Package 'animalcules'

Title: Interactive microbiome analysis toolkit
Description: animalcules is an R package for utilizing up-to-date data analytics, visualization methods, and machine learning models to provide users an easy-to-use interactive microbiome analysis framework. It can be used as a standalone software package or users can explore their data with the accompanying interactive R Shiny application. Traditional microbiome analysis such as alpha/beta diversity and differential abundance analysis are enhanced, while new methods like biomarker identification are introduced by animalcules. Powerful interactive and dynamic figures generated by animalcules enable users to understand their data better and discover new insights.
Authors: Jessica McClintock [cre], Yue Zhao [aut] , Anthony Federico [aut] , W. Evan Johnson [aut]
Maintainer: Jessica McClintock <[email protected]>
License: Artistic-2.0
Version: 1.23.0
Built: 2024-10-30 03:31:35 UTC
Source: https://github.com/bioc/animalcules

Help Index


Alpha diversity boxplot

Description

Alpha diversity boxplot

Usage

alpha_div_boxplot(
  MAE,
  tax_level,
  condition,
  alpha_metric = c("inverse_simpson", "gini_simpson", "shannon", "fisher", "coverage",
    "unit")
)

Arguments

MAE

A multi-assay experiment object. Required.

tax_level

The taxon level used for organisms. Required.

condition

Which condition to group samples. Required.

alpha_metric

Which alpha diversity metric to use. Required. Can be one of:"inverse_simpson", "gini_simpson", "shannon", "fisher", "coverage", "unit"

Value

A plotly object

Examples

data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
toy_data <- readRDS(data_dir)
p <- alpha_div_boxplot(toy_data,
  tax_level = "genus",
  condition = "DISEASE",
  alpha_metric = "shannon"
)
p

Get alpha diversity

Description

Get alpha diversity

Usage

alpha_div_test(sam_table, alpha_stat)

Arguments

sam_table

A dataframe with 2 cols, richness and condition. Required.

alpha_stat

Wilcoxon rank sum test or T-test for the test

Value

A dataframe

Examples

df_test <- data.frame(
  richness = seq_len(10),
  condition = c(rep(1, 5), rep(0, 5))
)
alpha_div_test(df_test, alpha_stat = "Wilcoxon rank sum test")

Covert a counts table to a relative abundances table

Description

Covert a counts table to a relative abundances table

Usage

counts_to_logcpm(counts_table)

Arguments

counts_table

A organism x sample data frame of counts

Value

A organism x sample data frame of logcpm counts

Examples

logcpm <- counts_to_logcpm(as.data.frame(matrix(seq_len(12), 4)))

Covert a counts table to a relative abundances table

Description

Covert a counts table to a relative abundances table

Usage

counts_to_relabu(counts_table)

Arguments

counts_table

A organism x sample data frame of counts

Value

A organism x sample data frame of relative abundances

Examples

counts_to_relabu(matrix(seq_len(12), 4))

Factorize all categorical columns

Description

Factorize all categorical columns

Usage

df_char_to_factor(df)

Arguments

df

A sample x condition data frame

Value

A sample x condition data frame

Examples

df_char_to_factor(matrix(seq_len(12)))

Differential abundance analysis

Description

Differential abundance analysis

Usage

differential_abundance(
  MAE,
  tax_level,
  input_da_condition = c(),
  input_da_condition_covariate = NULL,
  min_num_filter = 5,
  input_da_padj_cutoff = 0.05,
  method = "DESeq2"
)

Arguments

MAE

A multi-assay experiment object

tax_level

The taxon level used for organisms

input_da_condition

Which condition is the target condition

input_da_condition_covariate

Covariates added to linear function

min_num_filter

Minimum number reads mapped to this microbe

input_da_padj_cutoff

adjusted pValue cutoff

method

choose between DESeq2 and limma

Value

A output dataframe

Examples

data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
toy_data <- readRDS(data_dir)
differential_abundance(toy_data,
  tax_level = "phylum",
  input_da_condition = c("DISEASE"),
  min_num_filter = 2,
  input_da_padj_cutoff = 0.5,
  method = "DESeq2"
)

Dimensionality reduction through PCA

Description

Dimensionality reduction through PCA

Usage

dimred_pca(
  MAE,
  tax_level,
  color,
  shape = NULL,
  pcx = 1,
  pcy = 2,
  pcz = NULL,
  datatype = c("logcpm", "relabu", "counts")
)

