Package 'XINA'

Title: Multiplexes Isobaric Mass Tagged-based Kinetics Data for Network Analysis
Description: The aim of XINA is to determine which proteins exhibit similar patterns within and across experimental conditions, since proteins with co-abundance patterns may have common molecular functions. XINA imports multiple datasets, tags dataset in silico, and combines the data for subsequent subgrouping into multiple clusters. The result is a single output depicting the variation across all conditions. XINA, not only extracts coabundance profiles within and across experiments, but also incorporates protein-protein interaction databases and integrative resources such as KEGG to infer interactors and molecular functions, respectively, and produces intuitive graphical outputs.
Authors: Lang Ho Lee <[email protected]> and Sasha A. Singh <[email protected]>
Maintainer: Lang Ho Lee <[email protected]> and Sasha A. Singh <[email protected]>
License: GPL-3
Version: 1.25.0
Built: 2024-12-19 04:23:01 UTC
Source: https://github.com/bioc/XINA

Help Index


add_legend

Description

Add plot legend and locate it outside of a network plot

Usage

add_legend(legend_location = "bottomright", ...)

Arguments

legend_location

Network centrality score matrix

...

Numeric, complex, or logical vectors.

Value

a legend to a plot


alluvial_enriched

Description

'alluvial_enriched’ draws an alluvial plot and finds comigrated proteins. The comigration is a group of proteins that show the same expression pattern, classified and evaluated by XINA clustering, in at least two conditions. XINA can reduce the dataset complexity by filtering based on the number of comigrated proteins (size, ’comigration_size’ parameter) and perform an enrichment test (P-value of Fisher’s exact test, ’pval_threshold’) to determine significance of enriched comigrations. The Fisher’s exact test can only be done for two conditions at a time. The following 2x2 table was used to calculate the P-value from the Fisher’s exact test. To evaluate significance of co-migrated proteins from cluster #1 in control to cluster #2 in test group,

- cluster #1 in control other clusters in control
cluster #2 in test 65 (TP) 175 (FP)
other clusters in test 35 (FN) 979 (TN)

Usage

alluvial_enriched(clustering_result, selected_conditions,
  comigration_size = 0, pval_threshold = 1, pval_method = "fdr",
  cex = 0.7, alpha = 0.3)

Arguments

clustering_result

A list containing XINA clustering results. See xina_clustering

selected_conditions

A vector of condition names used in XINA clustering results. The number of selected conditions should be at least two.

comigration_size

The number of proteins comigrated together in the selected conditions of XINA clustering results. Default is 0

pval_threshold

This option is avaiable only when you selected two conditions for comigration search.

pval_method

Method for p-value adjustment. See p.adjust

cex

Scaling of fonts of category labels. Default if 0.7. See alluvial

alpha

Transparency of the stripes. Default if 0.3. See alluvial

Value

A data frame containing comigrations and an alluvial plot showing comigrations

Examples

# load XINA example data
data(xina_example)

# Get the experimental conditions in the example data
classes <- as.vector(example_clusters$condition)

# Get comigrations without any thresholds
all_comigrations <- alluvial_enriched(example_clusters, classes)

# Get comigrations that have >= 5 size (the number of comigrated proteins)
all_cor_enriched <- alluvial_enriched(example_clusters, classes, comigration_size=5)

# Get all the comigrations between Control and Stimulus1
comigrations_Control_Stimulus1 <- alluvial_enriched(example_clusters,
c(classes[1],classes[2]))

# Get comigrations between Control and Stimulus1, that have >=5 size
comigrations_Control_Stimulus1_over5 <- alluvial_enriched(example_clusters,
c(classes[1],classes[2]), comigration_size=5)

# Get comigrations between Control and Stimulus1,
# that have >= 5 size and enrichment FDR <= 0.01
comigrations_Control_Stimulus1_pval0.01_size5 <- alluvial_enriched(example_clusters,
c(classes[1],classes[2]), comigration_size=5, pval_threshold=0.01)

# Get  comigrations between Control and Stimulus1,
# that have >= 5 size and enrichment Benjamini & Yekutieli <= 0.01
comigrations_Control_Stimulus1_BY0.01_size5 <- alluvial_enriched(example_clusters,
c(classes[1],classes[2]), comigration_size=5, pval_threshold=0.01, pval_method="BY")

alluvial_enrichment_tests

Description

Fisher's exact test to calculate the significance over all comigrations. The following 2x2 table was used to calculate p-value from Fisher's exact test. To evaluate significance of comigrated proteins from cluster #1 in control to cluster #2 in test condition,

cluster #1 in control other clusters in control
cluster #2 in test 65 (TP) 175 (FP)
other clusters in test 35 (FN) 979 (TN)

'alluvial_enrichment_tests' also provides another statistical methods including Hypergeometric test and Chi-square test.

