Title: | Affymetrix File Parsing SDK |
---|---|
Description: | Package for parsing Affymetrix files (CDF, CEL, CHP, BPMAP, BAR). It provides methods for fast and memory efficient parsing of Affymetrix files using the Affymetrix' Fusion SDK. Both ASCII- and binary-based files are supported. Currently, there are methods for reading chip definition file (CDF) and a cell intensity file (CEL). These files can be read either in full or in part. For example, probe signals from a few probesets can be extracted very quickly from a set of CEL files into a convenient list structure. |
Authors: | Henrik Bengtsson [aut], James Bullard [aut], Robert Gentleman [ctb], Kasper Daniel Hansen [aut, cre], Jim Hester [ctb], Martin Morgan [ctb] |
Maintainer: | Kasper Daniel Hansen <[email protected]> |
License: | LGPL (>= 2) |
Version: | 1.79.1 |
Built: | 2025-01-07 03:26:45 UTC |
Source: | https://github.com/bioc/affxparser |
The affxparser package provides methods for fast and memory efficient parsing of Affymetrix files [1] using the Affymetrix' Fusion SDK [2,3]. Both traditional ASCII- and binary (XDA)-based files are supported, as well as Affymetrix future binary format "Calvin". The efficiency of the parsing is dependent on whether a specific file is binary or ASCII.
Currently, there are methods for reading chip definition file (CDF) and a cell intensity file (CEL). These files can be read either in full or in part. For example, probe signals from a few probesets can be extracted very quickly from a set of CEL files into a convenient list structure.
To get started, see:
readCelUnits
() - reads one or several Affymetrix
CEL file probeset by probeset.
readCel
() - reads an Affymetrix CEL file.
by probe.
readCdf
() - reads an Affymetrix CDF file.
by probe.
readCdfUnits
() - reads an Affymetrix CDF file unit by unit.
readCdfCellIndices
() - Like readCdfUnits()
, but returns cell indices only, which is often enough to read CEL files unit by unit.
applyCdfGroups
() - Re-arranges a CDF structure.
findCdf
() - Locates an Affymetrix CDF file by chip type. This page also describes how to setup default search path for CDF files.
Some of the functions in this package search for CDF files automatically by scanning certain directories. To add directories to the default search path, see instructions in findCdf
().
Other Affymetrix files can be parsed using the Fusion SDK. Given sufficient interest we will implement this, e.g. DAT files (image files).
In order to run the examples, data files must exists in the current directory. Otherwise, the example scripts will do nothing. Most of the examples requires a CDF file or a CEL file, or both. Make sure the CDF file is of the same chip type as the CEL file.
Affymetrix provides data sets of different types at http://www.affymetrix.com/support/datasets.affx that can be used. There are both small are very large data sets available.
This package implements an interface to the Fusion SDK from Affymetrix.com. This SDK (software development kit) is an open source library used for parsing the various files formats used by the Affymetrix platform.
The intention is to provide interfaces to most if not all file formats which may be parsed using Fusion.
The SDK supports parsing of all the different versions of a specific file format. This means that ASCII, binary as well as the new binary format (codename Calvin) used by Affymetrix is supported through a single API. We also expect any future changes to the file formats to be reflected in the SDK, and subsequently in this package.
However, as the current Fusion SDK does not support compressed files, neither does affxparser. This is in contrast to some of the existing code in affy and relatives (see below for links).
In general we aim to provide functions returning all information in the respective files. Currently it seems that future Affymetrix chip designs may consists of so many features that returning all information will lead to an unnecessary overhead in the case a user only wants access to a subset. We have tried to make this possible.
For older file, certain entries in the files have been removed from newer specifications, and the SDK does not provide utilities for reading these entries. This includes for instance the FEAT column of CDF files.
Currently the package as well as the Fusion SDK is in beta stage. Bugs may be related to either codebase. We are very interested in users being unable to compile/parse files using this library - this includes users with custom chip designs.
In addition, since we aim to return all information stored in the file (and accessible using the Fusion SDK) we would like reports from users being unable to do that.
The efficiency of the underlying code may vary with the version of the
file being parsed. For example, we currently report the number of
outliers present in a CEL file when reading the header of the file
using readCelHeader
. In order to obtain this information
from text based CEL files (version 2), the entire file needs to be
read into memory. With version 3 of the file format, this information
is stored in the header.
With the introduction of the Fusion SDK (and the next version of their
file formats) Affymetrix has made it possible to use multibyte
character sets. This implies that character information may be
inaccessible if the compiler used to compile the C++ code does not
support multibyte character sets (specifically we require that the R
installation has defined the macro SUPPORT_MCBS
in the
Rconfig.h
header file). For example GCC needs to be version 3.4
or greater on Solaris.
In the info
subdirectory of the package installation,
information regarding changes to the Fusion SDK is stored, e.g.
pathname <- system.file("info", "changes2fusion.txt", package="affxparser") file.show(pathname)
We would like to thanks Ken Simpson (WEHI, Melbourne) and Seth Falcon (FHCRC, Seattle) for feedback and code contributions.
The releases of this package is licensed under LGPL version 2.1 or newer. This applies also to the Fusion SDK.
Henrik Bengtsson [aut], James Bullard [aut], Robert Gentleman [ctb], Kasper Daniel Hansen [aut, cre], Martin Morgan [ctb]
[1] Affymetrix Inc, Affymetrix GCOS 1.x compatible file formats,
April, 2006.
http://www.affymetrix.com/support/developer/
[2] Affymetrix Inc, Fusion Software Developers Kit (SDK), 2006.
http://www.affymetrix.com/support/developer/fusion/
[3] Henrik Bengtsson, unofficial archive of Affymetrix Fusion Software Developers Kit (SDK),
https://github.com/HenrikBengtsson/Affx-Fusion-SDK
This part describes non-obvious terms used in this package.
The name of this package.
Application program interface, which describes the functional interface of underlying methods.
(aka group).
A file format containing information related to the design of the tiling arrays.
A special binary file format.
A file format: chip definition file.
A file format: cell intensity file.
(aka feature) A probe.
An integer that identifies a probe uniquely.
An array.
An identifier specifying a chip design
uniquely, e.g. "Mapping50K_Xba240"
.
A file format: contains pixel intensity values collected from an Affymetrix GeneArray scanner.
A probe.
Open-source software development kit (SDK) provided by Affymetrix to access their data files.
(aka block) Defines a unique subset of the cells in a unit. Expression arrays typically only have one group per unit, whereas SNP arrays have either two or four groups per unit, one for each of the two allele times possibly repeated for both strands.
Mismatch-match, e.g. MM probe.
A file format: probe group file.
A file format storing the relationship between (PM,MM) pairs (or PM probes) and positions on a set of sequences.
Quality control, e.g. QC probes and QC probe sets.
A probeset.
A file format, aka as the binary file format.
This part describes how Affymetrix cells, also known as probes or features, are addressed.
In Affymetrix data files, cells are uniquely identified by there
cell coordinates, i.e. . For an array with
cells in
rows and
columns, the
coordinate is an integer in
, and the
coordinate
is an integer in
. The cell in the upper-left corner has
coordinate
and the one in the lower-right corner
.
To simplify addressing of cells, a coordinate-to-index function is
used so that each cell can be addressed using a single integer instead
(of two). Affymetrix defines the cell index, , of
cell
as
where one is added to give indices in .
Continuing, the above definition means that cells are ordered
row by row, that is from left to right and from top to bottom,
starting at the upper-left corner.
For example, with a chip layout
the cell at
has index i=1, and the cell at
has index
.
A cell at
has index
.
Given the cell index , the coordinate
can be
calculated as
Continuing the above example, the coordinate for cell is
be found to be
, for cell
it is
, for cell
is it
.
Although not needed to use the methods in this package, to get the
cell indices for the cell coordinates or vice versa, see
xy2indices()
and indices2xy()
in the affy package.
An Affymetrix CDF file provides information on which cells should be grouped together. To identify these groups of cells, the cells are specified by their (x,y) coordinates, which are stored as zero-based coordinates in the CDF file.
All methods of the affxparser package make use of these (x,y) coordinates, and some methods make it possible to read them as well. However, it is much more common that the methods return cell indices calculated from the (x,y) coordinates as explained above.
In order to conveniently work with cell indices in R, the convention in affxparser is to use one-based indices. Hence the addition (and subtraction) of 1:s in the above equations. This is all taken care of by affxparser.
Note that, in addition to (x,y) coordinates, a CDF file also contains a one-based "index" for each cell. This "index" is redundant to the (x,y) coordinate and can be calculated analogously to the above cell index while leaving out the addition (subtraction) of 1:s. Importantly, since this "index" is redundant (and exists only in CDF files), we have decided to treat this field as an internal field. Methods of affxparser do neither provide access to nor make use of this internal field.
Henrik Bengtsson
Applies a function to a list of fields of each group in a CDF structure.
applyCdfGroupFields(cdf, fcn, ...)
applyCdfGroupFields(cdf, fcn, ...)
cdf |
A CDF |
fcn |
A |
... |
Arguments passed to the |
Returns an updated CDF list
structure.
