Title: | ViSEAGO: a Bioconductor package for clustering biological functions using Gene Ontology and semantic similarity |
---|---|
Description: | The main objective of ViSEAGO package is to carry out a data mining of biological functions and establish links between genes involved in the study. We developed ViSEAGO in R to facilitate functional Gene Ontology (GO) analysis of complex experimental design with multiple comparisons of interest. It allows to study large-scale datasets together and visualize GO profiles to capture biological knowledge. The acronym stands for three major concepts of the analysis: Visualization, Semantic similarity and Enrichment Analysis of Gene Ontology. It provides access to the last current GO annotations, which are retrieved from one of NCBI EntrezGene, Ensembl or Uniprot databases for several species. Using available R packages and novel developments, ViSEAGO extends classical functional GO analysis to focus on functional coherence by aggregating closely related biological themes while studying multiple datasets at once. It provides both a synthetic and detailed view using interactive functionalities respecting the GO graph structure and ensuring functional coherence supplied by semantic similarity. ViSEAGO has been successfully applied on several datasets from different species with a variety of biological questions. Results can be easily shared between bioinformaticians and biologists, enhancing reporting capabilities while maintaining reproducibility. |
Authors: | Aurelien Brionne [aut, cre], Amelie Juanchich [aut], Christelle hennequet-antier [aut] |
Maintainer: | Aurelien Brionne <[email protected]> |
License: | GPL-3 |
Version: | 1.21.0 |
Built: | 2024-11-21 03:35:02 UTC |
Source: | https://github.com/bioc/ViSEAGO |
This method retrieves and stores GO annotations for the organism of interest from one of genomic ressource database (Bioconductor, EntrezGene, Ensembl, Uniprot).
annotate(id, object, ortholog = FALSE) ## S4 method for signature 'character,genomic_ressource' annotate(id, object, ortholog = FALSE)
annotate(id, object, ortholog = FALSE) ## S4 method for signature 'character,genomic_ressource' annotate(id, object, ortholog = FALSE)
id |
identifiant corresponding to the organism of interest.
This id name is referenced in the first column of the database
used (see |
object |
a required |
ortholog |
|
This method uses a genomic_ressource-class
object to retrieve
GO annotations for the organism of interest.
The stored annotations are structured in 3 slots corresponding to the 3 GO categories: MF (Molecular Function),
BP (Biological Process), and CC (Cellular Component). Each slot contains GO terms with
associated evidence code.
The genomic_ressource-class
object is created by one of the four available methods:
Bioconductor2GO
, EntrezGene2GO
,
Ensembl2GO
, or Uniprot2GO
.
In the case of vertebrates, setting ortholog
argument to TRUE
is required if you need to add GO terms with experimental
evidence codes from orthologs genes
when using EntrezGene2GO
method. To display organisms supported by NCBI EntrezGene orthologs pipeline,
set the arguments id=NULL
and ortholog=TRUE
.
This approch is highly similar to the strategy developed by Uniprot-GOA consortium for the Electronic Annotation Method using
Ensembl Compara.
annotate
produces an object of gene2GO-class
required by build_GO_SS
method.
Durinck S, Spellman P, Birney E and Huber W (2009). Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nature Protocols, 4, pp. 1184-1191.
Durinck S, Moreau Y, Kasprzyk A, Davis S, De Moor B, Brazma A and Huber W (2005). BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis. Bioinformatics, 21, pp. 3439-3440.
Fong, JH, Murphy, TD, Pruitt, KD (2013). Comparison of RefSeq protein-coding regions in human and vertebrate genomes. BMC Genomics, 14:654.
Henrik Bengtsson (2016). R.utils: Various Programming Utilities. R package version 2.5.0. https://CRAN.R-project.org/package=R.utils.
Herve Pages, Marc Carlson, Seth Falcon and Nianhua Li (2017). AnnotationDbi: Annotation Database Interface. R package version 1.38.0.
Matt Dowle and Arun Srinivasan (2017). data.table: Extension of data.frame. R package version 1.10.4. https://CRAN.R-project.org/package=data.table.
Other genomic_ressource:
Bioconductor2GO()
,
Custom2GO()
,
Ensembl2GO()
,
EntrezGene2GO()
,
Uniprot2GO()
,
available_organisms()
,
genomic_ressource-class
,
taxonomy()
Other GO_terms:
GOcount()
,
GOterms_heatmap()
,
create_topGOdata()
,
gene2GO-class
,
merge_enrich_terms()
,
runfgsea()
## Not run: ## load Mus musculus (mouse) GO annotations # from Bioconductor Bioconductor<-ViSEAGO::Bioconductor2GO() myGENE2GO<-ViSEAGO::annotate( id="org.Mm.eg.db", object=Bioconductor ) # from EntrezGene EntrezGene<-ViSEAGO::EntrezGene2GO() myGENE2GO<-ViSEAGO::annotate( id="10090", object=EntrezGene ) # from EntrezGene Ensembl<-ViSEAGO::Ensembl2GO() myGENE2GO<-ViSEAGO::annotate( id="mmusculus_gene_ensembl", object=Ensembl ) # from Uniprot Uniprot<-ViSEAGO::Uniprot2GO() myGENE2GO<-ViSEAGO::annotate( id="mouse", object=Uniprot ) ## from Custom GO annotation file Custom<-ViSEAGO::Custom2GO(system.file("extdata/customfile.txt",package = "ViSEAGO")) myGENE2GO<-ViSEAGO::annotate( id="myspecies1", object=Custom ) ## specific options for EntrezGene database # Chicken GO annotations without adding orthologs EntrezGene<-ViSEAGO::EntrezGene2GO() myGENE2GO<-ViSEAGO::annotate( id="9031", object=EntrezGene ) # Chicken GO annotation with the add of orthologs GO annotations EntrezGene<-ViSEAGO::EntrezGene2GO() myGENE2GO<-ViSEAGO::annotate( id="9031", object=EntrezGene, ortholog=TRUE ) # display organisms supported by NCBI EntrezGene orthologs pipeline EntrezGene<-ViSEAGO::EntrezGene2GO() ViSEAGO::annotate( id="NULL", object=EntrezGene, ortholog=TRUE ) ## End(Not run)
## Not run: ## load Mus musculus (mouse) GO annotations # from Bioconductor Bioconductor<-ViSEAGO::Bioconductor2GO() myGENE2GO<-ViSEAGO::annotate( id="org.Mm.eg.db", object=Bioconductor ) # from EntrezGene EntrezGene<-ViSEAGO::EntrezGene2GO() myGENE2GO<-ViSEAGO::annotate( id="10090", object=EntrezGene ) # from EntrezGene Ensembl<-ViSEAGO::Ensembl2GO() myGENE2GO<-ViSEAGO::annotate( id="mmusculus_gene_ensembl", object=Ensembl ) # from Uniprot Uniprot<-ViSEAGO::Uniprot2GO() myGENE2GO<-ViSEAGO::annotate( id="mouse", object=Uniprot ) ## from Custom GO annotation file Custom<-ViSEAGO::Custom2GO(system.file("extdata/customfile.txt",package = "ViSEAGO")) myGENE2GO<-ViSEAGO::annotate( id="myspecies1", object=Custom ) ## specific options for EntrezGene database # Chicken GO annotations without adding orthologs EntrezGene<-ViSEAGO::EntrezGene2GO() myGENE2GO<-ViSEAGO::annotate( id="9031", object=EntrezGene ) # Chicken GO annotation with the add of orthologs GO annotations EntrezGene<-ViSEAGO::EntrezGene2GO() myGENE2GO<-ViSEAGO::annotate( id="9031", object=EntrezGene, ortholog=TRUE ) # display organisms supported by NCBI EntrezGene orthologs pipeline EntrezGene<-ViSEAGO::EntrezGene2GO() ViSEAGO::annotate( id="NULL", object=EntrezGene, ortholog=TRUE ) ## End(Not run)
Display an interactive table with available organisms from a genomic ressource database (Bioconductor, EntrezGene, Ensembl, Uniprot).