Usage

alluvial_enrichment_tests(count_table, c1, c2, non_cluster = 0,
  test_type = "fisher")

Arguments

count_table

A data frame generated by using count.

c1

A selected cluster in the first condition.

c2

A selected cluster in the second condition.

non_cluster

The cluster number for proteins that were not detected in a specific sample. Default is 0.

test_type

Enrichment test type. 'fisher' = Fisher's exact test, 'hyper' = Hypergeometric test, 'chisq' = Chi-square test

Value

P-value of comigration enrichment test and 2x2 table information


calculate_centrality_scores

Description

'calculate_centrality_scores' computes network centrality scores

Usage

calculate_centrality_scores(net, centrality_type = "Degree")

Arguments

net

protein-protein interaction network of igraph

centrality_type

the maximum number of clusters

Value

A vector of network centrality scores


default_size

Description

Calculate image size based on the number of clusters

Usage

default_size(max_cluster)

Arguments

max_cluster

the maximum number of clusters

Value

A vector of plot width and height


draw_alluvial_plot

Description

'draw_alluvial_plot' draw a alluvial plot

Usage

draw_alluvial_plot(clustering_result, selected_conditions, count_table,
  alluvia_colors = NULL, cex = 0.7, alpha = 0.3)

Arguments

clustering_result

A list containing XINA clustering results. See xina_clustering.

selected_conditions

A vector of condition names used in XINA clustering results. The number of selected conditions should be at least two.

count_table

A data frame generated by using count.

alluvia_colors

A vector containing the user-defined colors for each alluvium.

cex

Size of cluster number on block axis. Default if 0.7. See alluvial.

alpha

Transparency of alluvia colors. Default is 0.3. See alluvial.

Value

An alluvial plot displaying comigrations and the data frame containing the input count_table with colors.

Examples

# load XINA example data
data(xina_example)

# get a vector of experimental conditions analyzed in the clustering results
classes <- as.vector(example_clusters$condition)

comigrations_size_over5 <- alluvial_enriched(example_clusters, classes, comigration_size=5)
draw_alluvial_plot(example_clusters, classes, comigrations_size_over5)

Randomly generated example datasets for XINA users. A dataset containing the XINA clustering results.

Description

  • aligned. XINA clustering results aligned by conditions

  • data_column. Column names for data matrix

  • out_dir. Not available in this example dataset

  • nClusters. The number of user-desired clusters. It's 30 in the example.

  • max_cluster. The number of clusters found in the dataset. It's 21 in the example.

  • chosen_model. The chosen covariance model for the example dataset. It's VEI in the example

  • optimal_BIC. BIC at the optimized clustering. It's 29473.57 in the example

  • condition. The experimental conditions in the dataset.

  • color_for_condition. The default color for the conditions that will be used in XINA plot drawing.

  • color_for_clusters. The default color for the clusters that will be used in XINA clustering plot.

  • norm_method. The used normalization method to standardize the input data. It's "sum_normalization" in the example.

Format

A list with the example XINA clustering result


extract_data_column

Description

Extract data column names from XINA clustering result

Usage

extract_data_column(col_head_of_clustering)

Arguments

col_head_of_clustering

Column names of XINA clustering result

Value

A vector containing column names of data matrix


find_similar_clusters

Description

Compare clusters and find similar ones

Usage

find_similar_clusters(clustering_result, threshold = 0.95)

Arguments

clustering_result

A list containing XINA clustering results. See xina_clustering

threshold

Pearson's r threshold to find similar ones

Value

Write a csv file containing similar clustering information based on the given Pearson's R threshold


generate_count_table

Description

Count the number of comigrated proteins using count

Usage

generate_count_table(clustering_result, selected_conditions,
  comigration_size)

Arguments

clustering_result

A list containing XINA clustering results. See xina_clustering

selected_conditions

A vector of condition names used in XINA clustering results.

comigration_size

The number of proteins comigrated together in the selected conditions of XINA clustering results. Default is 0.

Value

A data frame containing comigrations.


generate_superset

Description

Merge input kinetics files

Usage

generate_superset(f_names, data_column, delim = ",",
  norm = "sum_normalization")

Arguments

f_names

A vector of .csv file paths containing kinetics data

data_column

A vector of column names containing data matrix

delim

The delimiter of input file (default is ',')

norm

The normalization method. It should be one of c('sum_normalization', 'zscore'). Default is 'sum_normalization'.

Value

A data frame containing kinetics data obtained from files in the f_names vector


get_color_for_nodes

Description

Pre-defined 30 colors

Usage

get_color_for_nodes()

Value

A vector for color code of XINA graphics


get_colors

Description

Generate color series for XINA graphics

Usage

get_colors(nClusters, set = "", colorset = NULL)

Arguments

nClusters

The number of clusters

set

Pre-defined color series set

colorset

manually defined color codes

Value

A vector for color code of XINA graphics


get_comigrations_by_name

Description

'get_comigrations_by_name' finds proteins comigrated with the given proteins

Usage

get_comigrations_by_name(clustering_result, selected_conditions,
  protein_list, cex = 0.7, alpha = 0.3)

Arguments

clustering_result

A list containing XINA clustering results. See xina_clustering

selected_conditions

A vector of condition names used in XINA clustering results. The number of selected conditions should be at least two.

protein_list

A vector containing gene names.

cex

Size of cluster number on block axis. Default if 0.7. See alluvial

alpha

Transparency of alluvia colors. Default is 0.3. See alluvial

Value

An alluvial plot displaying comigrations and the data frame containing comigrations of the input proteins

Examples

# load XINA example data
data(xina_example)

# the clustering result table
all_proteins  <- as.character(example_clusters$aligned$`Gene name`)
# get a vector of experimental conditions analyzed in the clustering results
classes <- as.vector(example_clusters$condition)

comigrated_prots_all <- get_comigrations_by_name(example_clusters, classes, all_proteins[1:3])

get_condition_biased_comigrations

Description

get comigrations that at least one biased cluster is involved in. Biased clusters are defined by

Usage

get_condition_biased_comigrations(clustering_result, count_table = NULL,
  selected_conditions, condition_composition, threshold_percent = 50,
  color_for_null = "gray", color_for_highly_matched = "red4",
  cex = 0.7, alpha = 0.3)