Henrik Bengtsson
Applies a function over the groups in a CDF structure.
applyCdfGroups(cdf, fcn, ...)
applyCdfGroups(cdf, fcn, ...)
cdf |
A CDF |
fcn |
A |
... |
Arguments passed to the |
Returns an updated CDF list
structure.
cdfGetFields
() - Gets a subset of groups fields in a CDF
structure.
cdfGetGroups
() - Gets a subset of groups in a CDF structure.
cdfOrderBy
() - Orders the fields according to the value of
another field in the same CDF group.
cdfOrderColumnsBy
() - Orders the columns of fields according
to the values in a certain row of another field in the same CDF group.
cdfAddBaseMmCounts
() - Adds the number of allele A and
allele B mismatching nucleotides of the probes in a CDF structure.
cdfAddProbeOffsets
() - Adds probe offsets to the groups in
a CDF structure.
cdfGtypeCelToPQ
() - Function to imitate Affymetrix'
gtype_cel_to_pq
software.
cdfMergeAlleles
() - Function to join CDF allele A and
allele B groups strand by strand.
cdfMergeStrands
() - Function to join CDF groups with the
same names.
We appreciate contributions.
Henrik Bengtsson
############################################################## if (require("AffymetrixDataTestFiles")) { # START # ############################################################## cdfFile <- findCdf("Mapping10K_Xba131") # Identify the unit index from the unit name unitName <- "SNP_A-1509436" unit <- which(readCdfUnitNames(cdfFile) == unitName) # Read the CDF file cdf0 <- readCdfUnits(cdfFile, units=unit, stratifyBy="pmmm", readType=FALSE, readDirection=FALSE) cat("Default CDF structure:\n") print(cdf0) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Tabulate the information in each group # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - cdf <- readCdfUnits(cdfFile, units=unit) cdf <- applyCdfGroups(cdf, lapply, as.data.frame) print(cdf) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Infer the (true or the relative) offset for probe quartets. # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - cdf <- applyCdfGroups(cdf0, cdfAddProbeOffsets) cat("Probe offsets:\n") print(cdf) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Identify the number of nucleotides that mismatch the # allele A and the allele B sequences, respectively. # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - cdf <- applyCdfGroups(cdf, cdfAddBaseMmCounts) cat("Allele A & B target sequence mismatch counts:\n") print(cdf) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Combine the signals from the sense and the anti-sense # strands in a SNP CEL files. # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # First, join the strands in the CDF structure. cdf <- applyCdfGroups(cdf, cdfMergeStrands) cat("Joined CDF structure:\n") print(cdf) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Rearrange values of group fields into quartets. This # requires that the values are already arranged as PMs and MMs. # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - cdf <- applyCdfGroups(cdf0, cdfMergeAlleles) cat("Probe quartets:\n") print(cdf) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Get the x and y cell locations (note, zero-based) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - x <- unlist(applyCdfGroups(cdf, cdfGetFields, "x"), use.names=FALSE) y <- unlist(applyCdfGroups(cdf, cdfGetFields, "y"), use.names=FALSE) # Validate ncol <- readCdfHeader(cdfFile)$cols cells <- as.integer(y*ncol+x+1) cells <- sort(cells) cells0 <- readCdfCellIndices(cdfFile, units=unit) cells0 <- unlist(cells0, use.names=FALSE) cells0 <- sort(cells0) stopifnot(identical(cells0, cells)) ############################################################## } # STOP # ##############################################################
############################################################## if (require("AffymetrixDataTestFiles")) { # START # ############################################################## cdfFile <- findCdf("Mapping10K_Xba131") # Identify the unit index from the unit name unitName <- "SNP_A-1509436" unit <- which(readCdfUnitNames(cdfFile) == unitName) # Read the CDF file cdf0 <- readCdfUnits(cdfFile, units=unit, stratifyBy="pmmm", readType=FALSE, readDirection=FALSE) cat("Default CDF structure:\n") print(cdf0) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Tabulate the information in each group # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - cdf <- readCdfUnits(cdfFile, units=unit) cdf <- applyCdfGroups(cdf, lapply, as.data.frame) print(cdf) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Infer the (true or the relative) offset for probe quartets. # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - cdf <- applyCdfGroups(cdf0, cdfAddProbeOffsets) cat("Probe offsets:\n") print(cdf) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Identify the number of nucleotides that mismatch the # allele A and the allele B sequences, respectively. # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - cdf <- applyCdfGroups(cdf, cdfAddBaseMmCounts) cat("Allele A & B target sequence mismatch counts:\n") print(cdf) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Combine the signals from the sense and the anti-sense # strands in a SNP CEL files. # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # First, join the strands in the CDF structure. cdf <- applyCdfGroups(cdf, cdfMergeStrands) cat("Joined CDF structure:\n") print(cdf) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Rearrange values of group fields into quartets. This # requires that the values are already arranged as PMs and MMs. # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - cdf <- applyCdfGroups(cdf0, cdfMergeAlleles) cat("Probe quartets:\n") print(cdf) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Get the x and y cell locations (note, zero-based) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - x <- unlist(applyCdfGroups(cdf, cdfGetFields, "x"), use.names=FALSE) y <- unlist(applyCdfGroups(cdf, cdfGetFields, "y"), use.names=FALSE) # Validate ncol <- readCdfHeader(cdfFile)$cols cells <- as.integer(y*ncol+x+1) cells <- sort(cells) cells0 <- readCdfCellIndices(cdfFile, units=unit) cells0 <- unlist(cells0, use.names=FALSE) cells0 <- sort(cells0) stopifnot(identical(cells0, cells)) ############################################################## } # STOP # ##############################################################
Compares the contents of two CDF files.
compareCdfs(pathname, other, quick=FALSE, verbose=0, ...)
compareCdfs(pathname, other, quick=FALSE, verbose=0, ...)
pathname |
The pathname of the first CDF file. |
other |
The pathname of the seconds CDF file. |
quick |
If |
verbose |
An |
... |
Not used. |
The comparison is done with an upper-limit memory usage, regardless of the size of the CDFs.
Returns TRUE
if the two CDF are equal, otherwise FALSE
. If FALSE
,
the attribute reason
contains a string explaining what
difference was detected, and the attributes value1
and
value2
contain the two objects/values that differs.
Henrik Bengtsson
convertCdf
().
Compares the contents of two CEL files.
compareCels(pathname, other, readMap=NULL, otherReadMap=NULL, verbose=0, ...)
compareCels(pathname, other, readMap=NULL, otherReadMap=NULL, verbose=0, ...)
pathname |
The pathname of the first CEL file. |
other |
The pathname of the seconds CEL file. |
readMap |
An optional read map for the first CEL file. |
otherReadMap |
An optional read map for the second CEL file. |
verbose |
An |
... |
Not used. |
Returns TRUE
if the two CELs are equal, otherwise FALSE
. If FALSE
,
the attribute reason
contains a string explaining what
difference was detected, and the attributes value1
and
value2
contain the two objects/values that differs.
Henrik Bengtsson
convertCel
().
Converts a CDF into the same CDF but with another format. Currently only CDF files in version 4 (binary/XDA) can be written. However, any input format is recognized.
convertCdf(filename, outFilename, version="4", force=FALSE, ..., .validate=TRUE, verbose=FALSE)
convertCdf(filename, outFilename, version="4", force=FALSE, ..., .validate=TRUE, verbose=FALSE)
filename |
The pathname of the original CDF file. |
outFilename |
The pathname of the destination CDF file. If the same as the source file, an exception is thrown. |
version |
The version of the output file format. |
force |
If |
... |
Not used. |
.validate |
If |
verbose |
If |
Returns (invisibly) TRUE
if a new CDF was generated, otherwise FALSE
.
Binary CDFs are much faster to read than ASCII CDFs. Here are some example for reading complete CDFs (the difference is even larger when reading CDFs in subsets):
HG-U133A (22283 units): ASCII 11.7s (9.3x), binary 1.20s (1x).
Hu6800 (7129 units): ASCII 3.5s (6.1x), binary 0.57s (1x).
The following chip types have been converted using convertCdf()
and then verified for correctness using compareCdfs()
:
ASCII-to-binary: HG-U133A, Hu6800.
Binary-to-binary: Test3.
Henrik Bengtsson
See compareCdfs
() to compare two CDF files.
writeCdf
().