Arguments

MAE

A multi-assay experiment object

tax_level

The taxon level used for organisms

color

A condition to color data points by e.g. "AGE"

shape

A condition to shape data points by e.g. "SEX"

pcx

Principal component on the x-axis e.g. 1

pcy

Principal component on the y-axis e.g. 2

pcz

Principal component on the z-axis e.g. 3

datatype

Datatype to use e.g. c("logcpm", "relabu", "counts")

Value

A list with a plotly object and summary table

Examples

data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
toy_data <- readRDS(data_dir)
result <- dimred_pca(toy_data,
  tax_level = "genus",
  color = "AGE",
  shape = "DISEASE",
  pcx = 1,
  pcy = 2,
  datatype = "logcpm"
)
result$plot
result$table

Dimensionality reduction through PCoA

Description

Dimensionality reduction through PCoA

Usage

dimred_pcoa(
  MAE,
  tax_level,
  color,
  shape = NULL,
  axx = 1,
  axy = 2,
  axz = NULL,
  method = c("bray", "jaccard")
)

Arguments

MAE

A multi-assay experiment object

tax_level

The taxon level used for organisms

color

A condition to color data points by e.g. "AGE"

shape

A condition to shape data points by e.g. "SEX"

axx

Principle coordinate on the x-axis e.g. 1

axy

Principle coordinate on the y-axis e.g. 2

axz

Principle coordinate on the z-axis e.g. 2

method

Method to use e.g. c("bray", "jaccard")

Value

A list with a plotly object and summary table

Examples

data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
toy_data <- readRDS(data_dir)
result <- dimred_pcoa(toy_data,
  tax_level = "genus",
  color = "AGE",
  shape = "DISEASE",
  axx = 1,
  axy = 2,
  method = "bray"
)
result$plot
result$table

Dimensionality reduction through t-SNE

Description

Dimensionality reduction through t-SNE

Usage

dimred_tsne(
  MAE,
  tax_level,
  color,
  shape = NULL,
  k = c("2D", "3D"),
  initial_dims = 30,
  perplexity = 10,
  datatype = c("logcpm", "relabu", "counts"),
  tsne_cache = NULL
)

Arguments

MAE

A multi-assay experiment object

tax_level

The taxon level used for organisms

color

A condition to color data points by e.g. "AGE"

shape

A condition to shape data points by e.g. "SEX"

k

Plot dimensions e.g. c("2D","3D")

initial_dims

The number of dimensions to use in reduction method

perplexity

Optimal number of neighbors

datatype

Datatype to use e.g. c("logcpm", "relabu", "counts")

tsne_cache

Pass the cached data back into the function

Value

A list with a plotly object and cached data

Examples

data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
toy_data <- readRDS(data_dir)
results <- dimred_tsne(toy_data,
  tax_level = "phylum",
  color = "AGE",
  shape = "GROUP",
  k = "3D",
  initial_dims = 30,
  perplexity = 10,
  datatype = "logcpm"
)
results$plot

Dimensionality reduction through PCA

Description

Dimensionality reduction through PCA

Usage

dimred_umap(
  MAE,
  tax_level,
  color,
  shape = NULL,
  cx = 1,
  cy = 2,
  cz = NULL,
  n_neighbors = 15,
  metric = c("euclidean", "manhattan"),
  n_epochs = 200,
  init = c("spectral", "random"),
  min_dist = 0.1,
  datatype = c("logcpm", "relabu", "counts")
)

Arguments

MAE

A multi-assay experiment object

tax_level

The taxon level used for organisms

color

A condition to color data points by e.g. "AGE"

shape

A condition to shape data points by e.g. "SEX"

cx

Component on the x-axis e.g. 1

cy

Component on the y-axis e.g. 2

cz

Component on the z-axis e.g. 3

n_neighbors

Number of nearest neighbors

metric

Distance function e.g. c("euclidean", "manhattan")

n_epochs

Number of iterations

init

Initial embedding using eigenvector e.g c("spectral", "random")

min_dist

Determines how close points appear in the final layout

datatype

Datatype to use e.g. c("logcpm", "relabu", "counts")

Value

A list with a plotly object and summary table

Examples

data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
toy_data <- readRDS(data_dir)
result <- dimred_umap(toy_data,
  tax_level = "genus",
  color = "AGE",
  shape = "DISEASE",
  cx = 1,
  cy = 2,
  datatype = "logcpm"
)
result$plot

Get alpha diversity

Description

Get alpha diversity

Usage

diversities(counts_table, index = "all", zeroes = TRUE)