Arguments

clustering_result

A list containing XINA clustering results. See xina_clustering

count_table

A data frame generated by using count. If count_table is NULL (by default), XINA will consider all the comigrations.

selected_conditions

A vector of condition names used in XINA clustering results. The number of selected conditions should be at least two.

condition_composition

The resulting data frame of 'plot_condition_compositions'. See plot_condition_compositions.

threshold_percent

Default is 50. The percentage threshold for finding condition-biased clusters

color_for_null

A color for non-condition-biased comigrations. Default is 'gray'

color_for_highly_matched

A color for comigrations that are involved with more than two condition-biased clusters. Default is 'red4'

cex

Size of cluster number on block axis. Default if 0.7. See alluvial.

alpha

Transparency of alluvia colors. Default is 0.3. See alluvial.

Value

An alluvial plot displaying comigrations and the data frame containing condition-biased comigrations.

Examples

# load XINA example data
data(xina_example)

# get a vector of experimental conditions analyzed in the clustering results
conditions <- as.vector(example_clusters$condition)

# get condition composition information
condition_composition <- plot_condition_compositions(example_clusters)

comigrations_size10 <- alluvial_enriched(example_clusters, conditions, comigration_size=10)
# Finding condition-biased comigrations by 50% threshold
condition_biased_comigrations <-
get_condition_biased_comigrations(clustering_result=example_clusters,
count_table=comigrations_size10, selected_conditions=conditions,
condition_composition=condition_composition)

# Finding condition-biased comigrations by 70% threshold
condition_biased_comigrations <-
get_condition_biased_comigrations(clustering_result=example_clusters,
count_table=comigrations_size10, selected_conditions=conditions,
condition_composition=condition_composition,
threshold_percent=70)

get_layout

Description

Get igraph layout by the number of nodes

Usage

get_layout(subnet_condition)

Arguments

subnet_condition

A igraph sub-network

Value

igraph network layout


get_mTOR_proteins

Description

Get mTOR pathway genes

Usage

get_mTOR_proteins(time_points, conditions)

Arguments

time_points

A vector containing time points of the data matrix

conditions

A vector containing condition information, for example normal, disease and drug treated disase.

Value

A vector containing mTOR pathway gene names


get_random_data

Description

Get randomized time-series data

Usage

get_random_data(time_points, conditions, num_total, percent.sign = 0.1,
  equal = TRUE)

Arguments

time_points

A vector containing time points of the data matrix

conditions

A vector containing condition information, for example normal, disease and drug treated disase.

num_total

The number of total proteins to be generated

percent.sign

Percentage of differentially expressed proteins. Ignored when equal=FALSE.

equal

If equal is TRUE, all the conditions will have numbers between 0 and 1. If it is FALSE, the first three conditions will have different ranges. First condition will have numbers from 0.3 to 0.4. Second condition will have numbers from 0.6 to 0.8. Third condition will have numbers from 0.3 to 0.5. Other conditions will have numbers from 0 to 1.

Value

A list containing ramdomly generated data matrix


get_stats

Description

Calculate statistics of the given data for XINA network analysis

Usage

get_stats(centrality_results, na.rm = FALSE)

Arguments

centrality_results

Network centrality score data frame calculated by XINA network module

na.rm

If it is FALSE, no exclusion of NA values.

Value

A data frame containing statistics of XINA network centrality scores


get_theme_blank

Description

Predefined ggplot theme for removing ticks, titles and labels of X and Y axis

Usage

get_theme_blank()

Value

A ggplot theme


get_unknown_ppi_nodes

Description

Get proteins with no known interactions within the cluster based on the used protein-protein interaction database source

Usage

get_unknown_ppi_nodes(xina_result, cl)

Arguments

xina_result

A list containing XINA network analysis results. See xina_analysis

cl

the clustering number of XINA clustering results. See xina_clustering

Value

A data frame containing proteins with no known interactions within the cluster based on the used protein-protein interaction database source

Examples

# load XINA example data
data(xina_example)

# load the previously processed XINA analysis results
# if you want to learn how to run 'xina_analysis', please see \link[XINA]{xina_analysis}
data(xina_result_example)

# Extract unknown PPI nodes in the cluster #1
get_unknown_ppi_nodes(xina_result_example, 1)

A character vector containing 19,396 human genes This is for the randome data generation of XINA

Description

  • Characters of human genes

Format

A character vector containing 19,396 human genes

Source

https://www.ncbi.nlm.nih.gov/gene


A character vector containing 19,396 human gene descriptions This is for the randome data generation of XINA

Description

  • Human gene description corresponding to 'gn' vector

Format

A character vector containing 19,396 human gene descriptions

Source

https://www.ncbi.nlm.nih.gov/gene


Protein-protein interaction resource downloaded from HPRD DB A data frame containing HRPD protein-protein interaction data

Description

  • gene_symbol_1. Gene name interacting with gene name in 'gene_symbol_2'

  • gene_symbol_2. Gene name interacting with gene name in 'gene_symbol_1'

  • Experiment_type. Experimental or computational methods supporting the interaction

Format

A data frame containing HRPD protein-protein interaction data

Source

http://www.hprd.org/


length2

Description

Customized function for vector length calculation

Usage

length2(x, na.rm = FALSE)

Arguments

x

A vector

na.rm

If it is FALSE, no exclusion of NA values.