############################################################## if (require("AffymetrixDataTestFiles")) { # START # ############################################################## chipType <- "Test3" cdfFiles <- findCdf(chipType, firstOnly=FALSE) cdfFiles <- list( ASCII=grep("ASCII", cdfFiles, value=TRUE), XDA=grep("XDA", cdfFiles, value=TRUE) ) outFile <- file.path(tempdir(), sprintf("%s.cdf", chipType)) convertCdf(cdfFiles$ASCII, outFile, verbose=TRUE) ############################################################## } # STOP # ##############################################################
############################################################## if (require("AffymetrixDataTestFiles")) { # START # ############################################################## chipType <- "Test3" cdfFiles <- findCdf(chipType, firstOnly=FALSE) cdfFiles <- list( ASCII=grep("ASCII", cdfFiles, value=TRUE), XDA=grep("XDA", cdfFiles, value=TRUE) ) outFile <- file.path(tempdir(), sprintf("%s.cdf", chipType)) convertCdf(cdfFiles$ASCII, outFile, verbose=TRUE) ############################################################## } # STOP # ##############################################################
Converts a CEL into the same CEL but with another format. Currently only CEL files in version 4 (binary/XDA) can be written. However, any input format is recognized.
convertCel(filename, outFilename, readMap=NULL, writeMap=NULL, version="4", newChipType=NULL, ..., .validate=FALSE, verbose=FALSE)
convertCel(filename, outFilename, readMap=NULL, writeMap=NULL, version="4", newChipType=NULL, ..., .validate=FALSE, verbose=FALSE)
filename |
The pathname of the original CEL file. |
outFilename |
The pathname of the destination CEL file. If the same as the source file, an exception is thrown. |
readMap |
An optional read map for the input CEL file. |
writeMap |
An optional write map for the output CEL file. |
version |
The version of the output file format. |
newChipType |
(Only for advanced users who fully understands the Affymetrix CEL file format!) An optional string for overriding the chip type (label) in the CEL file header. |
... |
Not used. |
.validate |
If |
verbose |
If |
Returns (invisibly) TRUE
if a new CEL was generated, otherwise FALSE
.
Binary CELs are much faster to read than ASCII CELs. Here are some example for reading complete CELs (the difference is even larger when reading CELs in subsets):
To do
The newChipType
argument changes the label in the
part of DAT header that specifies the chip type of the
CEL file. Note that it does not change anything else in
the CEL file. This type of relabeling is valid for updating
the chip type label of CEL files that where generated
during, say, an "Early Access" period leading to a different
chip type label than what more recent CEL files of the same
physical chip type have.
Henrik Bengtsson
createCel
().
############################################################## if (require("AffymetrixDataTestFiles")) { # START # ############################################################## # Search for some available Calvin CEL files path <- system.file("rawData", package="AffymetrixDataTestFiles") files <- findFiles(pattern="[.](cel|CEL)$", path=path, recursive=TRUE, firstOnly=FALSE) files <- grep("FusionSDK_Test3", files, value=TRUE) files <- grep("Calvin", files, value=TRUE) file <- files[1] outFile <- file.path(tempdir(), gsub("[.]CEL$", ",XBA.CEL", basename(file))) if (file.exists(outFile)) file.remove(outFile) convertCel(file, outFile, .validate=TRUE) ############################################################## } # STOP # ##############################################################
############################################################## if (require("AffymetrixDataTestFiles")) { # START # ############################################################## # Search for some available Calvin CEL files path <- system.file("rawData", package="AffymetrixDataTestFiles") files <- findFiles(pattern="[.](cel|CEL)$", path=path, recursive=TRUE, firstOnly=FALSE) files <- grep("FusionSDK_Test3", files, value=TRUE) files <- grep("Calvin", files, value=TRUE) file <- files[1] outFile <- file.path(tempdir(), gsub("[.]CEL$", ",XBA.CEL", basename(file))) if (file.exists(outFile)) file.remove(outFile) convertCel(file, outFile, .validate=TRUE) ############################################################## } # STOP # ##############################################################
Creates an empty CEL file.
createCel(filename, header, nsubgrids=0, overwrite=FALSE, ..., cdf=NULL, verbose=FALSE)
createCel(filename, header, nsubgrids=0, overwrite=FALSE, ..., cdf=NULL, verbose=FALSE)
filename |
The filename of the CEL file to be created. |
header |
A |
overwrite |
If |
nsubgrids |
The number of subgrids. |
... |
Not used. |
cdf |
(optional) The pathname of a CDF file for the CEL file
to be created. If given, the CEL header (argument |
verbose |
An |
Currently only binary (v4) CEL files are supported. The current version of the method does not make use of the Fusion SDK, but its own code to create the CEL file.
Returns (invisibly) the pathname of the file created.
There are a few redundant fields in the CEL header. To make sure the CEL header is consistent, redundant fields are cleared and regenerated. For instance, the field for the total number of cells is calculated from the number of cell rows and columns.
Henrik Bengtsson
############################################################## if (require("AffymetrixDataTestFiles")) { # START # ############################################################## # Search for first available ASCII CEL file path <- system.file("rawData", package="AffymetrixDataTestFiles") files <- findFiles(pattern="[.](cel|CEL)$", path=path, recursive=TRUE, firstOnly=FALSE) files <- grep("ASCII", files, value=TRUE) file <- files[1] # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Read the CEL header # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - hdr <- readCelHeader(file) # Assert that we found an ASCII CEL file, but any will do stopifnot(hdr$version == 3) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Create a CEL v4 file of the same chip type # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - outFile <- file.path(tempdir(), "zzz.CEL") if (file.exists(outFile)) file.remove(outFile) createCel(outFile, hdr, overwrite=TRUE) str(readCelHeader(outFile)) # Verify correctness by update and re-read a few cells intensities <- as.double(1:100) indices <- seq(along=intensities) updateCel(outFile, indices=indices, intensities=intensities) value <- readCel(outFile, indices=indices)$intensities stopifnot(identical(intensities, value)) ############################################################## } # STOP # ##############################################################
############################################################## if (require("AffymetrixDataTestFiles")) { # START # ############################################################## # Search for first available ASCII CEL file path <- system.file("rawData", package="AffymetrixDataTestFiles") files <- findFiles(pattern="[.](cel|CEL)$", path=path, recursive=TRUE, firstOnly=FALSE) files <- grep("ASCII", files, value=TRUE) file <- files[1] # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Read the CEL header # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - hdr <- readCelHeader(file) # Assert that we found an ASCII CEL file, but any will do stopifnot(hdr$version == 3) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Create a CEL v4 file of the same chip type # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - outFile <- file.path(tempdir(), "zzz.CEL") if (file.exists(outFile)) file.remove(outFile) createCel(outFile, hdr, overwrite=TRUE) str(readCelHeader(outFile)) # Verify correctness by update and re-read a few cells intensities <- as.double(1:100) indices <- seq(along=intensities) updateCel(outFile, indices=indices, intensities=intensities) value <- readCel(outFile, indices=indices)$intensities stopifnot(identical(intensities, value)) ############################################################## } # STOP # ##############################################################
Search for CDF files in multiple directories.
findCdf(chipType=NULL, paths=NULL, recursive=TRUE, pattern="[.](c|C)(d|D)(f|F)$", ...)
findCdf(chipType=NULL, paths=NULL, recursive=TRUE, pattern="[.](c|C)(d|D)(f|F)$", ...)
chipType |
A |
paths |
A |
recursive |
If |
pattern |
A regular expression file name pattern to match. |
... |
Additional arguments passed to |
Note, the current directory is always searched first, but never recursively (unless it is added to the search path explicitly). This provides an easy way to override other files in the search path.
If paths
is NULL
, then a set of default paths are searched.
The default search path constitutes:
getOption("AFFX_CDF_PATH")
Sys.getenv("AFFX_CDF_PATH")
One of the easiest ways to set system variables for R is to
set them in an .Renviron
file, e.g.
# affxparser: Set default CDF path AFFX_CDF_PATH=${AFFX_CDF_PATH};M:/Affymetrix_2004-100k_trios/cdf AFFX_CDF_PATH=${AFFX_CDF_PATH};M:/Affymetrix_2005-500k_data/cdf
See Startup
for more details.
Returns a vector
of the full pathnames of the files found.
Henrik Bengtsson
This method is used internally by readCelUnits
() if the CDF
file is not specified.