Arguments

counts_table

A dataframe with organism x sample

index

One of inverse_simpson,gini_simpson,shannon,fisher,coverage,unit

zeroes

A boolean for whether to ignore zero values

Value

A list of alpha diversity

Examples

diversities(matrix(seq_len(12), nrow = 3), index = "shannon")

Get alpha diversity

Description

Get alpha diversity

Usage

diversities_help(counts_table, index = "all", zeroes = TRUE)

Arguments

counts_table

A dataframe with organism x sample

index

one of inverse_simpson,gini_simpson,shannon,fisher,coverage,unit

zeroes

A boolean for whether to ignore zero values

Value

A list of alpha diversity

Examples

diversities_help(matrix(seq_len(12), nrow = 3), index = "shannon")

Beta diversity boxplot

Description

Beta diversity boxplot

Usage

diversity_beta_boxplot(
  MAE,
  tax_level,
  input_beta_method,
  input_select_beta_condition
)

Arguments

MAE

A multi-assay experiment object

tax_level

The taxon level used for organisms

input_beta_method

bray, jaccard

input_select_beta_condition

Which condition to group samples

Value

A plotly object

Examples

data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
toy_data <- readRDS(data_dir)
p <- diversity_beta_boxplot(toy_data,
  tax_level = "genus",
  input_beta_method = "bray",
  input_select_beta_condition = "DISEASE"
)
p

Beta diversity heatmap

Description

Beta diversity heatmap

Usage

diversity_beta_heatmap(
  MAE,
  tax_level,
  input_beta_method,
  input_bdhm_select_conditions,
  input_bdhm_sort_by = c("nosort", "conditions")
)

Arguments

MAE

A multi-assay experiment object

tax_level

The taxon level used for organisms

input_beta_method

bray, jaccard

input_bdhm_select_conditions

Which condition to group samples

input_bdhm_sort_by

Sorting option e.g. "nosort", "conditions"

Value

A plotly object

Examples

data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
toy_data <- readRDS(data_dir)
p <- diversity_beta_heatmap(toy_data,
  tax_level = "genus",
  input_beta_method = "bray",
  input_bdhm_select_conditions = "DISEASE",
  input_bdhm_sort_by = "conditions"
)
p

Beta diversity NMDS plot

Description

Beta diversity NMDS plot

Usage

diversity_beta_NMDS(
  MAE,
  tax_level,
  input_beta_method,
  input_select_beta_condition
)

Arguments

MAE

A multi-assay experiment object

tax_level

The taxon level used for organisms

input_beta_method

bray, jaccard

input_select_beta_condition

Which condition to group samples

Value

A plotly object/NMDS plot


Perform a beta diversity test

Description

Perform a beta diversity test

Usage

diversity_beta_test(
  MAE,
  tax_level,
  input_beta_method,
  input_select_beta_condition,
  input_select_beta_stat_method,
  input_num_permutation_permanova = 999
)

Arguments

MAE

A Multi-Assay Experiment object. Required.

tax_level

The taxon level at which organisms should be grouped. Req'd.

input_beta_method

Can be either "bray" or "jaccard". Required.

input_select_beta_condition

Condition to group samples Should be a character string of a colData column name. Required.

input_select_beta_stat_method

The test to be used. Can be one of either "PERMANOVA", "Wilcoxon rank sum test", or "Kruskal-Wallis". Required.

input_num_permutation_permanova

The number of permutations to be used.

Value

A plotly object.

Examples

data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
toy_data <- readRDS(data_dir)
p <- diversity_beta_test(toy_data,
  tax_level = "genus",
  input_beta_method = "bray",
  input_select_beta_condition = "DISEASE",
  input_select_beta_stat_method = "Wilcoxon rank sum test",
  input_num_permutation_permanova = 999
)
p

Alpha diversity statistical test

Description

Alpha diversity statistical test

Usage

do_alpha_div_test(
  MAE,
  tax_level,
  condition,
  alpha_metric = c("inverse_simpson", "gini_simpson", "shannon", "fisher", "coverage",
    "unit"),
  alpha_stat = c("Wilcoxon rank sum test", "T-test", "Kruskal-Wallis")
)

Arguments

MAE

A multi-assay experiment object

tax_level

The taxon level used for organisms

condition

Which condition to group samples

alpha_metric

Which alpha diversity metric to use

alpha_stat

Which stat test to use

Value

A dataframe

Examples

data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
toy_data <- readRDS(data_dir)
p <- do_alpha_div_test(toy_data,
  tax_level = "genus",
  condition = "DISEASE",
  alpha_metric = "shannon",
  alpha_stat = "Wilcoxon rank sum test"
)
p