available_organisms(object) ## S4 method for signature 'genomic_ressource' available_organisms(object)
available_organisms(object) ## S4 method for signature 'genomic_ressource' available_organisms(object)
object |
a |
an interactive datatable
.
javascript datatable
Yihui Xie (2016). DT: A Wrapper of the JavaScript Library 'DataTables'. R package version 0.2. https://CRAN.R-project.org/package=DT
Other genomic_ressource:
Bioconductor2GO()
,
Custom2GO()
,
Ensembl2GO()
,
EntrezGene2GO()
,
Uniprot2GO()
,
annotate()
,
genomic_ressource-class
,
taxonomy()
Other visualization:
GOclusters_heatmap()
,
GOcount()
,
GOterms_heatmap()
,
Upset()
,
overLapper()
,
show_heatmap()
,
show_table()
# display Bioconductor table Bioconductor<-ViSEAGO::Bioconductor2GO() ViSEAGO::available_organisms(Bioconductor) ## Not run: # display EntrezGene table EntrezGene<-ViSEAGO::EntrezGene2GO() ViSEAGO::available_organisms(EntrezGene) # display Ensembl table Ensembl<-ViSEAGO::Ensembl2GO() ViSEAGO::available_organisms(Ensembl) # display Uniprot table Uniprot<-ViSEAGO::Uniprot2GO() ViSEAGO::available_organisms(Uniprot) ## End(Not run)
# display Bioconductor table Bioconductor<-ViSEAGO::Bioconductor2GO() ViSEAGO::available_organisms(Bioconductor) ## Not run: # display EntrezGene table EntrezGene<-ViSEAGO::EntrezGene2GO() ViSEAGO::available_organisms(EntrezGene) # display Ensembl table Ensembl<-ViSEAGO::Ensembl2GO() ViSEAGO::available_organisms(Ensembl) # display Uniprot table Uniprot<-ViSEAGO::Uniprot2GO() ViSEAGO::available_organisms(Uniprot) ## End(Not run)
Retrieve the Bioconductor OrgDb available organisms databases packages.
Bioconductor2GO()
Bioconductor2GO()
This function gives genome wide annotation for available organisms databases packages from
Bioconductor OrgDb.
It uses loadAnnDbPkgIndex
from AnnotationForge package.
a genomic_ressource-class
object required by annotate
method.
Carlson M and Pages H (2017). AnnotationForge: Code for Building Annotation Database Packages. R package version 1.18.0.
Other genomic_ressource:
Custom2GO()
,
Ensembl2GO()
,
EntrezGene2GO()
,
Uniprot2GO()
,
annotate()
,
available_organisms()
,
genomic_ressource-class
,
taxonomy()
# Check Bioconductor OrgDb available organisms Bioconductor<-ViSEAGO::Bioconductor2GO()
# Check Bioconductor OrgDb available organisms Bioconductor<-ViSEAGO::Bioconductor2GO()
Compute the Information content (IC) on the given ontology, and
create a GO_SS-class
object required by compute_SS_distances
method to compute GO semantic similarity
between enriched GO terms or groups of terms.
build_GO_SS(gene2GO, enrich_GO_terms) ## S4 method for signature 'gene2GO,enrich_GO_terms' build_GO_SS(gene2GO, enrich_GO_terms)
build_GO_SS(gene2GO, enrich_GO_terms) ## S4 method for signature 'gene2GO,enrich_GO_terms' build_GO_SS(gene2GO, enrich_GO_terms)
gene2GO |
a |
enrich_GO_terms |
a |
This method use annotate
and merge_enrich_terms
output objects (see Arguments),
and compute the Information content (IC) using the internal code of godata
function from GOSemSim package.
a GO_SS-class
object required by compute_SS_distances
.
Alexa A, Rahnenfuhrer J, Lengauer T. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 2006; 22:1600-1607.
Guangchuang Yu, Fei Li, Yide Qin, Xiaochen Bo, Yibo Wu and Shengqi Wang. GOSemSim: an R package for measuring semantic similarity among GO terms and gene products. Bioinformatics 2010 26(7):976-978.
Herve Pages, Marc Carlson, Seth Falcon and Nianhua Li (2017). AnnotationDbi: Annotation Database Interface. R package version 1.38.0.
Other GO_semantic_similarity:
GO_SS-class
,
compute_SS_distances()
## Not run: # initialyse object for compute GO Semantic Similarity myGOs<-ViSEAGO::build_GO_SS( myGENE2GO, BP_sResults ) ## End(Not run) # load data example utils::data( myGOs, package="ViSEAGO" )
## Not run: # initialyse object for compute GO Semantic Similarity myGOs<-ViSEAGO::build_GO_SS( myGENE2GO, BP_sResults ) ## End(Not run) # load data example utils::data( myGOs, package="ViSEAGO" )
Build a distance or correlation matrix between partitions from dendrograms.
clusters_cor(clusters, method = "adjusted.rand") ## S4 method for signature 'list,character' clusters_cor(clusters, method = "adjusted.rand")
clusters_cor(clusters, method = "adjusted.rand") ## S4 method for signature 'list,character' clusters_cor(clusters, method = "adjusted.rand")
clusters |
a |
method |
available methods ("vi", "nmi", "split.join", "rand", or "adjusted.rand") from igraph package |
a distance or a correlation matrix.