############################################################## if (require("AffymetrixDataTestFiles")) { # START # ############################################################## # Find a specific CDF file cdfFile <- findCdf("Mapping10K_Xba131") print(cdfFile) # Find the first CDF file (no matter what it is) cdfFile <- findCdf() print(cdfFile) # Find all CDF files in search path and display their headers cdfFiles <- findCdf(firstOnly=FALSE) for (cdfFile in cdfFiles) { cat("=======================================\n") hdr <- readCdfHeader(cdfFile) str(hdr) } ############################################################## } # STOP # ##############################################################
############################################################## if (require("AffymetrixDataTestFiles")) { # START # ############################################################## # Find a specific CDF file cdfFile <- findCdf("Mapping10K_Xba131") print(cdfFile) # Find the first CDF file (no matter what it is) cdfFile <- findCdf() print(cdfFile) # Find all CDF files in search path and display their headers cdfFiles <- findCdf(firstOnly=FALSE) for (cdfFile in cdfFiles) { cat("=======================================\n") hdr <- readCdfHeader(cdfFile) str(hdr) } ############################################################## } # STOP # ##############################################################
Parses (parts of) a Bpmap (binary probe mapping) file from Affymetrix.
readBpmap(filename, seqIndices = NULL, readProbeSeq = TRUE, readSeqInfo = TRUE, readPMXY = TRUE, readMMXY = TRUE, readStartPos = TRUE, readCenterPos = FALSE, readStrand = TRUE, readMatchScore = FALSE, readProbeLength = FALSE, verbose = 0) readBpmapHeader(filename) readBpmapSeqinfo(filename, seqIndices = NULL, verbose = 0)
readBpmap(filename, seqIndices = NULL, readProbeSeq = TRUE, readSeqInfo = TRUE, readPMXY = TRUE, readMMXY = TRUE, readStartPos = TRUE, readCenterPos = FALSE, readStrand = TRUE, readMatchScore = FALSE, readProbeLength = FALSE, verbose = 0) readBpmapHeader(filename) readBpmapSeqinfo(filename, seqIndices = NULL, verbose = 0)
filename |
The filename as a character. |
seqIndices |
A vector of integers, detailing the indices of the
sequences being read. If |
readProbeSeq |
Do we read the probe sequences. |
readSeqInfo |
Do we read the sequence information (a list containing information such as sequence name, number of hits etc.) |
readPMXY |
Do we read the (x,y) coordinates of the PM-probes. |
readMMXY |
Do we read the (x,y) coordinates of the MM-probes (only relevant if the file has MM information) |
readStartPos |
Do we read the start position of the probes. |
readCenterPos |
Do we return the start position of the probes. |
readStrand |
Do we return the strand of the hits. |
readMatchScore |
Do we return the matchscore. |
readProbeLength |
Doe we return the probelength. |
verbose |
How verbose do we want to be. |
readBpmap
reads a BPMAP file, which is a binary file containing
information about a given probe's location in a sequence.
Here sequence means some kind of reference sequence, typically a
chromosome or a scaffold. readBpmapHeader
reads the header of
the BPMAP file, and readBpmapSeqinfo
reads the sequence info of
the sequences (so this function is merely a convenience function).
For readBpmap
: A list of lists, one list for every sequence
read. The components of
the sequence lists, depends on the argument of the function call. For
readBpmapheader
a list with two components version
and
numSequences
. For readBpmapSeqinfo
a list of lists
containing the sequence info.
Kasper Daniel Hansen
tpmap2bpmap
for information on how to write
Bpmap files.
Reads an Affymetrix Command Console Generic (CCG) Data file. The CCG data file format is also known as the Calvin file format.
readCcg(pathname, verbose=0, .filter=NULL, ...)
readCcg(pathname, verbose=0, .filter=NULL, ...)
pathname |
The pathname of the CCG file. |
verbose |
An |
.filter |
A |
... |
Not used. |
Note, the current implementation of this methods does not utilize the Affymetrix Fusion SDK library. Instead, it is implemented in R from the file format definition [1].
A named list
structure consisting of ...
A CCG file, consists of a "file header", a "generic data header", and "data" section, as outlined here:
File Header
Generic Data Header (for the file)
Generic Data Header (for the files 1st parent)
Generic Data Header (for the files 1st parents 1st parent)
Generic Data Header (for the files 1st parents 2nd parent)
...
Generic Data Header (for the files 1st parents Mth parent)
Generic Data Header (for the files 2nd parent)
...
Generic Data Header (for the files Nth parent)
Data
Data Group #1
Data Set #1
Parameters
Column definitions
Matrix of data
Data Set #2
...
Data Set #L
Data Group #2
...
Data Group #K
Henrik Bengtsson
[1] Affymetrix Inc, Affymetrix GCOS 1.x compatible file formats,
April, 2006.
http://www.affymetrix.com/support/developer/
readCcgHeader
().
readCdfUnits
().
Reads an the header of an Affymetrix Command Console Generic (CCG) file.
readCcgHeader(pathname, verbose=0, .filter=list(fileHeader = TRUE, dataHeader = TRUE), ...)
readCcgHeader(pathname, verbose=0, .filter=list(fileHeader = TRUE, dataHeader = TRUE), ...)
pathname |
The pathname of the CCG file. |
verbose |
An |
.filter |
A |
... |
Not used. |
Note, the current implementation of this methods does not utilize the Affymetrix Fusion SDK library. Instead, it is implemented in R from the file format definition [1].
A named list
structure consisting of ...
Henrik Bengtsson
[1] Affymetrix Inc, Affymetrix GCOS 1.x compatible file formats,
April, 2006.
http://www.affymetrix.com/support/developer/
readCcg
().
Reads (one-based) cell indices of units (probesets) in an Affymetrix CDF file.
readCdfCellIndices(filename, units=NULL, stratifyBy=c("nothing", "pmmm", "pm", "mm"), verbose=0)
readCdfCellIndices(filename, units=NULL, stratifyBy=c("nothing", "pmmm", "pm", "mm"), verbose=0)
filename |
The filename of the CDF file. |
units |
An |
stratifyBy |
A |
verbose |
An |
A named list
where the names corresponds to the names
of the units read. Each unit element of the list is in turn a
list
structure with one element groups
which in turn
is a list
. Each group element in groups
is a list
with a single field named indices
. Thus, the structure is
cdf +- unit #1 | +- "groups" | +- group #1 | | +- "indices" | | group #2 | | +- "indices" | . | +- group #K | +- "indices" +- unit #2 . +- unit #J
This is structure is compatible with what readCdfUnits
() returns.
Note that these indices are one-based.
Note that in affxparser all cell indices are by
convention one-based, which is more convenient to work
with in R. For more details on one-based indices, see
2. Cell coordinates and cell indices
.
Henrik Bengtsson
readCdfUnits
().
Reads group names for a set of units (probesets) in an Affymetrix CDF file.
This is for instance useful for SNP arrays where the nucleotides used for the A and B alleles are the same as the group names.
readCdfGroupNames(filename, units=NULL, truncateGroupNames=TRUE, verbose=0)
readCdfGroupNames(filename, units=NULL, truncateGroupNames=TRUE, verbose=0)
filename |
The filename of the CDF file. |
units |
An |
truncateGroupNames |
A |
verbose |
An |
A named list
structure where the names of the elements are the names
of the units read. Each element is a character
vector
with group
names for the corresponding unit.
Henrik Bengtsson
readCdfUnits
().
Reads the header of an Affymetrix CDF file using the Fusion SDK.
readCdfHeader(filename)
readCdfHeader(filename)
filename |
name of the CDF file. |
A named list with the following components:
rows |
the number of rows on the chip. |
cols |
the number of columns on the chip. |
probesets |
the number of probesets on the chip. |
qcprobesets |
the number of QC probesets on the chip. |
reference |
the reference sequence (this component only exists for resequencing chips). |
chiptype |
the type of the chip. |
filename |
the name of the cdf file. |
James Bullard and Kasper Daniel Hansen
readCdfUnits()
.
for (zzz in 0) { # Find any CDF file cdfFile <- findCdf() if (is.null(cdfFile)) break header <- readCdfHeader(cdfFile) print(header) } # for (zzz in 0)
for (zzz in 0) { # Find any CDF file cdfFile <- findCdf() if (is.null(cdfFile)) break header <- readCdfHeader(cdfFile) print(header) } # for (zzz in 0)
Gets the names of all or a subset of units (probesets) in an Affymetrix CDF file. This can be used to get a map between unit names an the internal unit indices used by the CDF file.
readCdfUnitNames(filename, units=NULL, verbose=0)
readCdfUnitNames(filename, units=NULL, verbose=0)
filename |
The filename of the CDF file. |
units |
An |
verbose |
An |
A character
vector
of unit names.
Henrik Bengtsson (http://www.braju.com/R/)
readCdfUnits
().
## Not run: See help(readCdfUnits) for an example
## Not run: See help(readCdfUnits) for an example
Reads units (probesets) from an Affymetrix CDF file. Gets all or a subset of units (probesets).
readCdfUnits(filename, units=NULL, readXY=TRUE, readBases=TRUE, readExpos=TRUE, readType=TRUE, readDirection=TRUE, stratifyBy=c("nothing", "pmmm", "pm", "mm"), readIndices=FALSE, verbose=0)
readCdfUnits(filename, units=NULL, readXY=TRUE, readBases=TRUE, readExpos=TRUE, readType=TRUE, readDirection=TRUE, stratifyBy=c("nothing", "pmmm", "pm", "mm"), readIndices=FALSE, verbose=0)
filename |
The filename of the CDF file. |
units |
An |
readXY |
If |
readBases |
If |
readExpos |
If |
readType |
If |
readDirection |
If |
stratifyBy |
A |
readIndices |
If |
verbose |
An |
A named list
where the names corresponds to the names
of the units read. Each element of the list is in turn a
list
structure with three components:
groups |
A |
type |
An |
direction |
An |
Note that in affxparser all cell indices are by
convention one-based, which is more convenient to work
with in R. For more details on one-based indices, see
2. Cell coordinates and cell indices
.