Value

A vector length


load_previous_results

Description

Get previous XINA clustering results to R space

Usage

load_previous_results(clustering_dir = getwd(), data_column = NULL,
  fp_clusters = "xina_clusters.csv")

Arguments

clustering_dir

The directory path of XINA clustering results

data_column

A vector containing column names of data matrix

fp_clusters

File path of XINA clustering results

Value

Comma-separated file containing aligned XINA clustering results.

Examples

# Load XINA's example data
data(xina_example)
write.csv(example_clusters$aligned,"xina_clusters_aligned.csv")
write.csv(example_clusters$clusters,"xina_clusters.csv")

# Reload the clustering result
example_clusters_reloaded <- load_previous_results(".")

make_random_xina_data

Description

Generate random proteomics dataset for testing XINA 'make_random_xina_data' will make random proteomics data for XINA test. The generated data will have three conditions and seven time points, c("0hr", "2hr", "6hr", "12hr", "24hr", "48hr", "72hr").

Usage

make_random_xina_data(n = 500, mtor = TRUE, time_points = c("0hr",
  "2hr", "6hr", "12hr", "24hr", "48hr", "72hr"),
  conditions = c("Control", "Stimulus1", "Stimulus2"))

Arguments

n

The number of proteins for one condition. Default is 500.

mtor

If it is TRUE (default), mTOR pathway genes will be significant. If it is FALSE, randomly selected genes will be significant in first three conditions.

time_points

A vector containing time points of the data matrix

conditions

A vector containing condition information, for example normal, disease and drug treated disase.

Value

Three comma-separated files containing time-series data for XINA

Examples

make_random_xina_data()
g1 <- read.csv("Control.csv", check.names=FALSE,
stringsAsFactors = FALSE)
g2 <- read.csv("Stimulus1.csv", check.names=FALSE,
stringsAsFactors = FALSE)
g3 <- read.csv("Stimulus2.csv", check.names=FALSE,
stringsAsFactors = FALSE)

head(g1)
head(g2)
head(g3)

mutate_colors

Description

'mutate_colors' generates new color scheme for XINA clustering plot based on condition composition results (plot_condition_compositions). If any clusters have higher percentage than the 'threshold_percent', XINA will assign new colors in accordance to 'color_for_condition'. If not, XINA will give 'gray' color or user-defined color via 'null_color' parameter.

Usage

mutate_colors(condition_composition, color_for_condition,
  null_color = "gray", threshold_percent = 50)

Arguments

condition_composition

A data frame generated by plot_condition_compositions

color_for_condition

A vector like 'color_for_condition' of xina_clustering

null_color

Default is 'gray'. This color is for clusters that are not biased to any of experimental conditions

threshold_percent

Default is 50. The percentage threshold for giving new colors

Value

A data frame containing statistics of XINA network centrality scores

Examples

# load XINA example data
data(xina_example)

# Plot condition composition pie-chart with default option
condition_composition <- plot_condition_compositions(example_clusters)
example_clusters$color_for_clusters <- mutate_colors(condition_composition,
example_clusters$color_for_condition)
plot_clusters(example_clusters, xval=c(0,2,6,12,24,48,72), xylab=FALSE)

organize_clusters

Description

Organize XINA clustering information by gene name

Usage

organize_clusters(clustering_dir = getwd(), super_ds, file_out = TRUE)

Arguments

clustering_dir

The directory path of XINA clustering results

super_ds

XINA clusters

file_out

If it is TRUE, it writes the aligned clustering informaion to "xina_clusters_aligned.csv" file.

Value

Comma-separated file containing aligned XINA clustering results.


plot_clusters

Description

Draw all the clustering results. 'plot_clusters' draws two plots, scaled and unscaled line graphs. Scaled graphs have same y limits that are 0 to 1 by default, but can be changed via 'y_lim' parameter.

Usage

plot_clusters(clustering_result, y_lim = NULL, xval = NULL,
  xtickmark = NULL, xylab = TRUE, ggplot_theme = NULL)

Arguments

clustering_result

A list containing XINA clustering results. See xina_clustering

y_lim

Y axis limit. If you set y_lim=c(0,1), 'plot_clusters' will plot line graphs scaled from 0 to 1 in y-axis Default is NULL, which means unscaled line graphs.

xval

XINA basically considers time points as a ordinary variable, like 1,2,3,4...n. You can make the time points as a continuous variable using xval.

xtickmark

Change X axis tick marks. Default is data_column of the clustering result list.

xylab

If it is FALSE, x and y labels will be blank. If it is TRUE (defualt), x and y labels will be shown.

ggplot_theme

This is ggplot theme to modify XINA clustering plot.

Value

Line graphs of all the clusters

Examples

library(ggplot2)

# load XINA example data
data(xina_example)

# Draw clustering plots
plot_clusters(example_clusters)

# Apply theme to the clustering plot
theme1 <- theme(title=element_text(size=8, face='bold'),
axis.text.x = element_text(size=7),
axis.text.y = element_blank(),
axis.ticks.x = element_blank(),
axis.ticks.y = element_blank(),
axis.title.x = element_blank(),
axis.title.y = element_blank())
plot_clusters(example_clusters, ggplot_theme=theme1)

plot_clusters_all

Description

Draw line graphs of all the proteins in the given dataset

Usage

plot_clusters_all(clustering_result, selected_condition = NULL)

Arguments

clustering_result

A list containing XINA clustering results. See xina_clustering

selected_condition

A condition name to draw the kinetics plot

Value

a list containing clustering results and pdf file containing a BIC plot in current working directory.