Categorize continuous variables

Description

Categorize continuous variables

Usage

filter_categorize(
  sam_table,
  sample_condition,
  new_label,
  nbins = NULL,
  bin_breaks = c(),
  bin_labels = c()
)

Arguments

sam_table

A sample x condition dataframe

sample_condition

Continuous variable to categorize

new_label

Column name for categorized variable

nbins

Auto select ranges for n bins/categories

bin_breaks

Manually select ranges for bins/categories

bin_labels

Manually label bins/categories

Value

A list with an updated sample table and before/after plots

Examples

library(SummarizedExperiment)
data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
toy_data <- readRDS(data_dir)
microbe <- MultiAssayExperiment::experiments(toy_data)[[1]]
samples <- as.data.frame(colData(microbe))
result <- filter_categorize(samples,
  sample_condition = "AGE",
  new_label = "AGE_GROUP",
  bin_breaks = c(0, 55, 75, 100),
  bin_labels = c("Young", "Adult", "Elderly")
)
result$sam_table
result$plot.unbinned
result$plot.binned

Data visualization by bar plot / density plot

Description

Data visualization by bar plot / density plot

Usage

filter_summary_bar_density(
  MAE,
  samples_discard = NULL,
  filter_type,
  sample_condition
)

Arguments

MAE

A multi-assay experiment object

samples_discard

The list of samples to filter

filter_type

Either 'By Microbes' or 'By Metadata'

sample_condition

Which condition to check e.g. 'SEX'

Value

A plotly object

Examples

data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
toy_data <- readRDS(data_dir)
result <- filter_summary_bar_density(toy_data,
  samples_discard = c("subject_2", "subject_4"),
  filter_type = "By Metadata",
  sample_condition = "SEX"
)
result

Data visualization by pie chart / box plot

Description

Data visualization by pie chart / box plot

Usage

filter_summary_pie_box(
  MAE,
  samples_discard = NULL,
  filter_type,
  sample_condition
)

Arguments

MAE

A multi-assay experiment object

samples_discard

The list of samples to filter

filter_type

Either 'By Microbes' or 'By Metadata'

sample_condition

Which condition to check e.g. 'SEX'

Value

A plotly object

Examples

data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
toy_data <- readRDS(data_dir)
result <- filter_summary_pie_box(toy_data,
  samples_discard = c("subject_2", "subject_4"),
  filter_type = "By Microbes",
  sample_condition = "SEX"
)
result

Identify biomarkers

Description

Identify biomarkers

Usage

find_biomarker(
  MAE,
  tax_level,
  input_select_target_biomarker,
  nfolds = 3,
  nrepeats = 3,
  seed = 99,
  percent_top_biomarker = 0.2,
  model_name = c("logistic regression", "random forest")
)

Arguments

MAE

A multi-assay experiment object

tax_level

The taxon level used for organisms

input_select_target_biomarker

Which condition is the target condition

nfolds

number of splits in CV

nrepeats

number of CVs with different random splits

seed

for repeatable research

percent_top_biomarker

Top importance percentage to pick biomarker

model_name

one of 'logistic regression', 'random forest'

Value

A list

Examples

data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
toy_data <- readRDS(data_dir)
p <- find_biomarker(toy_data,
  tax_level = "family",
  input_select_target_biomarker = c("DISEASE"),
  nfolds = 3,
  nrepeats = 3,
  seed = 99,
  percent_top_biomarker = 0.2,
  model_name = "logistic regression"
)
p

Find the Taxonomy Information Matrix

Description

Find the Taxonomy Information Matrix

Usage

find_taxon_mat(names, taxonLevels)

Arguments

names

Row names of the taxonomy matrix

taxonLevels

Taxon Levels of all tids

Value

taxmat Taxonomy Information Matrix

Examples

ids <- c("ti|54005", "ti|73001", "ti|573", "ti|228277", "ti|53458")
tids <- c("54005", "73001", "573", "228277", "53458")
taxonLevels <- find_taxonomy(tids)
tax_table <- find_taxon_mat(ids, taxonLevels)

Find the taxonomy for unlimited tids

Description

Find the taxonomy for unlimited tids

Usage

find_taxonomy(tids)

Arguments

tids

Given taxonomy ids

Value

A list of taxon levels with information

Examples

taxonLevels <- find_taxonomy(tids = 1200)

Find the taxonomy for maximum 300 tids

Description

Find the taxonomy for maximum 300 tids

Usage

find_taxonomy_300(tids)