James Bullard and Kasper Daniel Hansen. Modified by Henrik Bengtsson to read any subset of units and/or subset of parameters, to stratify by PM/MM, and to return cell indices.
[1] Affymetrix Inc, Affymetrix GCOS 1.x compatible file formats, June 14, 2005. http://www.affymetrix.com/support/developer/
############################################################## if (require("AffymetrixDataTestFiles")) { # START # ############################################################## # Find any CDF file cdfFile <- findCdf() # Read all units in a CDF file [~20s => 0.34ms/unit] cdf0 <- readCdfUnits(cdfFile, readXY=FALSE, readExpos=FALSE) # Read a subset of units in a CDF file [~6ms => 0.06ms/unit] units1 <- c(5, 100:109, 34) cdf1 <- readCdfUnits(cdfFile, units=units1, readXY=FALSE, readExpos=FALSE) stopifnot(identical(cdf1, cdf0[units1])) rm(cdf0) # Create a unit name to index map names <- readCdfUnitNames(cdfFile) units2 <- match(names(cdf1), names) stopifnot(all.equal(units1, units2)) cdf2 <- readCdfUnits(cdfFile, units=units2, readXY=FALSE, readExpos=FALSE) stopifnot(identical(cdf1, cdf2)) ############################################################## } # STOP # ##############################################################
############################################################## if (require("AffymetrixDataTestFiles")) { # START # ############################################################## # Find any CDF file cdfFile <- findCdf() # Read all units in a CDF file [~20s => 0.34ms/unit] cdf0 <- readCdfUnits(cdfFile, readXY=FALSE, readExpos=FALSE) # Read a subset of units in a CDF file [~6ms => 0.06ms/unit] units1 <- c(5, 100:109, 34) cdf1 <- readCdfUnits(cdfFile, units=units1, readXY=FALSE, readExpos=FALSE) stopifnot(identical(cdf1, cdf0[units1])) rm(cdf0) # Create a unit name to index map names <- readCdfUnitNames(cdfFile) units2 <- match(names(cdf1), names) stopifnot(all.equal(units1, units2)) cdf2 <- readCdfUnits(cdfFile, units=units2, readXY=FALSE, readExpos=FALSE) stopifnot(identical(cdf1, cdf2)) ############################################################## } # STOP # ##############################################################
This function reads all or a subset of the data in an Affymetrix CEL file.
readCel(filename, indices = NULL, readHeader = TRUE, readXY = FALSE, readIntensities = TRUE, readStdvs = FALSE, readPixels = FALSE, readOutliers = TRUE, readMasked = TRUE, readMap = NULL, verbose = 0, .checkArgs = TRUE)
readCel(filename, indices = NULL, readHeader = TRUE, readXY = FALSE, readIntensities = TRUE, readStdvs = FALSE, readPixels = FALSE, readOutliers = TRUE, readMasked = TRUE, readMap = NULL, verbose = 0, .checkArgs = TRUE)
filename |
the name of the CEL file. |
indices |
a vector of indices indicating which features to
read. If the argument is |
readXY |
a logical: will the (x,y) coordinates be returned. |
readIntensities |
a logical: will the intensities be returned. |
readStdvs |
a logical: will the standard deviations be returned. |
readPixels |
a logical: will the number of pixels be returned. |
readOutliers |
a logical: will the outliers be return. |
readMasked |
a logical: will the masked features be returned. |
readHeader |
a logical: will the header of the file be returned. |
readMap |
A |
verbose |
how verbose do we want to be. 0 is no verbosity, higher numbers mean more verbose output. At the moment the values 0, 1 and 2 are supported. |
.checkArgs |
If |
A CEL files consists of a header, a set of cell values,
and information about outliers and masked
cells.
The cell values, which are values extract for each cell (aka feature
or probe), are the (x,y) coordinate, intensity and standard deviation
estimates, and the number of pixels in the cell.
If readIndices=NULL
, cell values for all cells are returned,
Only cell values specified by argument readIndices
are returned.
This value returns a named list with components described below:
header |
The header of the CEL file. Equivalent to the
output from |
x , y
|
(cell values) Two |
intensities |
(cell value) A |
stdvs |
(cell value) A |
pixels |
(cell value) An |
outliers |
An |
masked |
An |
The elements of the cell values are ordered according to argument
indices
. The lengths of the cell-value elements equals the
number of cells read.
Which of the above elements that are returned are controlled by the
readNnn
arguments. If FALSE
, the corresponding element
above is NULL
, e.g. if readStdvs=FALSE
then
stdvs
is NULL
.
The Affymetrix image analysis software flags cells as outliers and masked. This method does not return these flags, but instead vectors of cell indices listing which cells of the queried cells are outliers and masked, respectively. The current community view seems to be that this should be done based on statistical modeling of the actual probe intensities and should be based on the choice of preprocessing algorithm. Most algorithms are only using the intensities from the CEL file.
The Fusion SDK allocates memory for the entire
CEL file, when the file is accessed (but does not actually read the
file into memory). Using the indices
argument will therefore
only affect the memory use of the final object (as well as speed), not
the memory allocated in the C function used to parse the file. This
should be a minor problem however.
It is considered a bug if the file contains information not accessible by this function, please report it.
James Bullard and Kasper Daniel Hansen
readCelHeader()
for a description of the header output.
Often a user only wants to read the intensities, look at
readCelIntensities()
for a function specialized for
that use.
for (zzz in 0) { # Only so that 'break' can be used # Scan current directory for CEL files celFiles <- list.files(pattern="[.](c|C)(e|E)(l|L)$") if (length(celFiles) == 0) break; celFile <- celFiles[1] # Read a subset of cells idxs <- c(1:5, 1250:1500, 450:440) cel <- readCel(celFile, indices=idxs, readOutliers=TRUE) str(cel) # Clean up rm(celFiles, celFile, cel) } # for (zzz in 0)
for (zzz in 0) { # Only so that 'break' can be used # Scan current directory for CEL files celFiles <- list.files(pattern="[.](c|C)(e|E)(l|L)$") if (length(celFiles) == 0) break; celFile <- celFiles[1] # Read a subset of cells idxs <- c(1:5, 1250:1500, 450:440) cel <- readCel(celFile, indices=idxs, readOutliers=TRUE) str(cel) # Clean up rm(celFiles, celFile, cel) } # for (zzz in 0)
Reads in the header of an Affymetrix CEL file using the Fusion SDK.
readCelHeader(filename)
readCelHeader(filename)
filename |
the name of the CEL file. |
This function returns the header of a CEL file. Affymetrix operates with different versions of this file format. Depending on what version is being read, different information is accessible.
A named list with components described below. The entries are obtained from the Fusion SDK interface functions. We try to obtain all relevant information from the file.
filename |
the name of the cel file. |
version |
the version of the cel file. |
cols |
the number of columns on the chip. |
rows |
the number of rows on the chip. |
total |
the total number of features on the chip. Usually equal
to |
algorithm |
the algorithm used to create the CEL file. |
parameters |
the parameters used in the algorithm. Seems to be semi-colon separated. |
chiptype |
the type of the chip. |
header |
the entire header of the CEL file. Only available for non-calvin format files. |
datheader |
the entire dat header of the CEL file. This contains for example a date. |
librarypackage |
the library package name of the file. Empty for older versions. |
cellmargin |
a parameter used to generate the CEL file. According to Affymetrix, it designates the number of pixels to ignore around the feature border when calculating the intensity value (the number of pixels ignored are cellmargin divided by 2). |
noutliers |
the number of features reported as outliers. |
nmasked |
the number of features reported as masked. |
Memory usage:the Fusion SDK allocates memory for the entire CEL file, when the file is accessed. The memory footprint of this function will therefore seem to be (rather) large.
Speed: CEL files of version 2 (standard text files) needs to be completely read in order to report the number of outliers and masked features.
James Bullard and Kasper Daniel Hansen
readCel()
for reading in the entire CEL
file. That function also returns the header.
See affxparserInfo
for general comments on the package and
the Fusion SDK.
# Scan current directory for CEL files files <- list.files(pattern="[.](c|C)(e|E)(l|L)$") if (length(files) > 0) { header <- readCelHeader(files[1]) print(header) rm(header) } # Clean up rm(files)
# Scan current directory for CEL files files <- list.files(pattern="[.](c|C)(e|E)(l|L)$") if (length(files) > 0) { header <- readCelHeader(files[1]) print(header) rm(header) } # Clean up rm(files)
Reads the intensities of several Affymetrix CEL files (as opposed to
readCel
() which only reads a single file).
readCelIntensities(filenames, indices = NULL, ..., verbose = 0)
readCelIntensities(filenames, indices = NULL, ..., verbose = 0)
filenames |
the names of the CEL files as a character vector. |
indices |
a vector of which indices should be read. If the argument
is |
... |
Additional arguments passed to |
verbose |
an integer: how verbose do we want to be, higher means more verbose. |
The function will initially allocate a matrix with the same memory footprint as the final object.
