Title: | Automated Affymetrix Array Analysis Classification Package |
---|---|
Description: | Functionalities for classification of Affymetrix microarray data, integrating within the Automated Affymetrix Array Analysis set of packages. |
Authors: | Willem Talloen [aut], Tobias Verbeke [aut], Laure Cougnaud [cre] |
Maintainer: | Laure Cougnaud <[email protected]> |
License: | GPL-3 |
Version: | 1.55.0 |
Built: | 2024-12-29 03:05:08 UTC |
Source: | https://github.com/bioc/a4Classif |
Classify using the Lasso
lassoClass(object, groups)
lassoClass(object, groups)
object |
object containing the expression measurements; currently the only method supported is one for ExpressionSet objects |
groups |
character string indicating the column containing the class membership |
object of class glmnet
Willem Talloen
Goehlmann, H. and W. Talloen (2009). Gene Expression Studies Using Affymetrix Microarrays, Chapman \& Hall/CRC, pp. 183, 205 and 212.
if (require(ALL)){ data(ALL, package = "ALL") ALL <- addGeneInfo(ALL) ALL$BTtype <- as.factor(substr(ALL$BT,0,1)) resultLasso <- lassoClass(object = ALL, groups = "BTtype") plot(resultLasso, label = TRUE, main = "Lasso coefficients in relation to degree of penalization.") topTable(resultLasso, n = 15) }
if (require(ALL)){ data(ALL, package = "ALL") ALL <- addGeneInfo(ALL) ALL$BTtype <- as.factor(substr(ALL$BT,0,1)) resultLasso <- lassoClass(object = ALL, groups = "BTtype") plot(resultLasso, label = TRUE, main = "Lasso coefficients in relation to degree of penalization.") topTable(resultLasso, n = 15) }
Classify using the Prediction Analysis for MicroArrays (PAM) algorithm as implemented in the pamr package
pamClass(object, groups, probe2gene = TRUE)
pamClass(object, groups, probe2gene = TRUE)
object |
object containing the expression measurements; currently the only method supported is one for ExpressionSet objects |
groups |
character string indicating the column containing the class membership |
probe2gene |
logical; if |
object of class pamClass
Willem Talloen
Robert Tibshirani, Trevor Hastie, Balasubramanian Narasimhan, and Gilbert Chu (1999). Diagnosis of multiple cancer types by shrunken centroids of gene expression. PNAS 99: 6567-6572. Available at www.pnas.org
Goehlmann, H. and W. Talloen (2009). Gene Expression Studies Using Affymetrix Microarrays, Chapman \& Hall/CRC, p. 221.
if(require(ALL)){ data(ALL, package = "ALL") ALL <- addGeneInfo(ALL) ALL$BTtype <- as.factor(substr(ALL$BT,0,1)) resultPam <- pamClass(object = ALL, groups = "BTtype") plot(resultPam) topTable(resultPam, n = 5) confusionMatrix(resultPam) }
if(require(ALL)){ data(ALL, package = "ALL") ALL <- addGeneInfo(ALL) ALL$BTtype <- as.factor(substr(ALL$BT,0,1)) resultPam <- pamClass(object = ALL, groups = "BTtype") plot(resultPam) topTable(resultPam, n = 5) confusionMatrix(resultPam) }
Classify using the Random Forest algorithm of Breiman (2001)
rfClass(object, groups, probe2gene = TRUE)
rfClass(object, groups, probe2gene = TRUE)
object |
object containing the expression measurements; currently the only method supported is one for ExpressionSet objects |
groups |
character string indicating the column containing the class membership |
probe2gene |
logical; if |
Object of class 'rfClass'
topTable and plot methods are available for 'rfClass' objects.
Tobias Verbeke and Willem Talloen
Breiman, L. (2001), Random Forests, Machine Learning 45(1), 5-32.
if(require(ALL)){ data(ALL, package = "ALL") ALL <- addGeneInfo(ALL) ALL$BTtype <- as.factor(substr(ALL$BT,0,1)) # select only a subset of the data for computation time reason ALLSubset <- ALL[sample.int(n = nrow(ALL), size = 100, replace = TRUE), ] resultRf <- rfClass(object = ALLSubset, groups = "BTtype") plot(resultRf) topTable(resultRf, n = 15) }
if(require(ALL)){ data(ALL, package = "ALL") ALL <- addGeneInfo(ALL) ALL$BTtype <- as.factor(substr(ALL$BT,0,1)) # select only a subset of the data for computation time reason ALLSubset <- ALL[sample.int(n = nrow(ALL), size = 100, replace = TRUE), ] resultRf <- rfClass(object = ALLSubset, groups = "BTtype") plot(resultRf) topTable(resultRf, n = 15) }
A ROC curve plots the fraction of true positives (TPR = true positive rate) versus the fraction of false positives (FPR = false positive rate) for a binary classifier when the discrimination threshold is varied. Equivalently, one can also plot sensitivity versus (1 - specificity).
ROCcurve( object, groups, probesetId = NULL, geneSymbol = NULL, main = NULL, probe2gene = TRUE, ... )
ROCcurve( object, groups, probesetId = NULL, geneSymbol = NULL, main = NULL, probe2gene = TRUE, ... )
object |
ExpressionSet object for the experiment |
groups |
String containing the name of the grouping variable. This should be a
the name of a column in the |
probesetId |
The probeset ID. These should be stored in the |
geneSymbol |
The gene symbol. These should be stored in the column |
main |
Main title on top of the graph |
probe2gene |
Boolean indicating whether the probeset should be translated to a gene symbol (used for the default title of the plot) |
... |
Possibility to add extra plot options. See |
a plot is drawn in the current device. prediction object is returned invisibly.
Willem Talloen
Some explanation about ROC can be found on http://en.wikipedia.org/wiki/ROC_curve and http://www.anaesthetist.com/mnm/stats/roc/Findex.htm. The latter has at the bottom a nice interactive tool to scroll the cut-off and to see how it affects the FP/TP table and the ROC curve.
# simulated data set esSim <- simulateData() ROCcurve(probesetId = 'Gene.1', object = esSim, groups = 'type', addLegend = FALSE)
# simulated data set esSim <- simulateData() ROCcurve(probesetId = 'Gene.1', object = esSim, groups = 'type', addLegend = FALSE)
pamClass
objectTop table for pamClass
object
## S4 method for signature 'pamClass' topTable(fit, n)
## S4 method for signature 'pamClass' topTable(fit, n)
fit |
object for which to obtain a top table, generally a fit object for a given model class |
n |
number of features (variables) to list in the top table, ranked by importance |
topTablePam
object
rfClass
objectTop table for rfClass
object
## S4 method for signature 'rfClass' topTable(fit, n)
## S4 method for signature 'rfClass' topTable(fit, n)
fit |
object for which to obtain a top table, generally a fit object for a given model class |
n |
number of features (variables) to list in the top table, ranked by importance |
topTableRfClass
object