Arguments

tids

Given taxonomy ids

Value

taxondata Data with the taxonomy information

Examples

taxonLevels <- find_taxonomy_300(tids = 1200)

Get alpha diversity using gini

Description

Get alpha diversity using gini

Usage

gini_simpson(x)

Arguments

x

A list of counts

Value

A single value

Examples

gini_simpson(seq_len(10))

Greps the tid from the given identifier string

Description

Greps the tid from the given identifier string

Usage

grep_tid(id)

Arguments

id

Given identifier string

Value

tid string

Examples

grep_tid("ti|700015|org|Coriobacterium_glomerans_PW2")

Get alpha diversity using inverse simpson

Description

Get alpha diversity using inverse simpson

Usage

inverse_simpson(x)

Arguments

x

A list of counts

Value

A single value

Examples

inverse_simpson(seq_len(10))

Check if object is categorical

Description

Check if object is categorical

Usage

is_categorical(v)

Arguments

v

A single value

Value

Boolean

Examples

nums <- 2
is_categorical(nums)

check if integer(0)

Description

check if integer(0)

Usage

is_integer0(x)

Arguments

x

A single value

Value

Boolean

Examples

nums <- 2
is_integer0(nums)

check if integer(1)

Description

check if integer(1)

Usage

is_integer1(x)

Arguments

x

A single value

Value

Boolean

Examples

nums <- 2
is_integer1(nums)

Modify organisms of multi-assay experiment object

Description

Modify organisms of multi-assay experiment object

Usage

mae_pick_organisms(MAE, isolate_organisms = NULL, discard_organisms = NULL)

Arguments

MAE

A multi-assay experiment object

isolate_organisms

Isolate specific organisms e.g. ti|001, ti|002

discard_organisms

Discard specific organisms e.g. ti|001, ti|002

Value

A multi-assay experiment object

Examples

data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
toy_data <- readRDS(data_dir)
subset <- mae_pick_organisms(toy_data,
  isolate_organisms = c("ti|001", "ti|002")
)

Modify samples of multi-assay experiment object

Description

Modify samples of multi-assay experiment object

Usage

mae_pick_samples(MAE, isolate_samples = NULL, discard_samples = NULL)

Arguments

MAE

A multi-assay experiment object

isolate_samples

Isolate specific samples e.g. c('SAM_01', 'SAM_02')

discard_samples

Discard specific samples e.g. c('SAM_01', 'SAM_02')

Value

A multi-assay experiment object

Examples

data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
toy_data <- readRDS(data_dir)
subset <- mae_pick_samples(toy_data,
  isolate_samples = c(
    "subject_9",
    "subject_14"
  )
)

Converts decimal percentage to string with specified digits

Description

Converts decimal percentage to string with specified digits

Usage

pct2str(v, digits = 2)

Arguments

v

A single value

digits

number of digits

Value

Boolean

Examples

nums <- 0.23
pct2str(nums)

Format decimals to percentages

Description

Format decimals to percentages

Usage

percent(x, digits = 2, format = "f")

Arguments

x

An array of decimals

digits

number of digits

format

f

Value

An array of formatted strings

Examples

nums <- c(0.42, 0.15, 0.4, 0.563, 0.2)
percent(nums)

Reads the data from PathoScope reports and returns a list of final guess relative abundance and count data

Description

Reads the data from PathoScope reports and returns a list of final guess relative abundance and count data

Usage

read_pathoscope_data(
  input_dir = ".",
  pathoreport_file_suffix = "-sam-report.tsv",
  use.input.files = FALSE,
  input.files.path.vec = NULL,
  input.files.name.vec = NULL
)

Arguments

input_dir

Directory where the tsv files from PathoScope are located

pathoreport_file_suffix

PathoScope report files suffix

use.input.files

whether input dir to pathoscope files or directly pathoscope files

input.files.path.vec

vector of pathoscope file paths

input.files.name.vec

vector of pathoscope file names

Value

List of final guess relative abundance and count data


Plot bar plots of sample and group level relative abundance

Description

Plot bar plots of sample and group level relative abundance

Usage

relabu_barplot(
  MAE,
  tax_level,
  order_organisms = c(),
  sort_by = c("nosort", "conditions", "organisms", "alphabetically"),
  group_samples = FALSE,
  group_conditions = "ALL",
  sample_conditions = c(),
  isolate_samples = c(),
  discard_samples = c(),
  show_legend = TRUE
)