A matrix with a number of rows equal to the length of the
indices
argument (or the number of features on the entire
chip), and a number of columns equal to the number of files. The
columns are ordered according to the filenames
argument.
Currently this function builds on readCel
(), and simply
calls this function multiple times. If testing yields sufficient
reasons for doing so, it may be re-implemented in C++.
James Bullard and Kasper Daniel Hansen
readCel
() for a discussion of a more versatile function,
particular with details of the indices
argument.
# Scan current directory for CEL files files <- list.files(pattern="[.](c|C)(e|E)(l|L)$") if (length(files) >= 2) { cel <- readCelIntensities(files[1:2]) str(cel) rm(cel) } # Clean up rm(files)
# Scan current directory for CEL files files <- list.files(pattern="[.](c|C)(e|E)(l|L)$") if (length(files) >= 2) { cel <- readCelIntensities(files[1:2]) str(cel) rm(cel) } # Clean up rm(files)
Reads a spatial subset of probe-level data from Affymetrix CEL files.
readCelRectangle(filename, xrange=c(0, Inf), yrange=c(0, Inf), ..., asMatrix=TRUE)
readCelRectangle(filename, xrange=c(0, Inf), yrange=c(0, Inf), ..., asMatrix=TRUE)
filename |
The pathname of the CEL file. |
xrange |
A |
yrange |
A |
... |
Additional arguments passed to |
asMatrix |
If |
A named list
CEL structure similar to what readCel
().
In addition, if asMatrix
is TRUE
, the CEL data fields
are returned as matrices, otherwise not.
Henrik Bengtsson
The readCel
() method is used internally.
############################################################## if (require("AffymetrixDataTestFiles")) { # START # ############################################################## rotate270 <- function(x, ...) { x <- t(x) nc <- ncol(x) if (nc < 2) return(x) x[,nc:1,drop=FALSE] } # Search for some available CEL files path <- system.file("rawData", package="AffymetrixDataTestFiles") file <- findFiles(pattern="[.](cel|CEL)$", path=path, recursive=TRUE) # Read CEL intensities in the upper left corner cel <- readCelRectangle(file, xrange=c(0,250), yrange=c(0,250)) z <- rotate270(cel$intensities) sub <- paste("Chip type:", cel$header$chiptype) image(z, col=gray.colors(256), axes=FALSE, main=basename(file), sub=sub) text(x=0, y=1, labels="(0,0)", adj=c(0,-0.7), cex=0.8, xpd=TRUE) text(x=1, y=0, labels="(250,250)", adj=c(1,1.2), cex=0.8, xpd=TRUE) # Clean up rm(rotate270, files, file, cel, z, sub) ############################################################## } # STOP # ##############################################################
############################################################## if (require("AffymetrixDataTestFiles")) { # START # ############################################################## rotate270 <- function(x, ...) { x <- t(x) nc <- ncol(x) if (nc < 2) return(x) x[,nc:1,drop=FALSE] } # Search for some available CEL files path <- system.file("rawData", package="AffymetrixDataTestFiles") file <- findFiles(pattern="[.](cel|CEL)$", path=path, recursive=TRUE) # Read CEL intensities in the upper left corner cel <- readCelRectangle(file, xrange=c(0,250), yrange=c(0,250)) z <- rotate270(cel$intensities) sub <- paste("Chip type:", cel$header$chiptype) image(z, col=gray.colors(256), axes=FALSE, main=basename(file), sub=sub) text(x=0, y=1, labels="(0,0)", adj=c(0,-0.7), cex=0.8, xpd=TRUE) text(x=1, y=0, labels="(250,250)", adj=c(1,1.2), cex=0.8, xpd=TRUE) # Clean up rm(rotate270, files, file, cel, z, sub) ############################################################## } # STOP # ##############################################################
Reads probe-level data ordered as units (probesets) from one or several Affymetrix CEL files by using the unit and group definitions in the corresponding Affymetrix CDF file.
readCelUnits(filenames, units=NULL, stratifyBy=c("nothing", "pmmm", "pm", "mm"), cdf=NULL, ..., addDimnames=FALSE, dropArrayDim=TRUE, transforms=NULL, readMap=NULL, verbose=FALSE)
readCelUnits(filenames, units=NULL, stratifyBy=c("nothing", "pmmm", "pm", "mm"), cdf=NULL, ..., addDimnames=FALSE, dropArrayDim=TRUE, transforms=NULL, readMap=NULL, verbose=FALSE)
filenames |
The filenames of the CEL files. |
units |
An |
stratifyBy |
Argument passed to low-level method
|
cdf |
A |
... |
Arguments passed to low-level method
|
addDimnames |
If |
dropArrayDim |
If |
transforms |
A |
readMap |
A |
verbose |
Either a |
A named list
with one element for each unit read. The names
corresponds to the names of the units read.
Each unit element is in
turn a list
structure with groups (aka blocks).
Each group contains requested fields, e.g. intensities
,
stdvs
, and pixels
.
If more than one CEL file is read, an extra dimension is added
to each of the fields corresponding, which can be used to subset
by CEL file.
Note that neither CEL headers nor information about outliers and
masked cells are returned. To access these, use readCelHeader
()
and readCel
().
Henrik Bengtsson
[1] Affymetrix Inc, Affymetrix GCOS 1.x compatible file formats, June 14, 2005. http://www.affymetrix.com/support/developer/
Internally, readCelHeader
(), readCdfUnits
() and
readCel
() are used.
############################################################## if (require("AffymetrixDataTestFiles")) { # START # ############################################################## # Search for some available CEL files path <- system.file("rawData", package="AffymetrixDataTestFiles") files <- findFiles(pattern="[.](cel|CEL)$", path=path, recursive=TRUE, firstOnly=FALSE) files <- grep("FusionSDK_Test3", files, value=TRUE) files <- grep("Calvin", files, value=TRUE) # Fake more CEL files if not enough files <- rep(files, length.out=5) print(files); rm(files); ############################################################## } # STOP # ##############################################################
############################################################## if (require("AffymetrixDataTestFiles")) { # START # ############################################################## # Search for some available CEL files path <- system.file("rawData", package="AffymetrixDataTestFiles") files <- findFiles(pattern="[.](cel|CEL)$", path=path, recursive=TRUE, firstOnly=FALSE) files <- grep("FusionSDK_Test3", files, value=TRUE) files <- grep("Calvin", files, value=TRUE) # Fake more CEL files if not enough files <- rep(files, length.out=5) print(files); rm(files); ############################################################## } # STOP # ##############################################################
This function will parse any type of CHP file and return the results in a list. The contents of the list will depend on the type of CHP file that is parsed and readers are referred to Affymetrix documentation of what should be there, and how to interpret it.
readChp(filename, withQuant = TRUE)
readChp(filename, withQuant = TRUE)
filename |
The name of the CHP file to read. |
withQuant |
A boolean value, currently largely unused. |
This is an interface to the Affymetrix Fusion SDK. The Affymetrix documentation should be consulted for explicit details.
A list is returned. The contents of the list depend on the type of CHP file that was read. Users may want to translate the different outputs into specific containers.
It is considered a bug if the file contains information not accessible by this function, please report it.
R. Gentleman
if (require("AffymetrixDataTestFiles")) { path <- system.file("rawData", package="AffymetrixDataTestFiles") files <- findFiles(pattern="[.](chp|CHP)$", path=path, recursive=TRUE, firstOnly=FALSE) s1 = readChp(files[1]) length(s1) names(s1) names(s1[[7]]) }
if (require("AffymetrixDataTestFiles")) { path <- system.file("rawData", package="AffymetrixDataTestFiles") files <- findFiles(pattern="[.](chp|CHP)$", path=path, recursive=TRUE, firstOnly=FALSE) s1 = readChp(files[1]) length(s1) names(s1) names(s1[[7]]) }
This function parses a CLF file using the Affymetrix Fusion SDK. CLF (chip layout) files contain information associating probe ids with chip x- and y- coordinates.
readClf(file)
readClf(file)
file |
|
An list. The header
element is always present.
header |
A list with information about the CLF file. The list contains elements described in the CLF file format document referenced below. |
dims |
A length-two integer vector of chip x- and y-coordinates. |
id |
An integer vector of length |
x |
An integer vector of length |
y |
An integer vector of length |
Martin Morgan
https://www.affymetrix.com/support/developer/fusion/File_Format_CLF_aptv161.pdf describes CLF file content.
This function parses a CLF file using the Affymetrix Fusion SDK. CLF (chip layout) files contain information associating probe ids with chip x- and y- coordinates.
readClfEnv(file, readBody = TRUE)
readClfEnv(file, readBody = TRUE)
file |
|
readBody |
|
An environment. The header
element is always present; the
remainder are present when readBody=TRUE
.
header |
A list with information about the CLF file. The list contains elements described in the CLF file format document referenced below. |
dims |
A length-two integer vector of chip x- and y-coordinates. |
id |
An integer vector of length |
x |
An integer vector of length |
y |
An integer vector of length |
Martin Morgan
https://www.affymetrix.com/support/developer/fusion/File_Format_CLF_aptv161.pdf describes CLF file content.