Csardi G, Nepusz T: The igraph software package for complex network research, InterJournal, Complex Systems 1695. 2006. http://igraph.org.
Other GO_clusters:
GO_clusters-class
,
GOclusters_heatmap()
,
compare_clusters()
,
show_heatmap()
,
show_table()
# load example object data( myGOs, package="ViSEAGO" ) ## Not run: # compute Semantic Similarity (SS) myGOs<-ViSEAGO::compute_SS_distances( myGOs, distance=c("Resnik","Lin","Rel","Jiang","Wang") ) # Resnik distance GO terms heatmap Resnik_clusters_wardD2<-ViSEAGO::GOterms_heatmap( myGOs, showIC=TRUE, showGOlabels=TRUE, GO.tree=list( tree=list( distance="Resnik", aggreg.method="ward.D2" ), cut=list( dynamic=list( deepSplit=2, minClusterSize =2 ) ) ), samples.tree=NULL ) # Lin distance GO terms heatmap Lin_clusters_wardD2<-ViSEAGO::GOterms_heatmap( myGOs, showIC=TRUE, showGOlabels=TRUE, GO.tree=list( tree=list( distance="Lin", aggreg.method="ward.D2" ), cut=list( dynamic=list( deepSplit=2, minClusterSize =2 ) ) ), samples.tree=NULL ) # Resnik distance GO terms heatmap Rel_clusters_wardD2<-ViSEAGO::GOterms_heatmap( myGOs, showIC=TRUE, showGOlabels=TRUE, GO.tree=list( tree=list( distance="Rel", aggreg.method="ward.D2" ), cut=list( dynamic=list( deepSplit=2, minClusterSize =2 ) ) ), samples.tree=NULL ) # Resnik distance GO terms heatmap Jiang_clusters_wardD2<-ViSEAGO::GOterms_heatmap( myGOs, showIC=TRUE, showGOlabels=TRUE, GO.tree=list( tree=list( distance="Jiang", aggreg.method="ward.D2" ), cut=list( dynamic=list( deepSplit=2, minClusterSize =2 ) ) ), samples.tree=NULL ) # Resnik distance GO terms heatmap Wang_clusters_wardD2<-ViSEAGO::GOterms_heatmap( myGOs, showIC=TRUE, showGOlabels=TRUE, GO.tree=list( tree=list( distance="Wang", aggreg.method="ward.D2" ), cut=list( dynamic=list( deepSplit=2, minClusterSize =2 ) ) ), samples.tree=NULL ) ## End(Not run) # clusters to compare clusters<-list( Resnik="Resnik_clusters_wardD2", Lin="Lin_clusters_wardD2", Rel="Rel_clusters_wardD2", Jiang="Jiang_clusters_wardD2", Wang="Wang_clusters_wardD2" ) ## Not run: # global dendrogram clustering correlation clust_cor<-ViSEAGO::clusters_cor( clusters, method="adjusted.rand" ) ## End(Not run)
# load example object data( myGOs, package="ViSEAGO" ) ## Not run: # compute Semantic Similarity (SS) myGOs<-ViSEAGO::compute_SS_distances( myGOs, distance=c("Resnik","Lin","Rel","Jiang","Wang") ) # Resnik distance GO terms heatmap Resnik_clusters_wardD2<-ViSEAGO::GOterms_heatmap( myGOs, showIC=TRUE, showGOlabels=TRUE, GO.tree=list( tree=list( distance="Resnik", aggreg.method="ward.D2" ), cut=list( dynamic=list( deepSplit=2, minClusterSize =2 ) ) ), samples.tree=NULL ) # Lin distance GO terms heatmap Lin_clusters_wardD2<-ViSEAGO::GOterms_heatmap( myGOs, showIC=TRUE, showGOlabels=TRUE, GO.tree=list( tree=list( distance="Lin", aggreg.method="ward.D2" ), cut=list( dynamic=list( deepSplit=2, minClusterSize =2 ) ) ), samples.tree=NULL ) # Resnik distance GO terms heatmap Rel_clusters_wardD2<-ViSEAGO::GOterms_heatmap( myGOs, showIC=TRUE, showGOlabels=TRUE, GO.tree=list( tree=list( distance="Rel", aggreg.method="ward.D2" ), cut=list( dynamic=list( deepSplit=2, minClusterSize =2 ) ) ), samples.tree=NULL ) # Resnik distance GO terms heatmap Jiang_clusters_wardD2<-ViSEAGO::GOterms_heatmap( myGOs, showIC=TRUE, showGOlabels=TRUE, GO.tree=list( tree=list( distance="Jiang", aggreg.method="ward.D2" ), cut=list( dynamic=list( deepSplit=2, minClusterSize =2 ) ) ), samples.tree=NULL ) # Resnik distance GO terms heatmap Wang_clusters_wardD2<-ViSEAGO::GOterms_heatmap( myGOs, showIC=TRUE, showGOlabels=TRUE, GO.tree=list( tree=list( distance="Wang", aggreg.method="ward.D2" ), cut=list( dynamic=list( deepSplit=2, minClusterSize =2 ) ) ), samples.tree=NULL ) ## End(Not run) # clusters to compare clusters<-list( Resnik="Resnik_clusters_wardD2", Lin="Lin_clusters_wardD2", Rel="Rel_clusters_wardD2", Jiang="Jiang_clusters_wardD2", Wang="Wang_clusters_wardD2" ) ## Not run: # global dendrogram clustering correlation clust_cor<-ViSEAGO::clusters_cor( clusters, method="adjusted.rand" ) ## End(Not run)
Build an interactive heatmap of the common GO terms frequency between several partitions.
compare_clusters(clusters) ## S4 method for signature 'list' compare_clusters(clusters)
compare_clusters(clusters) ## S4 method for signature 'list' compare_clusters(clusters)
clusters |
a |
Build an interactive heatmap of common GO terms frequency between partitions from several
GO_clusters-class
objects.
an interactive javascript heatmap.