Arguments

MAE

A multi-assay experiment object

tax_level

The taxon level used for organisms

order_organisms

A character list of organisms to send to top

sort_by

Sort bars by one of c("nosort", "conditions", "organisms", "alphabetically")

group_samples

A bool specifying whether to group samples

group_conditions

Group by one or more conditions e.g. "ALL" or "SEX"

sample_conditions

Plot associatied conditions with samples.

isolate_samples

Isolate specific samples e.g. c("SAM_01", "SAM_02")

discard_samples

Discard specific samples e.g. c("SAM_01", "SAM_02")

show_legend

A bool specifying whether or not to show organisms legend

Value

A plotly object

Examples

data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
toy_data <- readRDS(data_dir)
p <- relabu_barplot(toy_data,
  tax_level = "family",
  order_organisms = c("Retroviridae"),
  sort_by = "organisms",
  sample_conditions = c("SEX", "AGE"),
  show_legend = TRUE
)
p

Plot boxplots comparing different organism prevalence across conditions

Description

Plot boxplots comparing different organism prevalence across conditions

Usage

relabu_boxplot(
  MAE,
  tax_level,
  condition,
  organisms = c(),
  datatype = c("counts", "relative abundance", "logcpm")
)

Arguments

MAE

A multi-assay experiment object

tax_level

The taxon level used for organisms

condition

Compare groups by condition e.g. 'SEX'

organisms

Include organisms for plotting.

datatype

counts, relative abundance,logcpm

Value

A plotly object

Examples

data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
toy_data <- readRDS(data_dir)
p <- relabu_boxplot(toy_data,
  tax_level = "genus",
  organisms = c("Escherichia", "Actinomyces"),
  condition = "SEX",
  datatype = "logcpm"
)
p

Plot heatmap of sample level counts in logcpm

Description

Plot heatmap of sample level counts in logcpm

Usage

relabu_heatmap(
  MAE,
  tax_level,
  sort_by = c("nosort", "conditions", "organisms", "alphabetically"),
  sample_conditions = c(),
  isolate_organisms = c(),
  isolate_samples = c(),
  discard_samples = c(),
  log_cpm = TRUE
)

Arguments

MAE

A multi-assay experiment object

tax_level

The taxon level used for organisms

sort_by

Sort bars by one of c('nosort', 'conditions', 'organisms', 'alphabetically')

sample_conditions

Plot conditions e.g. c('SEX', 'AGE')

isolate_organisms

Isolate specific organisms e.g. c('Hepacivirus')

isolate_samples

Isolate specific samples e.g. c('SAM_01', 'SAM_02')

discard_samples

Discard specific samples e.g. c('SAM_01', 'SAM_02')

log_cpm

Convert counts to logcpm

Value

A plotly object

Examples

data_dir <- system.file("extdata/MAE.rds", package = "animalcules")
toy_data <- readRDS(data_dir)
p <- relabu_heatmap(toy_data,
  tax_level = "genus",
  sort_by = "conditions",
  sample_conditions = c("SEX", "AGE")
)
p

Run animalcules shiny app

Description

Run animalcules shiny app

Usage

run_animalcules(dev = FALSE)

Arguments

dev

Run the applicaiton in developer mode

Value

The shiny app will open

Examples

## Not run: 
run_animalcules()

## End(Not run)

Get alpha diversity using shannon

Description

Get alpha diversity using shannon

Usage

shannon(x)

Arguments

x

A list of counts

Value

A single value

Examples

shannon(seq_len(10))

Get alpha diversity using simpson

Description

Get alpha diversity using simpson

Usage

simpson_index(x)

Arguments

x

A list of counts

Value

A single value

Examples

simpson_index(seq_len(10))

Upsample a counts table to a higher taxon level

Description

Upsample a counts table to a higher taxon level

Usage

upsample_counts(counts_table, tax_table, higher_level)

Arguments

counts_table

A organism x sample data frame of counts

tax_table

A organism x taxlev data frame of labels

higher_level

Higher taxon level to upsample to

Value

A organism x sample data frame of counts

Examples

toy_data <- readRDS(system.file("extdata/toy_data.rds", 
package = "animalcules"))
tax_table <- toy_data$tax_table
sam_table <- toy_data$sam_table
counts_table <- toy_data$counts_table
counts_table <- upsample_counts(counts_table, tax_table, "phylum")

Output biom

Description

Output biom

Usage

write_to_biom(MAE, path_to_output)

Arguments

MAE

A multi-assay experiment object

path_to_output

The folder to output biom file

Value

A message