Examples

# load XINA example data
data(xina_example)

# Plot kinetics of all the proteins in Control
plot_clusters_all(example_clusters, selected_condition="Control")

# Plot kinetics of all the proteins in Stimulus1
plot_clusters_all(example_clusters, selected_condition="Stimulus1")

# Plot kinetics of all the proteins in Stimulus2
plot_clusters_all(example_clusters, selected_condition="Stimulus2")

# Plot kinetics of all the proteins in three data
plot_clusters_all(example_clusters)

plot_condition_compositions

Description

computes condition composition of the XINA clustering results and draws pie-charts.

Usage

plot_condition_compositions(clustering_result, bullseye = FALSE,
  ggplot_theme = NULL)

Arguments

clustering_result

A list containing XINA clustering results. See xina_clustering

bullseye

If it is TRUE, draw bullseye plot instead of the pie-chart. Default is FALSE

ggplot_theme

This is ggplot theme to modify condition composition pie-chart and bulles eye plots.

Value

A condition composition plot and a data frame containing condition compositions of the clusters

Examples

# load XINA example data
data(xina_example)

# Plot condition composition pie-chart with default option
plot_condition_compositions(example_clusters)

# Make a new color code for conditions
condition_colors <- c("tomato","steelblue1","gold")
names(condition_colors) <- example_clusters$condition
example_clusters$color_for_condition <- condition_colors

# Draw condition composition pie-chart with the new color code
plot_condition_compositions(example_clusters)

# Draw condition composition bullseye plot
plot_condition_compositions(example_clusters, bullseye = TRUE)

plot_enrichment_results

Description

Plot GO and KEGG enrichment results

Usage

plot_enrichment_results(enriched_results,
  term_description = "term_description", sig_score = "pvalue",
  num_terms = 0, get_log = TRUE, fill_color = "darkgray")

Arguments

enriched_results

GO or KEGG enrichment results. See xina_enrichment and xina_enrichment

term_description

Description of terms to be drawn on Y axis. Default is "term_description" of XINA enrichment results.

sig_score

significant score to plot on X axis. Default is "pvalue".

num_terms

The number of terms to be plotted. Default is 0, which menas no limit.

get_log

If this is TRUE, 'plot_enrichment_results' will take -log10 of p-values.

fill_color

Default is 'darkgray'. You can change color of bars.

Value

ggplot bar graph

Examples

## Not run: 
library(STRINGdb)

# load XINA example data
data(xina_example)

# Get STRING database for protein-protein intereaction information
string_db <- STRINGdb$new( version="10", species=9606,
score_threshold=0, input_directory="" )
string_db

# XINA analysis with STRING DB
xina_result <- xina_analysis(example_clusters, string_db)

# Select proteins that showed cluster #1 in the Stimulus2 condition
subgroup <- subset(example_clusters$aligned, Stimulus2==1)
protein_list <- as.vector(subgroup$`Gene name`)

# Enrichment test and get significantly enriched functional terms
# that have adjuseted p-value less than 0.1
kegg_enriched <- xina_enrichment(string_db, protein_list,
enrichment_type = "KEGG", pval_threshold=0.1)
plot_enrichment_results(kegg_enriched$KEGG, num_terms=10)

## End(Not run)

plot_NA

Description

Draw NULL plot

Usage

plot_NA()

Value

a empty plot


rank_centrality

Description

Give ranks based on network centrality scores

Usage

rank_centrality(centrality_score, type, num_breaks = 5)

Arguments

centrality_score

Network centrality score matrix

type

Network centrality score type, such as 'Eigenvector'

num_breaks

The number of ranks

Value

A vector containing ranks


Protein-protein interaction resource downloaded from STRING DB for XINA's example dataset A data frame containing protein-protein interactions

Description

  • gene_symbol_1. Gene name interacting with gene name in 'gene_symbol_2'

  • gene_symbol_2. Gene name interacting with gene name in 'gene_symbol_1'

  • PPI_Source. Data original source

Format

A data frame containing STRING protein-protein interaction data

Source

https://string-db.org/


xina_analysis

Description

xina_analysis is to analyze protein-protein interaction(PPI) networks using STRINGdb and igraph R package. This module computes PPI networks within each XINA clusters.

Usage

xina_analysis(clustering_result, ppi_db, is_stringdb = TRUE,
  flag_simplify = TRUE, node_shape = "sphere",
  num_clusters_in_row = 5, img_size = NULL, img_qual = 300)

Arguments

clustering_result

A list containing XINA clustering results. See xina_clustering

ppi_db

STRINGdb object

is_stringdb

If it is TRUE (default), XINA will process 'ppi_db' as STRINGdb, but it is FALSE, XINA will accepts your 'ppi_db' as it is. You can make your own igraph network using customized PPI information instead of STRINGdb.

flag_simplify

If it is TRUE (default), XINA will exclude unconnected proteins

node_shape

You can choose node shape. Default is "sphere". See shapes

num_clusters_in_row

The number of clusters in a row on the XINA network plot. Default is 5.

img_size

Set the image size. For width=1000 and height=1500, it is img_size=c(1000,1500).

img_qual

Set the image resolution. Default is 300.

Value

A PNG file (XINA_Cluster_Networks.png) displaying PPI network plots of all the clusters and a list containing XINA network analysis results.