Carson Sievert, Chris Parmer, Toby Hocking, Scott Chamberlain, Karthik Ram, Marianne Corvellec and Pedro Despouy (2017). plotly: Create Interactive Web Graphics via 'plotly.js'. R package version 4.6.0. https://CRAN.R-project.org/package=plotly
Other GO_clusters:
GO_clusters-class
,
GOclusters_heatmap()
,
clusters_cor()
,
show_heatmap()
,
show_table()
# load example object data( myGOs, package="ViSEAGO" ) ## Not run: # compute Semantic Similarity (SS) myGOs<-ViSEAGO::compute_SS_distances( myGOs, distance=c("Resnik","Lin","Rel","Jiang","Wang") ) # Resnik distance GO terms heatmap Resnik_clusters_wardD2<-ViSEAGO::GOterms_heatmap( myGOs, showIC=TRUE, showGOlabels=TRUE, GO.tree=list( tree=list( distance="Resnik", aggreg.method="ward.D2" ), cut=list( dynamic=list( deepSplit=2, minClusterSize =2 ) ) ), samples.tree=NULL ) # Lin distance GO terms heatmap Lin_clusters_wardD2<-ViSEAGO::GOterms_heatmap( myGOs, showIC=TRUE, showGOlabels=TRUE, GO.tree=list( tree=list( distance="Lin", aggreg.method="ward.D2" ), cut=list( dynamic=list( deepSplit=2, minClusterSize =2 ) ) ), samples.tree=NULL ) # Resnik distance GO terms heatmap Rel_clusters_wardD2<-ViSEAGO::GOterms_heatmap( myGOs, showIC=TRUE, showGOlabels=TRUE, GO.tree=list( tree=list( distance="Rel", aggreg.method="ward.D2" ), cut=list( dynamic=list( deepSplit=2, minClusterSize =2 ) ) ), samples.tree=NULL ) # Resnik distance GO terms heatmap Jiang_clusters_wardD2<-ViSEAGO::GOterms_heatmap( myGOs, showIC=TRUE, showGOlabels=TRUE, GO.tree=list( tree=list( distance="Jiang", aggreg.method="ward.D2" ), cut=list( dynamic=list( deepSplit=2, minClusterSize =2 ) ) ), samples.tree=NULL ) # Resnik distance GO terms heatmap Wang_clusters_wardD2<-ViSEAGO::GOterms_heatmap( myGOs, showIC=TRUE, showGOlabels=TRUE, GO.tree=list( tree=list( distance="Wang", aggreg.method="ward.D2" ), cut=list( dynamic=list( deepSplit=2, minClusterSize =2 ) ) ), samples.tree=NULL ) ## End(Not run) # clusters to compare clusters<-list( Resnik="Resnik_clusters_wardD2", Lin="Lin_clusters_wardD2", Rel="Rel_clusters_wardD2", Jiang="Jiang_clusters_wardD2", Wang="Wang_clusters_wardD2" ) ## Not run: # clusters content comparisons clusters_comp<-ViSEAGO::compare_clusters(clusters) ## End(Not run)
# load example object data( myGOs, package="ViSEAGO" ) ## Not run: # compute Semantic Similarity (SS) myGOs<-ViSEAGO::compute_SS_distances( myGOs, distance=c("Resnik","Lin","Rel","Jiang","Wang") ) # Resnik distance GO terms heatmap Resnik_clusters_wardD2<-ViSEAGO::GOterms_heatmap( myGOs, showIC=TRUE, showGOlabels=TRUE, GO.tree=list( tree=list( distance="Resnik", aggreg.method="ward.D2" ), cut=list( dynamic=list( deepSplit=2, minClusterSize =2 ) ) ), samples.tree=NULL ) # Lin distance GO terms heatmap Lin_clusters_wardD2<-ViSEAGO::GOterms_heatmap( myGOs, showIC=TRUE, showGOlabels=TRUE, GO.tree=list( tree=list( distance="Lin", aggreg.method="ward.D2" ), cut=list( dynamic=list( deepSplit=2, minClusterSize =2 ) ) ), samples.tree=NULL ) # Resnik distance GO terms heatmap Rel_clusters_wardD2<-ViSEAGO::GOterms_heatmap( myGOs, showIC=TRUE, showGOlabels=TRUE, GO.tree=list( tree=list( distance="Rel", aggreg.method="ward.D2" ), cut=list( dynamic=list( deepSplit=2, minClusterSize =2 ) ) ), samples.tree=NULL ) # Resnik distance GO terms heatmap Jiang_clusters_wardD2<-ViSEAGO::GOterms_heatmap( myGOs, showIC=TRUE, showGOlabels=TRUE, GO.tree=list( tree=list( distance="Jiang", aggreg.method="ward.D2" ), cut=list( dynamic=list( deepSplit=2, minClusterSize =2 ) ) ), samples.tree=NULL ) # Resnik distance GO terms heatmap Wang_clusters_wardD2<-ViSEAGO::GOterms_heatmap( myGOs, showIC=TRUE, showGOlabels=TRUE, GO.tree=list( tree=list( distance="Wang", aggreg.method="ward.D2" ), cut=list( dynamic=list( deepSplit=2, minClusterSize =2 ) ) ), samples.tree=NULL ) ## End(Not run) # clusters to compare clusters<-list( Resnik="Resnik_clusters_wardD2", Lin="Lin_clusters_wardD2", Rel="Rel_clusters_wardD2", Jiang="Jiang_clusters_wardD2", Wang="Wang_clusters_wardD2" ) ## Not run: # clusters content comparisons clusters_comp<-ViSEAGO::compare_clusters(clusters) ## End(Not run)
This method computes distance between GO terms or GO clusters based on semantic similarity.
compute_SS_distances(object, distance) ## S4 method for signature 'ANY,character' compute_SS_distances(object, distance)
compute_SS_distances(object, distance) ## S4 method for signature 'ANY,character' compute_SS_distances(object, distance)
object |
a |
distance |
The available methods for calculating GO terms Semantic Similarity (SS) are
"Resnik", "Rel", "Lin", and "Jiang" which are based on Information Content (IC), and "Wang" which is based on graph topology. |
This method computes semantic similarity distances between all GO terms
provided by GO_SS-class
object.
This method also computes semantic similarity distances between all GO clusters
provided by GO_clusters-class
object.
Semantic Similarity computations are based on mgoSim
method from the GoSemSim package.
a GO_SS-class
, or a GO_clusters-class
object (same class as input object).
