID <- names(toprbccs)
> toprbccKEGGID
> toprbccGeneID <- translateKEGGID2GeneID(toprbccKEGGID)
> toprbccGeneID

To convert GeneID to other identifiers, we recommend genome wide annotation packages,
for human it is org.Hs.eg.db and the packages for other organisms can be fount at http://
www.bioconductor.org/packages/release/data/annotation/. To demonstrate
its use, we draw the sub-network in the figure 2 again, whereas nodes are now labeled with gene
symbols.

> if(require(org.Hs.eg.db)) {
+ tnodes <- nodes(toprSub)
+ tgeneids <- translateKEGGID2GeneID(tnodes)
+ tgenesymbols <- sapply(mget(tgeneids, org.Hs.egSYMBOL, ifnotfound=NA), "[[",1)
+ toprSubSymbol <- toprSub
+ nodes(toprSubSymbol) <- tgenesymbols
+ plot(toprSubSymbol, "neato",attrs=list(node=list(font=5, fillcolor="lightblue")))
+ }

13

http://www.bioconductor.org/packages/release/data/annotation/
http://www.bioconductor.org/packages/release/data/annotation/

MAP4K4

TRAF2

CASP3

RAC1

RAC2

RAC3

CDC42
MAPK8IP3

MAP4K3

SOS1

SOS2

LAMTOR3

MOS

RAF1

BRAF

MAP3K1

MAP3K8

MAP3K14

CHUK

IKBKB

IKBKG

MAP2K4

MAP2K1
MAP2K2

NTRK1

NTRK2
EGFR

FGFR1

FGFR3

FGFR2

FGFR4
PDGFRA

PDGFRB

MAPK1
MAPK3

GRB2

Alternatively, users could use R package biomaRt [Durinck et al., 2005, Durinck and Huber, 2008]
for ID conversion, whereas it assumes that the user has an internet connection. The following ex-
ample shows how to translate the node hits we acquired in the example above into HGNC symbols:

> library(biomaRt)
> hsapiens <- useMart("ensembl","hsapiens_gene_ensembl")
> filters <- listFilters(hsapiens)
> getBM(attributes=c("entrezgene","hgnc_symbol"),
+ filters="entrezgene",
+ values=toprbccGeneID, mart=hsapiens)

5 Acknowledgement

We thank Vincent Carey, Holger Fröhlich and Wolfgang Huber for comments and suggestions on
the package, and the reviewers from the Bioconductor community.

14

Many users have provided very helpful feedback. Here is an incomplete list of them: Martin
Morgan, Paul Shannon, Juliane Manitz and Alexander Gulliver Bjørnholt Grønning.

6 Conclusion

Before the release of KEGGgraph, several R/Bioconductor packages have been introduced and
proven their usefulness in understanding biological pathways with KEGG. However, KEGGgraph
is the first package able to parse any KEGG pathways from KGML files into graphs. In comparison,
existing tools can not achieve the results we present here. They either neglects the graph topology
(KEGG.db), do not parse pathway networks (keggorth), or are specialized for certain pathways
(cMAP and pathRender).

With KEGGgraph, we contribute a direct and natural approach to KEGG pathways, and the
possibilities to study them in R and Bioconductor.

7 Session Info

The script runs within the following session:

R version 4.4.1 (2024-06-14)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 24.04.1 LTS

Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so; LAPACK version 3.12.0

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

time zone: Etc/UTC
tzcode source: system (glibc)

attached base packages:
[1] stats4 grid stats graphics grDevices utils datasets
[8] methods base

15

other attached packages:
[1] RBGL_1.81.0 org.Hs.eg.db_3.20.0 AnnotationDbi_1.67.0
[4] IRanges_2.39.2 S4Vectors_0.43.2 Biobase_2.65.1
[7] Rgraphviz_2.49.1 graph_1.83.0 BiocGenerics_0.51.2
[10] KEGGgraph_1.65.0

loaded via a namespace (and not attached):
[1] bit_4.5.0 jsonlite_1.8.9 compiler_4.4.1
[4] crayon_1.5.3 blob_1.2.4 bitops_1.0-8
[7] Biostrings_2.73.2 png_0.1-8 fastmap_1.2.0
[10] R6_2.5.1 XVector_0.45.0 GenomeInfoDb_1.41.1
[13] knitr_1.48 XML_3.99-0.17 maketools_1.3.0
[16] GenomeInfoDbData_1.2.13 DBI_1.2.3 rlang_1.1.4
[19] KEGGREST_1.45.1 cachem_1.1.0 xfun_0.47
[22] sys_3.4.2 bit64_4.5.2 RSQLite_2.3.7
[25] memoise_2.0.1 cli_3.6.3 zlibbioc_1.51.1
[28] vctrs_0.6.5 buildtools_1.0.0 RCurl_1.98-1.16
[31] httr_1.4.7 tools_4.4.1 pkgconfig_2.0.3
[34] UCSC.utils_1.1.0

References

[Gentleman et al., 2004] Gentleman et al. (2004) Bioconductor: open software development for
computational biology and bioinformatics, Genome Biology, 5, R80.

[Carey et al., 2005] Carey et al. (2005) Network structures and algorithms in Bioconductor, Bioin-
formatics, 21, 135-136.

[Kanehisa et al., 2008] Kanehisa et al. (2008) KEGG for linking genomes to life and the environ-
ment, Nucleic Acids Research, Database issue, 36, 480-484.

[Klukas and Schreiber, 2007] Klukas and Schreiber. (2007) Dynamic exploration and editing of
KEGG pathway diagrams, Bioinformatics, 23, 344-350.

[Aittokallio and Schwikowski, 2006] Aittokallio and Schwikowski (2006) Graph-based methods
for analysing networks in cell biology, Briefings in Bioinformatics, 7, 243-255.

[Durinck et al., 2005] Durinck et al. (2005) BioMart and Bioconductor: a powerful link between
biological databases and microarray data analysis, Bioinformatcs, 21, 3439-3440.

[Durinck and Huber, 2008] Durinck and Huber (2008) R/Bioconductor package biomaRt, 2008

16

	Introduction
	Software features
	Case studies
	Get KGML files
	Parsing and graph feature query
	Graph subset and merge
	Using other graph tools

	Other funtionalities
	Parsing chemical compound reaction network
	Expand embedded pathways
	Annotation

	Acknowledgement
	Conclusion
	Session Info