Item Description
All_network PPI network of all the input proteins
Sub_network A list containing PPI networks of each clusters
Data XINA clustering results. See xina_clustering
Nodes A list of proteins in each cluster
Conditions A list of experimental condition of proteins in each cluster
Titles A list of plot titles for XINA plotting
out_dir A directory path storing XINA network analysis results
is_stringdb False = different PPI DB and TRUE = STRING DB

Examples

## Not run: 
# load XINA example data
data(xina_example)

# use the following code for utilizing up-to-date STRING DB
tax_id <- 9606  # for human
# tax_id <- 10090  # for mouse
library(STRINGdb)
library(igraph)
string_db <- STRINGdb$new( version='10', species=tax_id, score_threshold=0, input_directory='' )
string_db
xina_result <- xina_analysis(example_clusters, string_db, flag_simplify=FALSE)

# Run XINA with a protein-protein interaction edgelist
data(HPRD)
net_all <- simplify(graph_from_data_frame(d=hprd_ppi, directed=FALSE),
remove.multiple = FALSE, remove.loops = TRUE)
xina_result <- xina_analysis(example_clusters, net_all, is_stringdb=FALSE, flag_simplify=FALSE)

## End(Not run)

xina_clustering

Description

Clustering multiplexed time-series omics data to find co-abundance profiles

Usage

xina_clustering(f_names, data_column, out_dir = getwd(),
  nClusters = 20, norm = "sum_normalization", chosen_model = "")

Arguments

f_names

A vector containing input file (.csv) paths

data_column

A vector containing column names (1st row of the input file) of data matrix

out_dir

A directory path for saving clustering results. (default: out_dir=getwd())

nClusters

The number of desired maximum clusters

norm

Default is "sum_normalization". Sum-normalization is to divide the data matrix by row sum. If you want to know more about sum-normalization, see https://www.ncbi.nlm.nih.gov/pubmed/19861354. "zscore" is to calculate Z score for each protein. See scale.

chosen_model

You can choose a specific model rather than testing all the models that are available in mclust. mclustModelNames If you want k-means clustering instead of the model-based clustering, use "kmeans" here.

Value

a plot containing a BIC plot in current working directory and a list containing below information:

Item Description
clusters XINA clustering results
aligned XINA clustering results aligned by ID
data_column Data matrix column names
out_dir The directory path containing XINA results
nClusters The number of clusters desired by user
max_cluster The number of clusters optimized by BIC
chosen_model The used covariance model for model-based clustering
optimal_BIC BIC of the optimized covariance model
condition Experimental conditions of the user input data
color_for_condition Colors assigned to each experimental conditions which is used for condition composition plot
color_for_clusters Colors assigned to each clusters which is used for XINA clustering plot
norm_method Used normalization method

Examples

# Generate random multiplexed time-series data
random_data_info <- make_random_xina_data()

# Data files
data_files <- paste(random_data_info$conditions, ".csv", sep='')

# time points of the data matrix
data_column <- random_data_info$time_points

# mclust requires the fixed random seed to get reproduce the clustering results
set.seed(0)

# Run the model-based clustering to find co-abundance profiles
example_clusters <- xina_clustering(data_files, data_column=data_column,
nClusters=30)

# Run k-means clustering to find co-abundance profiles
example_clusters <- xina_clustering(data_files, data_column=data_column,
nClusters=30,
chosen_model="kmeans")

xina_enrichment

Description

xina_enrichment conducts functional enrichment tests using gene ontology or KEGG pathway terms for a given protein list

Usage

xina_enrichment(string_db, protein_list, enrichment_type = "GO",
  pval_threshold = 0.05, methodMT = "fdr")

Arguments

string_db

STRINGdb object

protein_list

A vector of gene names to draw protein-protein interaction network.

enrichment_type

A functional annotation for the enrichment test. 'enrichment_type' should be one of 'GO' and 'KEGG',

pval_threshold

P-value threshold to get significantly enriched terms from the given proteins

methodMT

Method for p-value adjustment. See get_enrichment. Default is 'fdr'.

Value

A list of data frames containing enrichment results

Examples

## Not run: 
library(STRINGdb)
library(Biobase)

# load XINA example data
data(xina_example)

# Get STRING database for protein-protein intereaction information
string_db <- STRINGdb$new( version="10", species=9606, score_threshold=0, input_directory="" )
string_db

# XINA analysis with STRING DB
xina_result <- xina_analysis(example_clusters, string_db)

# Select proteins that showed cluster #1 in the Stimulus2 condition
subgroup <- subset(example_clusters$aligned, Stimulus2==1)
protein_list <- as.vector(subgroup$`Gene name`)

# Enrichment test using KEGG pathway terms that have adjuseted p-value less than 0.1
kegg_enriched <- xina_enrichment(string_db, protein_list,
enrichment_type = "KEGG", pval_threshold=0.1)
plot_enrichment_results(kegg_enriched$KEGG, num_terms=10)

# Enrichment test using GO terms that have adjuseted p-value less than 0.1
go_enriched <- xina_enrichment(string_db, protein_list,
enrichment_type = "GO", pval_threshold=0.1)
plot_enrichment_results(go_enriched$Component, num_terms=10)

## End(Not run)

xina_plot_all

Description

xina_plot_all is to draw protein-protein interaction network plots of all the clusters

Usage

xina_plot_all(xina_result, clustering_result, condition = "all",
  centrality_type = NULL, flag_simplify = TRUE, num_breaks = 5,
  layout_specified = "", vertex_label_flag = FALSE,
  vertex.label.color = "black", vertex.color = "", edge.color = NULL,
  vertex.label.dist = 0.6, vertex.label.cex = 0.8,
  edge.arrow.size = 0.4, vertex.size = 10, vertex.shape = "sphere",
  legend_location = "bottom", num_clusters_in_row = 5,
  flag_unknown_only = FALSE, img_size = NULL, img_qual = 300)