Marc Carlson (2017). GO.db: A set of annotation maps describing the entire Gene Ontology. R package version 3.4.1.
Guangchuang Yu, Fei Li, Yide Qin, Xiaochen Bo, Yibo Wu and Shengqi Wang. GOSemSim: an R package for measuring semantic similarity among GO terms and gene products. Bioinformatics 2010 26(7):976-978
Herve Pages, Marc Carlson, Seth Falcon and Nianhua Li (2017). AnnotationDbi: Annotation Database Interface. R package version 1.38.0.
Other GO_semantic_similarity:
GO_SS-class
,
build_GO_SS()
# load data example data( myGOs, package="ViSEAGO" ) ## Not run: # compute GO terms Semantic Similarity distances myGOs<-ViSEAGO::compute_SS_distances( myGOs, distance=c("Resnik","Lin","Rel","Jiang","Wang") ) # GOtermsHeatmap with default parameters Wang_clusters_wardD2<-ViSEAGO::GOterms_heatmap( myGOs, showIC=TRUE, showGOlabels=TRUE, GO.tree=list( tree=list( distance="Wang", aggreg.method="ward.D2", rotate=NULL ), cut=list( dynamic=list( pamStage=TRUE, pamRespectsDendro=TRUE, deepSplit=2, minClusterSize=2 ) ) ), samples.tree=NULL ) # compute clusters of GO terms Semantic Similarity distances Wang_clusters_wardD2<-ViSEAGO::compute_SS_distances( Wang_clusters_wardD2, distance=c("max","avg","rcmax","BMA") ) ## End(Not run)
# load data example data( myGOs, package="ViSEAGO" ) ## Not run: # compute GO terms Semantic Similarity distances myGOs<-ViSEAGO::compute_SS_distances( myGOs, distance=c("Resnik","Lin","Rel","Jiang","Wang") ) # GOtermsHeatmap with default parameters Wang_clusters_wardD2<-ViSEAGO::GOterms_heatmap( myGOs, showIC=TRUE, showGOlabels=TRUE, GO.tree=list( tree=list( distance="Wang", aggreg.method="ward.D2", rotate=NULL ), cut=list( dynamic=list( pamStage=TRUE, pamRespectsDendro=TRUE, deepSplit=2, minClusterSize=2 ) ) ), samples.tree=NULL ) # compute clusters of GO terms Semantic Similarity distances Wang_clusters_wardD2<-ViSEAGO::compute_SS_distances( Wang_clusters_wardD2, distance=c("max","avg","rcmax","BMA") ) ## End(Not run)
This method create a topGOdata-class
object required by topGO package in order
to perform GO enrichment test.
create_topGOdata(geneSel, allGenes, geneList = NULL, gene2GO, ont, nodeSize) ## S4 method for signature 'ANY,ANY,ANY,gene2GO,character,numeric' create_topGOdata(geneSel, allGenes, geneList = NULL, gene2GO, ont, nodeSize)
create_topGOdata(geneSel, allGenes, geneList = NULL, gene2GO, ont, nodeSize) ## S4 method for signature 'ANY,ANY,ANY,gene2GO,character,numeric' create_topGOdata(geneSel, allGenes, geneList = NULL, gene2GO, ont, nodeSize)
geneSel |
genes of interest. |
allGenes |
customized background genes. |
geneList |
logical factor (1: genes of interest, 0: genes background,
and gene identifiants in |
gene2GO |
a |
ont |
the ontology used is "MF" (Molecuar Function), "BP" (Biological Process), or "CC" (Cellular Component). |
nodeSize |
the minimum number of genes for each GO term. |
This method is a convenient wrapper building a topGOdata-class
object
using a given ontology category (ont
argument) in order to perform GO enrichment test.
The complete GO annotation is required (gene2GO
argument) and also
the list of genes of interest (geneSel
argument) against the corresponding background (allGenes
argument)
separately, or grouped together in a factor
(geneList
argument).
a topGOdata-class
object required by runTest
from topGO package.
Alexa A, Rahnenfuhrer J, Lengauer T. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 2006; 22:1600-1607.
Other GO_terms:
GOcount()
,
GOterms_heatmap()
,
annotate()
,
gene2GO-class
,
merge_enrich_terms()
,
runfgsea()
# load genes identifiants (GeneID,ENS...) background (Expressed genes) background<-scan( system.file( "extdata/data/input", "background_L.txt", package = "ViSEAGO" ), quiet=TRUE, what="" ) # load Differentialy Expressed (DE) gene identifiants from files pregnantvslactateDE<-scan( system.file( "extdata/data/input", "pregnantvslactateDE.txt", package = "ViSEAGO" ), quiet=TRUE, what="" ) ## Not run: # create topGOdata for BP for each list of DE genes BP_L_pregnantvslactate<-ViSEAGO::create_topGOdata( geneSel=pregnantvslactateDE, allGenes=background, gene2GO=myGENE2GO, ont="BP", nodeSize=5 ) ## End(Not run)
# load genes identifiants (GeneID,ENS...) background (Expressed genes) background<-scan( system.file( "extdata/data/input", "background_L.txt", package = "ViSEAGO" ), quiet=TRUE, what="" ) # load Differentialy Expressed (DE) gene identifiants from files pregnantvslactateDE<-scan( system.file( "extdata/data/input", "pregnantvslactateDE.txt", package = "ViSEAGO" ), quiet=TRUE, what="" ) ## Not run: # create topGOdata for BP for each list of DE genes BP_L_pregnantvslactate<-ViSEAGO::create_topGOdata( geneSel=pregnantvslactateDE, allGenes=background, gene2GO=myGENE2GO, ont="BP", nodeSize=5 ) ## End(Not run)
Store the available species and current GO annotations from a custom table file
Custom2GO(file)
Custom2GO(file)
file |
custom GO annotation file |
This function load a custom GO annotation database table that must contain columns:
custom taxonomic identifiants
custom gene identifiants
custom gene symbols
Known GO identifiants (see select(GO.db,columns=columns(GO.db),keys=keys(GO.db))
Known GO evidence codes
a genomic_ressource-class
object required by annotate
.
Matt Dowle and Arun Srinivasan (2017). data.table: Extension of 'data.frame'. R package version 1.10.4. https://CRAN.R-project.org/package=data.table.
