Title: | multivariate outlier detection for expression array QA |
---|---|
Description: | This package supports the application of diverse quality metrics to AffyBatch instances, summarizing these metrics via PCA, and then performing parametric outlier detection on the PCs to identify aberrant arrays with a fixed Type I error rate |
Authors: | Z. Gao, A. Asare, R. Wang, V. Carey |
Maintainer: | V. Carey <[email protected]> |
License: | Artistic-2.0 |
Version: | 1.65.0 |
Built: | 2024-10-30 03:41:00 UTC |
Source: | https://github.com/bioc/arrayMvout |
Multivariate outlier detection based on PCA of QA statistics
ArrayOutliers (data, alpha, alphaSeq = c(0.01, 0.05, 0.1), ... ) # qcOutput = NULL, plmOutput = NULL, degOutput = NULL, prscale = TRUE, # pc2use = 1:3)
ArrayOutliers (data, alpha, alphaSeq = c(0.01, 0.05, 0.1), ... ) # qcOutput = NULL, plmOutput = NULL, degOutput = NULL, prscale = TRUE, # pc2use = 1:3)
data |
an (affy) AffyBatch instance with at least 11 samples |
alpha |
false positive rate for outlier detection, adjusting for multiple comparisons according to Caroni and Prescott's adaptation of Rosner (1983); full report based on this choice of alpha |
alphaSeq |
vector of alpha candidates to be quickly tried for short report |
... |
additional parameters, see below |
Additional parameters may be supplied
optional result of simpleaffy qc() to speed computations
optional result of affyPLM fitPLM() to speed computations
optional result of affy AffyRNAdeg() to speed computations
scaling option for prcomp
selection of principal components to use for outlier detection
Data elements afxsubDEG, afxsubQC, s12cDEG, s12cQC are precomputed RNA degradation and simpleaffy qc() results; s12c is an AffyBatch with digital contamination of some samples.
Data elements maqcQA and itnQA are affymetrix QC statistics on large collections of arrays. Data element ilmQA is a derived from a LumiBatch of the Illumina-submitted MAQC raw data, 19 arrays. (Conveyed by Leming Shi, personal communication). Data element spikQA is a 12x9 matrix of QA parameters obtained for 12 arrays from U133A spikein dataset, with first 2 arrays digitally contaminated as described in Asare et al.
Data element fig3map gives the indices of the points labeled A-H in Figure 3 of the manuscript by Asare et al. associated with this package.
an instance of arrOutStruct class, a list with a partition of samples into two data frames (inl and outl) with QA summary statistics
Z. Gao et al.
## Not run: library(simpleaffy) setQCEnvironment("hgu133acdf") # no CDF corresponding to tag array if ( require("mvoutData") ) { data(s12c) data(s12cQC) data(s12cDEG) library(affyPLM) s12cPset = fitPLM(s12c) ao = ArrayOutliers(s12c, alpha=0.05, qcOut=s12cQC, plmOut=s12cPset, degOut=s12cDEG) ao } if (require("lumiBarnes")) { library(lumiBarnes) data(lumiBarnes) ArrayOutliers(lumiBarnes, alpha=0.05) lb2 = lumiBarnes exprs(lb2)[1:20000,1:2] = 10000*exprs(lb2)[1:20000,1:2] ArrayOutliers(lb2, alpha=0.05) } data(maqcQA) # affy ArrayOutliers(maqcQA[,-c(1:2)], alpha=.05) ArrayOutliers(maqcQA[,-c(1:2)], alpha=.01) data(ilmQA) # illumina ArrayOutliers(data.frame(ilmQA), alpha=.01) data(itnQA) # 507 arrays from ITN ArrayOutliers(itnQA, alpha=.01) ## End(Not run)
## Not run: library(simpleaffy) setQCEnvironment("hgu133acdf") # no CDF corresponding to tag array if ( require("mvoutData") ) { data(s12c) data(s12cQC) data(s12cDEG) library(affyPLM) s12cPset = fitPLM(s12c) ao = ArrayOutliers(s12c, alpha=0.05, qcOut=s12cQC, plmOut=s12cPset, degOut=s12cDEG) ao } if (require("lumiBarnes")) { library(lumiBarnes) data(lumiBarnes) ArrayOutliers(lumiBarnes, alpha=0.05) lb2 = lumiBarnes exprs(lb2)[1:20000,1:2] = 10000*exprs(lb2)[1:20000,1:2] ArrayOutliers(lb2, alpha=0.05) } data(maqcQA) # affy ArrayOutliers(maqcQA[,-c(1:2)], alpha=.05) ArrayOutliers(maqcQA[,-c(1:2)], alpha=.01) data(ilmQA) # illumina ArrayOutliers(data.frame(ilmQA), alpha=.01) data(itnQA) # 507 arrays from ITN ArrayOutliers(itnQA, alpha=.01) ## End(Not run)
wraps functions that perform multivariate outlier detection on dimension-reduced QA statistics of expression arrays
fails; tells user that alpha is obligatory parameter
performs calibrated multivariate outlier detection on an AffyBatch instance using various affy-specific QA parameters
performs calibrated multivariate outlier detection on an LumiBatch instance using various illumina-specific QA parameters
performs calibrated outlier detection on QA statistics housed in data.frame – all columns
of the data
entity must be numeric QA statistics for the arrays.
example(ArrayOutliers)
example(ArrayOutliers)
Class "arrOutStruct" container for ArrayOutliers output
Objects can be created by calls of the form new("arrOutStruct", ...)
.
This class just extends list
but has specialized show
and plot
methods.
Class "list"
, from data part.
Class "vector"
, by class "list", distance 2.
Class AssayData
, by class "list",
distance 2.
signature(x = "arrOutStruct", y = "ANY")
: a biplot of QA statistics
signature(object = "arrOutStruct")
: summary report
Vince Carey <[email protected]>
data(maqcQA) f1 = ArrayOutliers(maqcQA[,-c(1:2)], alpha=0.01) names(f1) f1
data(maqcQA) f1 = ArrayOutliers(maqcQA[,-c(1:2)], alpha=0.01) names(f1) f1