Reads the header of a CLF file. The exact information stored in this
file can be viewed in the readClfEnv()
documentation which reads the
header in addition to the body.
readClfHeader(file)
readClfHeader(file)
file |
|
A list of header elements.
This function parses a PGF file using the Affymetrix Fusion SDK. PGF (probe group) files describe probes present within probe sets, including the type (e.g., pm, mm) of the probe and probeset.
readPgf(file, indices = NULL)
readPgf(file, indices = NULL)
file |
|
indices |
|
An list. The header
element is always present; the
remainder are present when readBody=TRUE
.
The elements present when readBody=TRUE
describe probe sets,
atoms, and probes. Elements within probe sets, for instance, are
coordinated such that the i
th index of one vector (e.g.,
probesetId
) corresponds to the i
th index of a second
vector (e.g., probesetType
). The atoms contained within
probeset i
are in positions
probesetStartAtom[i]:(probesetStartAtom[i+1]-1)
of the atom
vectors. A similar map applies to probes within atoms, using
atomStartProbe
as the index.
The PGF file format includes optional elements; these elements are always present in the list, but with appropriate default values.
header |
A list with information about the PGF file. The list contains elements described in the PGF file format document referenced below. |
probesetId |
integer vector of probeset identifiers. |
probesetType |
character vector of probeset types. Types are described in the PGF file format document. |
probesetName |
character vector of probeset names. |
probesetStartAtom |
integer vector of the start index
(e.g., in the element |
atomId |
integer vector of atom identifiers. |
atomExonPosition |
integer vector of probe interrogation position relative to the target sequence. |
atomStartProbe |
integer vector of the start index (e.g., in the
element |
probeId |
integer vector of probe identifiers. |
probeType |
character vector of probe types. Types are described in the PGF file format document. |
probeGcCount |
integer vector of probe GC content. |
probeLength |
integer vector of probe lengths. |
probeInterrogationPosition |
integer vector of the position, within the probe, at which interrogation occurs. |
probeSequence |
character vector of the probe sequence. |
Martin Morgan
https://www.affymetrix.com/support/developer/fusion/File_Format_PGF_aptv161.pdf describes PGF file content.
The internal function .pgfProbeIndexFromProbesetIndex
provides
a map between
the indices of probe set entries and the indices of the probes
contained in the probe set.
This function parses a PGF file using the Affymetrix Fusion SDK. PGF (probe group) files describe probes present within probe sets, including the type (e.g., pm, mm) of the probe and probeset.
readPgfEnv(file, readBody = TRUE, indices = NULL)
readPgfEnv(file, readBody = TRUE, indices = NULL)
file |
|
readBody |
|
indices |
|
An environment. The header
element is always present; the
remainder are present when readBody=TRUE
.
The elements present when readBody=TRUE
describe probe sets,
atoms, and probes. Elements within probe sets, for instance, are
coordinated such that the i
th index of one vector (e.g.,
probesetId
) corresponds to the i
th index of a second
vector (e.g., probesetType
). The atoms contained within
probeset i
are in positions
probesetStartAtom[i]:(probesetStartAtom[i+1]-1)
of the atom
vectors. A similar map applies to probes within atoms, using
atomStartProbe
as the index.
The PGF file format includes optional elements; these elements are always present in the environment, but with appropriate default values.
header |
A list with information about the PGF file. The list contains elements described in the PGF file format document referenced below. |
probesetId |
integer vector of probeset identifiers. |
probesetType |
character vector of probeset types. Types are described in the PGF file format document. |
probesetName |
character vector of probeset names. |
probesetStartAtom |
integer vector of the start index
(e.g., in the element |
atomId |
integer vector of atom identifiers. |
atomExonPosition |
integer vector of probe interrogation position relative to the target sequence. |
atomStartProbe |
integer vector of the start index (e.g., in the
element |
probeId |
integer vector of probe identifiers. |
probeType |
character vector of probe types. Types are described in the PGF file format document. |
probeGcCount |
integer vector of probe GC content. |
probeLength |
integer vector of probe lengths. |
probeInterrogationPosition |
integer vector of the position, within the probe, at which interrogation occurs. |
probeSequence |
character vector of the probe sequence. |
Martin Morgan
https://www.affymetrix.com/support/developer/fusion/File_Format_PGF_aptv161.pdf describes PGF file content.
The internal function .pgfProbeIndexFromProbesetIndex
provides
a map between
the indices of probe set entries and the indices of the probes
contained in the probe set.
This function reads the header of a PGF file into a list more details on what the exact fields are can be found in the details section.
readPgfHeader(file)
readPgfHeader(file)
file |
|
https://www.affymetrix.com/support/developer/fusion/File_Format_PGF_aptv161.pdf
A list corresponding to the elements in the header.
Updates a CEL file.
updateCel(filename, indices=NULL, intensities=NULL, stdvs=NULL, pixels=NULL, writeMap=NULL, ..., verbose=0)
updateCel(filename, indices=NULL, intensities=NULL, stdvs=NULL, pixels=NULL, writeMap=NULL, ..., verbose=0)
filename |
The filename of the CEL file. |
indices |
A |
intensities |
A |
stdvs |
|
pixels |
|
writeMap |
An optional write map. |
... |
Not used. |
verbose |
An |
Currently only binary (v4) CEL files are supported. The current version of the method does not make use of the Fusion SDK, but its own code to navigate and update the CEL file.
Returns (invisibly) the pathname of the file updated.
Henrik Bengtsson
############################################################## if (require("AffymetrixDataTestFiles")) { # START # ############################################################## # Search for some available Calvin CEL files path <- system.file("rawData", package="AffymetrixDataTestFiles") files <- findFiles(pattern="[.](cel|CEL)$", path=path, recursive=TRUE, firstOnly=FALSE) files <- grep("FusionSDK_HG-U133A", files, value=TRUE) files <- grep("Calvin", files, value=TRUE) file <- files[1] # Convert to an XDA CEL file filename <- file.path(tempdir(), basename(file)) if (file.exists(filename)) file.remove(filename) convertCel(file, filename) fields <- c("intensities", "stdvs", "pixels") # Cells to be updated idxs <- 1:2 # Get CEL header hdr <- readCelHeader(filename) # Get the original data cel <- readCel(filename, indices=idxs, readStdvs=TRUE, readPixels=TRUE) print(cel[fields]) cel0 <- cel # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Square-root the intensities # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - updateCel(filename, indices=idxs, intensities=sqrt(cel$intensities)) cel <- readCel(filename, indices=idxs, readStdvs=TRUE, readPixels=TRUE) print(cel[fields]) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Update a few cell values by a data frame # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - data <- data.frame( intensities=cel0$intensities, stdvs=c(201.1, 3086.1)+0.5, pixels=c(9,9+1) ) updateCel(filename, indices=idxs, data) # Assert correctness of update cel <- readCel(filename, indices=idxs, readStdvs=TRUE, readPixels=TRUE) print(cel[fields]) for (ff in fields) { stopifnot(all.equal(cel[[ff]], data[[ff]], .Machine$double.eps^0.25)) } # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Update a region of the CEL file # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Load pre-defined data side <- 306 pathname <- system.file("extras/easternEgg.gz", package="affxparser") con <- gzfile(pathname, open="rb") z <- readBin(con=con, what="integer", size=1, signed=FALSE, n=side^2) close(con) z <- matrix(z, nrow=side) side <- min(hdr$cols - 2*22, side) z <- as.double(z[1:side,1:side]) x <- matrix(22+0:(side-1), nrow=side, ncol=side, byrow=TRUE) idxs <- as.vector((1 + x) + hdr$cols*t(x)) # Load current data in the same region z0 <- readCel(filename, indices=idxs)$intensities # Mix the two data sets z <- (0.3*z^2 + 0.7*z0) # Update the CEL file updateCel(filename, indices=idxs, intensities=z) # Make some spatial changes rotate270 <- function(x, ...) { x <- t(x) nc <- ncol(x) if (nc < 2) return(x) x[,nc:1,drop=FALSE] } # Display a spatial image of the updated CEL file cel <- readCelRectangle(filename, xrange=c(0,350), yrange=c(0,350)) z <- rotate270(cel$intensities) sub <- paste("Chip type:", cel$header$chiptype) image(z, col=gray.colors(256), axes=FALSE, main=basename(filename), sub=sub) text(x=0, y=1, labels="(0,0)", adj=c(0,-0.7), cex=0.8, xpd=TRUE) text(x=1, y=0, labels="(350,350)", adj=c(1,1.2), cex=0.8, xpd=TRUE) # Clean up file.remove(filename) rm(files, cel, cel0, idxs, data, ff, fields, rotate270) ############################################################## } # STOP # ##############################################################