Other genomic_ressource:
Bioconductor2GO()
,
Ensembl2GO()
,
EntrezGene2GO()
,
Uniprot2GO()
,
annotate()
,
available_organisms()
,
genomic_ressource-class
,
taxonomy()
# Download custom GO annotations Custom<-ViSEAGO::Custom2GO( system.file( "extdata/customfile.txt", package = "ViSEAGO" ) )
# Download custom GO annotations Custom<-ViSEAGO::Custom2GO( system.file( "extdata/customfile.txt", package = "ViSEAGO" ) )
This class is invoked by merge_enrich_terms
method in order to store the merged data.table
and associated metadata.
same_genes_background
logical.
object(s) to combinate (see examples in merge_enrich_terms
).
ont
ontology used "MF", "BP", or "CC".
method
enrichment test used "topGO", or "fgsea".
summary
a list
with topGO or fgsea object(s) summary informations.
data
a merged data.table
of enriched GO terms (p<0.01) in at least once with GO descriptions and statistical values.
Other enrich_GO_terms:
Upset()
,
overLapper()
,
show_heatmap()
,
show_table()
List Ensembl referenced organisms datasets from the current (NULL) or archive (number in character
) annotation version.
Ensembl2GO(biomart = "genes", GRCh = NULL, version = NULL)
Ensembl2GO(biomart = "genes", GRCh = NULL, version = NULL)
biomart |
the biomart name available with biomaRt package |
GRCh |
GRCh version to connect to if not the current GRCh38, currently this can only be 37 |
version |
the annotation version to use (eg. NULL for the default current version, or a version number in |
This function gives referenced organisms genomes at Ensembl.
It uses the useEnsembl
and listDatasets
from biomaRt package.
a genomic_ressource-class
object required by annotate
.
Durinck S, Spellman P, Birney E and Huber W (2009). Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nature Protocols, 4, pp. 1184-1191.
Durinck S, Moreau Y, Kasprzyk A, Davis S, De Moor B, Brazma A and Huber W (2005). BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis. Bioinformatics, 21, pp. 3439-3440.
Matt Dowle and Arun Srinivasan (2017). data.table: Extension of data.frame. R package version 1.10.4. https://CRAN.R-project.org/package=data.table.
Other genomic_ressource:
Bioconductor2GO()
,
Custom2GO()
,
EntrezGene2GO()
,
Uniprot2GO()
,
annotate()
,
available_organisms()
,
genomic_ressource-class
,
taxonomy()
## Not run: # check the Ensembl available biomart (if not known) biomaRt::listEnsembl() # List Ensembl available organisms Ensembl<-ViSEAGO::Ensembl2GO( biomart="genes", GRCh = NULL, version=NULL ) ## End(Not run)
## Not run: # check the Ensembl available biomart (if not known) biomaRt::listEnsembl() # List Ensembl available organisms Ensembl<-ViSEAGO::Ensembl2GO( biomart="genes", GRCh = NULL, version=NULL ) ## End(Not run)
Store the available species and current GO annotations from the gene2go.gz nfile avalable at NCBI EntrezGene ftp.
EntrezGene2GO()
EntrezGene2GO()
This function downloads the gene2go.gz file from EntrezGene ftp which contains available organisms (taxid) with the corresponding GO annotations.
a genomic_ressource-class
object required by annotate
.
Matt Dowle and Arun Srinivasan (2017). data.table: Extension of 'data.frame'. R package version 1.10.4. https://CRAN.R-project.org/package=data.table.
Eric Sayers (2013). Entrez Programming Utilities Help.
#' Henrik Bengtsson (2016). R.utils: Various Programming Utilities. R package version 2.5.0. https://CRAN.R-project.org/package=R.utils.
Maglott, D, Ostell, J, Pruitt, KD, Tatusova, T (2011). Entrez Gene: gene-centered information at NCBI. Nucleic Acids Res., 39, Database issue:D52-7.
Other genomic_ressource:
Bioconductor2GO()
,
Custom2GO()
,
Ensembl2GO()
,
Uniprot2GO()
,
annotate()
,
available_organisms()
,
genomic_ressource-class
,
taxonomy()
## Not run: # Download EntrezGene available organisms GO annotations EntrezGene<-ViSEAGO::EntrezGene2GO() ## End(Not run)
## Not run: # Download EntrezGene available organisms GO annotations EntrezGene<-ViSEAGO::EntrezGene2GO() ## End(Not run)
This class is invoked by runfgsea
method in order to store results.
description
a character
string with database source, date of stamp, and target species GO annotation.
method
fgsea method used.
params
a list
containing used input parameters for perform fgseaSimple
or fgseaMultilevel
.
input
a list
containing input values.
data
a list
containing data.table
fgsea procedure output.
This class is invoked by annotate
method in order to store GO annotations for each category (MF, BP, CC).
db
database source in character
.
stamp
date of stamp in character
.
organism
target species GO annotation in character
.
MF
a list
containing GO terms for Molecular Function (MF) category for each gene element.
BP
a list
containing GO terms for Biological Process (BP) category for each gene element.
CC
a list
containing GO terms for Cellular Component (CC) category for each gene element.
Other GO_terms:
GOcount()
,
GOterms_heatmap()
,
annotate()
,
create_topGOdata()
,
merge_enrich_terms()
,
runfgsea()
This class stores the annotations and associated metadata obtained by Bioconductor2GO
,
EntrezGene2GO
, Ensembl2GO
, or Uniprot2GO
.
db
name of database used (Bioconductor, EntrezGene, Ensembl, or Uniprot).
stamp
date of stamp (for Bioconductor, EntrezGene, and Uniprot), or annotation version for Ensembl database.
data
GO annotations from EntrezGene2GO
method.
organisms
informations about species/datasets availables.
mart
Ensembl mart from Ensembl2GO
method.
Other genomic_ressource:
Bioconductor2GO()
,
Custom2GO()
,
Ensembl2GO()
,
EntrezGene2GO()
,
Uniprot2GO()
,
annotate()
,
available_organisms()
,
taxonomy()
This class is invoked by GOterms_heatmap
and GOclusters_heatmap
methods to store all results produced.
ont
ontology used "MF", "BP", or "CC".
enrich_GOs
enrich_GO_terms-class
object.
IC
Information Content (IC).
terms_dist
distance between GO terms based on semantic similiarity.
clusters_dist
distance between GO groups based on semantic similiarity.
hcl_params
Hierarchical clustering parameters used.
dendrograms
GO terms and samples dendrograms
.
samples.gp
samples groups.
heatmap
GO terms and GO groups heatmaps.