Arguments

xina_result

A list containing XINA network analysis results. See xina_analysis

clustering_result

A list containing XINA clustering results. See xina_clustering

condition

Default is 'all', which means use all the proteins to draw graphs. If you specify the experimental condition name used for XINA clustering, xina_plot_all will draw graphs using specific condition's proteins.

centrality_type

'centrality_type' should be one of c('Degree', 'Eigenvector', 'Hub', 'Authority', 'Closeness', 'Betweenness')

Centrality score igraph function
Degree degree
Eigenvector eigen_centrality
Hub hub_score
Authority authority_score
Closeness closeness
Betweenness betweenness
flag_simplify

If it is TRUE (default), XINA will exclude unconnected proteins

num_breaks

'num_breaks' is the number of ranks based on network centrality. Default is 5.

layout_specified

This can change network layout. 'layout_specified' should be one of c('sphere', 'star', 'gem', 'tree', 'circle', 'random', 'nicely'). XINA's layouts are based on igraph's layout. See layout_

Layout igraph layout name
sphere layout_on_sphere
star layout_as_star
gem layout_with_gem
tree layout_as_tree
circle layout_in_circle
random layout_randomly
nicely layout_nicely

Default is 'layout_nicely' of igraph

vertex_label_flag

If vertex_label_flag is TRUE (default), igraph network graphs will be labeled by gene names If vertex_label_flag is FALSE, igraph network graphs will be drawn without labels

vertex.label.color

Color of labels. Default is black

vertex.color

Color of nodes. Default is pink.

edge.color

Color of edges. Default is pink.

vertex.label.dist

Distance between node and label. Default is 0.6

vertex.label.cex

Size of labels Default is 0.8

edge.arrow.size

Size of edges Default is 0.4

vertex.size

Size of nodes Default is 10

vertex.shape

You can choose node shape. Default is 'sphere'. See shapes

legend_location

If centrality_type is chosen, xina_plot_single add the color legend guiding rank of nodes based on the centrality score. Default is 'bottomright', but you can choose one of these 'bottomright', 'bottom', 'bottomleft', 'left', 'topleft', 'top', 'topright', 'right' and 'center'.

num_clusters_in_row

The number of clusters in a row on the XINA network plot. Default is 5.

flag_unknown_only

If this is TRUE, 'xina_plot_all' will plot proteins that do not have any protein-protein interaction in the given database

img_size

Set the image size. For width=1000 and height=1500, it is img_size=c(1000,1500). Default is c(3000,3000)

img_qual

Set the image resolution. Default is 300.

Value

PNG images of PPI network plots of all the clusters

Examples

## the following code is to show how it works quickly
## load XINA example data
data(xina_example)

## load the previously processed XINA analysis results
# if you want to learn how to run 'xina_analysis', please see \link[XINA]{xina_analysis}
data(xina_result_example)

# XINA network plots
xina_plot_all(xina_result_example, example_clusters)

# XINA network plots for Control condition
xina_plot_all(xina_result_example, example_clusters, condition='Control')

xina_plot_bycluster

Description

xina_plot_bycluster is to draw protein-protein interaction network plots of each cluster

Usage

xina_plot_bycluster(xina_result, clustering_result, cl = NULL,
  condition = "all", flag_legend = TRUE, centrality_type = NULL,
  flag_simplify = TRUE, layout_specified = "",
  vertex_label_flag = TRUE, vertex.label.dist = 0.6,
  vertex.label.cex = 0.8, edge.arrow.size = 0.4, vertex.size = 10,
  vertex.shape = "sphere", vertex.color = "",
  edge.color = "darkgray", legend_location = "bottom",
  flag_unknown_only = FALSE)

Arguments

xina_result

A list containing XINA network analysis results. See xina_analysis

clustering_result

A list containing XINA clustering results. See xina_clustering

cl

Cluster number in the XINA clustering results

condition

Default is 'all', which means use all the proteins to draw graphs. If you specify the experimental condition name used for XINA clustering,

flag_legend

If it is TRUE, a legend will be printed out together.

centrality_type

'centrality_type' should be one of c('Degree', 'Eigenvector', 'Hub', 'Authority', 'Closeness', 'Betweenness')

Centrality score igraph function
Degree degree
Eigenvector eigen_centrality
Hub hub_score
Authority authority_score
Closeness closeness
Betweenness betweenness
flag_simplify

If it is TRUE (default), XINA will exclude unconnected proteins

layout_specified

This can change network layout. 'layout_specified' should be one of c('sphere', 'star', 'gem', 'tree', 'circle', 'random', 'nicely'). XINA's layouts are based on igraph's layout. See layout_

Layout igraph layout name
sphere layout_on_sphere
star layout_as_star
gem layout_with_gem
tree layout_as_tree
circle layout_in_circle
random layout_randomly
nicely layout_nicely

Default is 'layout_nicely' of igraph

vertex_label_flag

If vertex_label_flag is TRUE (default), igraph network graphs will be labeled by gene names If vertex_label_flag is FALSE, igraph network graphs will be drawn without labels

vertex.label.dist

Distance between node and label. Default is 0.6

vertex.label.cex

Size of labels Default is 0.8

edge.arrow.size

Size of edges Default is 0.4

vertex.size

Size of nodes Default is 10

vertex.shape

You can choose node shape. Default is 'sphere'. See shapes

vertex.color

Color of nodes. Default is pink.