############################################################## if (require("AffymetrixDataTestFiles")) { # START # ############################################################## # Search for some available Calvin CEL files path <- system.file("rawData", package="AffymetrixDataTestFiles") files <- findFiles(pattern="[.](cel|CEL)$", path=path, recursive=TRUE, firstOnly=FALSE) files <- grep("FusionSDK_HG-U133A", files, value=TRUE) files <- grep("Calvin", files, value=TRUE) file <- files[1] # Convert to an XDA CEL file filename <- file.path(tempdir(), basename(file)) if (file.exists(filename)) file.remove(filename) convertCel(file, filename) fields <- c("intensities", "stdvs", "pixels") # Cells to be updated idxs <- 1:2 # Get CEL header hdr <- readCelHeader(filename) # Get the original data cel <- readCel(filename, indices=idxs, readStdvs=TRUE, readPixels=TRUE) print(cel[fields]) cel0 <- cel # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Square-root the intensities # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - updateCel(filename, indices=idxs, intensities=sqrt(cel$intensities)) cel <- readCel(filename, indices=idxs, readStdvs=TRUE, readPixels=TRUE) print(cel[fields]) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Update a few cell values by a data frame # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - data <- data.frame( intensities=cel0$intensities, stdvs=c(201.1, 3086.1)+0.5, pixels=c(9,9+1) ) updateCel(filename, indices=idxs, data) # Assert correctness of update cel <- readCel(filename, indices=idxs, readStdvs=TRUE, readPixels=TRUE) print(cel[fields]) for (ff in fields) { stopifnot(all.equal(cel[[ff]], data[[ff]], .Machine$double.eps^0.25)) } # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Update a region of the CEL file # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Load pre-defined data side <- 306 pathname <- system.file("extras/easternEgg.gz", package="affxparser") con <- gzfile(pathname, open="rb") z <- readBin(con=con, what="integer", size=1, signed=FALSE, n=side^2) close(con) z <- matrix(z, nrow=side) side <- min(hdr$cols - 2*22, side) z <- as.double(z[1:side,1:side]) x <- matrix(22+0:(side-1), nrow=side, ncol=side, byrow=TRUE) idxs <- as.vector((1 + x) + hdr$cols*t(x)) # Load current data in the same region z0 <- readCel(filename, indices=idxs)$intensities # Mix the two data sets z <- (0.3*z^2 + 0.7*z0) # Update the CEL file updateCel(filename, indices=idxs, intensities=z) # Make some spatial changes rotate270 <- function(x, ...) { x <- t(x) nc <- ncol(x) if (nc < 2) return(x) x[,nc:1,drop=FALSE] } # Display a spatial image of the updated CEL file cel <- readCelRectangle(filename, xrange=c(0,350), yrange=c(0,350)) z <- rotate270(cel$intensities) sub <- paste("Chip type:", cel$header$chiptype) image(z, col=gray.colors(256), axes=FALSE, main=basename(filename), sub=sub) text(x=0, y=1, labels="(0,0)", adj=c(0,-0.7), cex=0.8, xpd=TRUE) text(x=1, y=0, labels="(350,350)", adj=c(1,1.2), cex=0.8, xpd=TRUE) # Clean up file.remove(filename) rm(files, cel, cel0, idxs, data, ff, fields, rotate270) ############################################################## } # STOP # ##############################################################
Updates a CEL file unit by unit.
Please note that, contrary to readCelUnits
(), this method
can only update a single CEL file at the time.
updateCelUnits(filename, cdf=NULL, data, ..., verbose=0)
updateCelUnits(filename, cdf=NULL, data, ..., verbose=0)
filename |
The filename of the CEL file. |
cdf |
A (optional) CDF |
data |
A |
... |
Optional arguments passed to |
verbose |
An |
Returns what updateCel
() returns.
Note that if the cdf
structure is specified the CDF file is
not queried, but all information about cell x and y locations,
that is, cell indices is expected to be in this structure. This can
be very useful when one work with a cdf structure that originates
from the underlying CDF file, but has been restructured for instance
through the applyCdfGroups
() method, and data
correspondingly. This update method knows how to update such
structures too.
Henrik Bengtsson
Internally, updateCel
() is used.
############################################################## if (require("AffymetrixDataTestFiles")) { # START # ############################################################## # Search for some available Calvin CEL files path <- system.file("rawData", package="AffymetrixDataTestFiles") files <- findFiles(pattern="[.](cel|CEL)$", path=path, recursive=TRUE, firstOnly=FALSE) files <- grep("FusionSDK_Test3", files, value=TRUE) files <- grep("Calvin", files, value=TRUE) file <- files[1] # Convert to an XDA CEL file pathname <- file.path(tempdir(), basename(file)) if (file.exists(pathname)) file.remove(pathname) convertCel(file, pathname) # Check for the CDF file hdr <- readCelHeader(pathname) cdfFile <- findCdf(hdr$chiptype) hdr <- readCdfHeader(cdfFile) nbrOfUnits <- hdr$nunits print(nbrOfUnits); # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Example: Read and re-write the same data # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - units <- c(101, 51) data1 <- readCelUnits(pathname, units=units, readStdvs=TRUE) cat("Original data:\n") str(data1) updateCelUnits(pathname, data=data1) data2 <- readCelUnits(pathname, units=units, readStdvs=TRUE) cat("Updated data:\n") str(data2) stopifnot(identical(data1, data2)) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Example: Random read and re-write "stress test" # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - for (kk in 1:10) { nunits <- sample(min(1000,nbrOfUnits), size=1) units <- sample(nbrOfUnits, size=nunits) cat(sprintf("%02d. Selected %d random units: reading", kk, nunits)); t <- system.time({ data1 <- readCelUnits(pathname, units=units, readStdvs=TRUE) }, gcFirst=TRUE)[3] cat(sprintf(" [%.2fs=%.2fs/unit], updating", t, t/nunits)) t <- system.time({ updateCelUnits(pathname, data=data1) }, gcFirst=TRUE)[3] cat(sprintf(" [%.2fs=%.2fs/unit], validating", t, t/nunits)) data2 <- readCelUnits(pathname, units=units, readStdvs=TRUE) stopifnot(identical(data1, data2)) cat(". done\n") } ############################################################## } # STOP # ##############################################################
############################################################## if (require("AffymetrixDataTestFiles")) { # START # ############################################################## # Search for some available Calvin CEL files path <- system.file("rawData", package="AffymetrixDataTestFiles") files <- findFiles(pattern="[.](cel|CEL)$", path=path, recursive=TRUE, firstOnly=FALSE) files <- grep("FusionSDK_Test3", files, value=TRUE) files <- grep("Calvin", files, value=TRUE) file <- files[1] # Convert to an XDA CEL file pathname <- file.path(tempdir(), basename(file)) if (file.exists(pathname)) file.remove(pathname) convertCel(file, pathname) # Check for the CDF file hdr <- readCelHeader(pathname) cdfFile <- findCdf(hdr$chiptype) hdr <- readCdfHeader(cdfFile) nbrOfUnits <- hdr$nunits print(nbrOfUnits); # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Example: Read and re-write the same data # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - units <- c(101, 51) data1 <- readCelUnits(pathname, units=units, readStdvs=TRUE) cat("Original data:\n") str(data1) updateCelUnits(pathname, data=data1) data2 <- readCelUnits(pathname, units=units, readStdvs=TRUE) cat("Updated data:\n") str(data2) stopifnot(identical(data1, data2)) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Example: Random read and re-write "stress test" # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - for (kk in 1:10) { nunits <- sample(min(1000,nbrOfUnits), size=1) units <- sample(nbrOfUnits, size=nunits) cat(sprintf("%02d. Selected %d random units: reading", kk, nunits)); t <- system.time({ data1 <- readCelUnits(pathname, units=units, readStdvs=TRUE) }, gcFirst=TRUE)[3] cat(sprintf(" [%.2fs=%.2fs/unit], updating", t, t/nunits)) t <- system.time({ updateCelUnits(pathname, data=data1) }, gcFirst=TRUE)[3] cat(sprintf(" [%.2fs=%.2fs/unit], validating", t, t/nunits)) data2 <- readCelUnits(pathname, units=units, readStdvs=TRUE) stopifnot(identical(data1, data2)) cat(". done\n") } ############################################################## } # STOP # ##############################################################
Writes BPMAP and TPMAP files.
writeTpmap(filename, bpmaplist, verbose = 0) tpmap2bpmap(tpmapname, bpmapname, verbose = 0)
writeTpmap(filename, bpmaplist, verbose = 0) tpmap2bpmap(tpmapname, bpmapname, verbose = 0)
filename |
The filename. |
bpmaplist |
A list structure similar to the result of |
tpmapname |
Filename of the TPMAP file. |
bpmapname |
Filename of the BPMAP file. |
verbose |
How verbose do we want to be. |
writeTpmap
writes a text probe map file, while
tpmap2bpmap
converts such a file to a binary probe mapping
file. Somehow Affymetrix has different names for the same structure,
depending on whether the file is binary or text. I have seen many
TPMAP files referred to as BPMAP files.
These functions are called for their side effects (creating files).
Kasper Daniel Hansen