Other GO_clusters:
GOclusters_heatmap()
,
clusters_cor()
,
compare_clusters()
,
show_heatmap()
,
show_table()
This class is invoked by build_GO_SS
method in order to store enrich_GO_terms-class
object, Information Content (IC),
and GO terms or groups distances objects based on semantic similarity.
ont
ontology used "MF", "BP", or "CC".
enrich_GOs
merge_enrich_terms
output object (enrich_GO_terms-class
object).
IC
Information Content (IC)
terms_dist
list
of GO terms or groups distances objects based on semantic similarity.
Other GO_semantic_similarity:
build_GO_SS()
,
compute_SS_distances()
This method computes a clustering heatmap based on GO groups semantic similarity.
GOclusters_heatmap( object, tree = list(distance = "BMA", aggreg.method = "ward.D2", rotate = NULL) ) ## S4 method for signature 'GO_clusters,list' GOclusters_heatmap( object, tree = list(distance = "BMA", aggreg.method = "ward.D2", rotate = NULL) )
GOclusters_heatmap( object, tree = list(distance = "BMA", aggreg.method = "ward.D2", rotate = NULL) ) ## S4 method for signature 'GO_clusters,list' GOclusters_heatmap( object, tree = list(distance = "BMA", aggreg.method = "ward.D2", rotate = NULL) )
object |
a |
tree |
a named list with:
|
This method computes a clustering heatmap based on GO groups semantic similarity (computed with compute_SS_distances
).
The heatmap color intensity corresponds to the number of GO terms in each GO group.
GO group description is defined as the first common GO ancestor with the cluster identifiant in brackets.
The dendrogram branches are colored according to GO terms clusters.
a GO_clusters-class
object.
Matt Dowle and Arun Srinivasan (2017). data.table: Extension of 'data.frame'. R package version 1.10.4. https://CRAN.R-project.org/package=data.table.
Tal Galili (2015). dendextend: an R package for visualizing, adjusting, and comparing trees of hierarchical clustering. Bioinformatics. DOI:10.1093/bioinformatics/btv428.
Tal Galili (2017). heatmaply: Interactive Cluster Heat Maps Using 'plotly'. R package version 0.9.1. https://CRAN.R-project.org/package=heatmaply.
Erich Neuwirth (2014). RColorBrewer: ColorBrewer Palettes. R package version 1.1-2. https://CRAN.R-project.org/package=RColorBrewer.
Carson Sievert, Chris Parmer, Toby Hocking, Scott Chamberlain, Karthik Ram, Marianne Corvellec and Pedro Despouy (2017). plotly: Create Interactive Web Graphics via 'plotly.js'. R package version 4.6.0. https://CRAN.R-project.org/package=plotly.
H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2009.
Other GO_clusters:
GO_clusters-class
,
clusters_cor()
,
compare_clusters()
,
show_heatmap()
,
show_table()
Other semantic_similiarity:
GOterms_heatmap()
Other visualization:
GOcount()
,
GOterms_heatmap()
,
Upset()
,
available_organisms()
,
overLapper()
,
show_heatmap()
,
show_table()
# load data example utils::data( myGOs, package="ViSEAGO" ) ## Not run: # compute GO terms Semantic Similarity distances myGOs<-ViSEAGO::compute_SS_distances( myGOs, distance="Wang" ) # GOtermsHeatmap with default parameters Wang_clusters_wardD2<-ViSEAGO::GOterms_heatmap( myGOs, showIC=TRUE, showGOlabels=TRUE, GO.tree=list( tree=list( distance="Wang", aggreg.method="ward.D2", rotate=NULL ), cut=list( dynamic=list( pamStage=TRUE, pamRespectsDendro=TRUE, deepSplit=2, minClusterSize =2 ) ) ), samples.tree=NULL ) # compute clusters of GO terms Semantic Similarity distances Wang_clusters_wardD2<-ViSEAGO::compute_SS_distances( Wang_clusters_wardD2, distance="BMA" ) # GOclusters heatmap Wang_clusters_wardD2<-ViSEAGO::GOclusters_heatmap( Wang_clusters_wardD2, tree=list( distance="BMA", aggreg.method="ward.D2", rotate=NULL ) ) ## End(Not run)
# load data example utils::data( myGOs, package="ViSEAGO" ) ## Not run: # compute GO terms Semantic Similarity distances myGOs<-ViSEAGO::compute_SS_distances( myGOs, distance="Wang" ) # GOtermsHeatmap with default parameters Wang_clusters_wardD2<-ViSEAGO::GOterms_heatmap( myGOs, showIC=TRUE, showGOlabels=TRUE, GO.tree=list( tree=list( distance="Wang", aggreg.method="ward.D2", rotate=NULL ), cut=list( dynamic=list( pamStage=TRUE, pamRespectsDendro=TRUE, deepSplit=2, minClusterSize =2 ) ) ), samples.tree=NULL ) # compute clusters of GO terms Semantic Similarity distances Wang_clusters_wardD2<-ViSEAGO::compute_SS_distances( Wang_clusters_wardD2, distance="BMA" ) # GOclusters heatmap Wang_clusters_wardD2<-ViSEAGO::GOclusters_heatmap( Wang_clusters_wardD2, tree=list( distance="BMA", aggreg.method="ward.D2", rotate=NULL ) ) ## End(Not run)
This method displays in barplot the count of GO terms splitted in two categories (significant or not) for each result of GO enrichment tests.
GOcount(object, file = NULL) ## S4 method for signature 'ANY' GOcount(object, file = NULL)
GOcount(object, file = NULL) ## S4 method for signature 'ANY' GOcount(object, file = NULL)
object |
an |
file |
the name of the output file (default to NULL for interactive screen display). |
This method displays an interactive barplot, using plotly package, from a merge_enrich_terms
output object.
A static image (in png) could be printed by setting file
argument.
a barplot.
Carson Sievert, Chris Parmer, Toby Hocking, Scott Chamberlain, Karthik Ram, Marianne Corvellec and Pedro Despouy (2017). plotly: Create InteractiveWeb Graphics via 'plotly.js'. R package version 4.6.0. https://CRAN.R-project.org/package=plotly.