edge.color

Color of edges. Default is pink.

legend_location

If centrality_type is chosen, xina_plot_single add the color legend guiding rank of nodes based on the centrality score. Default is 'bottomright', but you can choose one of these 'bottomright', 'bottom', 'bottomleft', 'left', 'topleft', 'top', 'topright', 'right' and 'center'.

flag_unknown_only

If this is TRUE, 'xina_plot_bycluster' will plot proteins that do not have any protein-protein interaction in the given database

Value

A PNG file (XINA_Cluster_Networks.png) displaying protein-protein interaction network plots of all the clusters and a list containing XINA network analysis results

PNG images of PPI network plots of all the clusters

Examples

## the following code is to show how it works quickly
## load XINA example data
data(xina_example)

## load the previously processed XINA analysis results
# if you want to learn how to run 'xina_analysis', please see \link[XINA]{xina_analysis}
data(xina_result_example)

# plot cluster #1
xina_plot_bycluster(xina_result_example, example_clusters, cl=1)

# plot PPI network of Control condition in cluster #1
xina_plot_bycluster(xina_result_example, example_clusters, cl=1, condition='Control')

xina_plot_single

Description

xina_plot_single draws protein-protein interaction network plot for given 'protein_list'.

Usage

xina_plot_single(xina_result, protein_list, centrality_type = NULL,
  layout_specified = "", vertex_label_flag = TRUE, main = NULL,
  vertex.label.color = "black", vertex.color = NA,
  edge.color = "darkgray", vertex.label.dist = 0.6,
  vertex.label.cex = 0.8, edge.arrow.size = 0.4, vertex.size = 10,
  vertex.shape = "sphere", legend_location = "bottom",
  num_breaks = 5, digits_round_up = 5, flag_simplify = TRUE,
  flag_legend = TRUE)

Arguments

xina_result

A list containing XINA network analysis results. See xina_analysis

protein_list

A vector of gene names to draw a protein-protein interaction network graph.

centrality_type

'centrality_type' should be one of c('Degree', 'Eigenvector', 'Hub', 'Authority', 'Closeness', 'Betweenness')

Centrality score igraph function
Degree degree
Eigenvector eigen_centrality
Hub hub_score
Authority authority_score
Closeness closeness
Betweenness betweenness
layout_specified

This can change network layout. 'layout_specified' should be one of c('sphere', 'star', 'gem', 'tree', 'circle', 'random', 'nicely'). XINA's layouts are based on igraph's layout. See layout_

Layout igraph layout name
sphere layout_on_sphere
star layout_as_star
gem layout_with_gem
tree layout_as_tree
circle layout_in_circle
random layout_randomly
nicely layout_nicely

Default is 'layout_nicely' of igraph

vertex_label_flag

If vertex_label_flag is TRUE (default), igraph network graphs will be labeled by gene names If vertex_label_flag is FALSE, igraph network graphs will be drawn without labels

main

Title of network figure. IF it is NULL (default), it will be the number of plotted proteins

vertex.label.color

Color of labels. Default is black

vertex.color

Color of nodes. Default is pink.

edge.color

Color of edges. Default is pink.

vertex.label.dist

Distance between node and label. Default is 0.6

vertex.label.cex

Size of labels Default is 0.8

edge.arrow.size

Size of edges Default is 0.4

vertex.size

Size of nodes Default is 10

vertex.shape

You can choose node shape. Default is 'sphere'. See shapes

legend_location

If centrality_type is chosen, 'xina_plot_single' adds the color legend guiding rank of nodes based on the centrality score. Default is 'bottomright', but you can choose one of these 'bottomright', 'bottom', 'bottomleft', 'left', 'topleft', 'top', 'topright', 'right' and 'center'.

num_breaks

'num_breaks' is the number of ranks based on network centrality. Default is 5.

digits_round_up

See Round

flag_simplify

If it is TRUE (default), XINA will exclude unconnected proteins

flag_legend

If it is TRUE, a legend will be printed out together.

Value

A PNG file (XINA_Cluster_Networks.png) displaying protein-protein interaction network plots of all the clusters and a list containing XINA network analysis results

Examples

## the following code is to show how it works quickly
## load XINA example data
data(xina_example)

## load the previously processed XINA analysis results
# if you want to learn how to run 'xina_analysis', please see \link[XINA]{xina_analysis}
data(xina_result_example)

# get gene names that are clustered to #21 in "Stimulus2" condition
subgroup <- subset(example_clusters$aligned, Stimulus2==21)
protein_list <- subgroup$`Gene name`

# Calculate protein-protein interaction network
xina_plot_single(xina_result_example, protein_list)

# Calculate protein-protein interaction network and Eigenvector centrality
eigen_info <- xina_plot_single(xina_result_example, protein_list, centrality_type='Eigenvector')

Previously processed xina analysis using XINA's random example data A list containing 'xina_analysis' results

Description

  • All_network. PPI network of all the input proteins

  • Sub_network. A list containing PPI networks of each clusters

  • Data. XINA clustering results. See xina_clustering

  • Nodes. A list of proteins in each cluster

  • Conditions. A list of experimental condition of proteins in each cluster

  • Titles. A list of plot titles for XINA plotting

  • out_dir. A directory path storing XINA network analysis results

  • is_stringdb. False = different PPI DB and TRUE = STRING DB

Format

A data frame containing STRING protein-protein interaction data

Source

XINA