Other GO_terms:
GOterms_heatmap()
,
annotate()
,
create_topGOdata()
,
gene2GO-class
,
merge_enrich_terms()
,
runfgsea()
Other visualization:
GOclusters_heatmap()
,
GOterms_heatmap()
,
Upset()
,
available_organisms()
,
overLapper()
,
show_heatmap()
,
show_table()
# load object utils::data( myGOs, package="ViSEAGO" ) # barplot for the count of GO terms ViSEAGO::GOcount( myGOs)
# load object utils::data( myGOs, package="ViSEAGO" ) # barplot for the count of GO terms ViSEAGO::GOcount( myGOs)
This method computes a clustering heatmap based on GO terms semantic similarity.
GOterms_heatmap( myGOs, showIC = TRUE, showGOlabels = TRUE, heatmap_colors = c("#ffffff", "#99000D"), GO.tree = list(tree = list(distance = "Wang", aggreg.method = "ward.D2", rotate = NULL), cut = list(dynamic = list(pamStage = TRUE, pamRespectsDendro = TRUE, deepSplit = 2, minClusterSize = 2))), samples.tree = NULL ) ## S4 method for signature 'GO_SS' GOterms_heatmap( myGOs, showIC = TRUE, showGOlabels = TRUE, heatmap_colors = c("#ffffff", "#99000D"), GO.tree = list(tree = list(distance = "Wang", aggreg.method = "ward.D2", rotate = NULL), cut = list(dynamic = list(pamStage = TRUE, pamRespectsDendro = TRUE, deepSplit = 2, minClusterSize = 2))), samples.tree = NULL )
GOterms_heatmap( myGOs, showIC = TRUE, showGOlabels = TRUE, heatmap_colors = c("#ffffff", "#99000D"), GO.tree = list(tree = list(distance = "Wang", aggreg.method = "ward.D2", rotate = NULL), cut = list(dynamic = list(pamStage = TRUE, pamRespectsDendro = TRUE, deepSplit = 2, minClusterSize = 2))), samples.tree = NULL ) ## S4 method for signature 'GO_SS' GOterms_heatmap( myGOs, showIC = TRUE, showGOlabels = TRUE, heatmap_colors = c("#ffffff", "#99000D"), GO.tree = list(tree = list(distance = "Wang", aggreg.method = "ward.D2", rotate = NULL), cut = list(dynamic = list(pamStage = TRUE, pamRespectsDendro = TRUE, deepSplit = 2, minClusterSize = 2))), samples.tree = NULL )
myGOs |
a |
showIC |
|
showGOlabels |
|
heatmap_colors |
pvalues color range with white to Sangria collors by default (c("#ffffff","#99000D")). |
GO.tree |
a named
|
samples.tree |
a named
|
This method computes a clustering heatmap based on GO terms semantic similarity (computed with compute_SS_distances
).
The dendrogram produced could be cutted in static or dynamic mode.
build dendrograms on GO terms and optionally on samples.
cut in static or dynamic mode and color the dendrogram branchs.
build an interactive clustering heatmap based on heatmaply
.
a GO_clusters-class
object.
Matt Dowle and Arun Srinivasan (2017). data.table: Extension of 'data.frame'. R package version 1.10.4. https://CRAN.R-project.org/package=data.table.
Tal Galili (2015). dendextend: an R package for visualizing, adjusting, and comparing trees of hierarchical clustering. Bioinformatics. DOI:10.1093/bioinformatics/btv428.
Tal Galili (2017). heatmaply: Interactive Cluster Heat Maps Using 'plotly'. R package version 0.9.1. https://CRAN.R-project.org/package=heatmaply.
Peter Langfelder, Bin Zhang and with contributions from Steve Horvath (2016). dynamicTreeCut: Methods for Detection of Clusters in Hierarchical Clustering Dendrograms. R package version 1.63-1. https://CRAN.R-project.org/package=dynamicTreeCut.
Erich Neuwirth (2014). RColorBrewer: ColorBrewer Palettes. R package version 1.1-2. https://CRAN.R-project.org/package=RColorBrewer.
Carson Sievert, Chris Parmer, Toby Hocking, Scott Chamberlain, Karthik Ram, Marianne Corvellec and Pedro Despouy (2017). plotly: Create Interactive Web Graphics via 'plotly.js'. R package version 4.6.0. https://CRAN.R-project.org/package=plotly.
Hadley Wickham (2016). scales: Scale Functions for Visualization. R package version 0.4.1. https://CRAN.R-project.org/package=scales.
H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2009.
Other GO_terms:
GOcount()
,
annotate()
,
create_topGOdata()
,
gene2GO-class
,
merge_enrich_terms()
,
runfgsea()
Other semantic_similiarity:
GOclusters_heatmap()
Other visualization:
GOclusters_heatmap()
,
GOcount()
,
Upset()
,
available_organisms()
,
overLapper()
,
show_heatmap()
,
show_table()
# load data example utils::data( myGOs, package="ViSEAGO" ) ## Not run: # compute GO terms Semantic Similarity distances myGOs<-ViSEAGO::compute_SS_distances( myGOs, distance="Wang" ) # GOtermsHeatmap with default parameters Wang_clusters_wardD2<-ViSEAGO::GOterms_heatmap( myGOs, showIC=TRUE, showGOlabels=TRUE, GO.tree=list( tree=list( distance="Wang", aggreg.method="ward.D2", rotate=NULL ), cut=list( dynamic=list( pamStage=TRUE, pamRespectsDendro=TRUE, deepSplit=2, minClusterSize =2 ) ) ), samples.tree=NULL ) ## End(Not run)
# load data example utils::data( myGOs, package="ViSEAGO" ) ## Not run: # compute GO terms Semantic Similarity distances myGOs<-ViSEAGO::compute_SS_distances( myGOs, distance="Wang" ) # GOtermsHeatmap with default parameters Wang_clusters_wardD2<-ViSEAGO::GOterms_heatmap( myGOs, showIC=TRUE, showGOlabels=TRUE, GO.tree=list( tree=list( distance="Wang", aggreg.method="ward.D2", rotate=NULL ), cut=list( dynamic=list( pamStage=TRUE, pamRespectsDendro=TRUE, deepSplit=2, minClusterSize =2 ) ) ), samples.tree=NULL ) ## End(Not run)
Generate a Multi Dimensional Scale (MDS) plot from distance objects.
MDSplot(object, type = "GOterms", file = NULL) ## S4 method for signature 'ANY' MDSplot(object, type = "GOterms", file = NULL)
MDSplot(object, type = "GOterms", file = NULL) ## S4 method for signature 'ANY' MDSplot(object, type = "GOterms", file = NULL)
object |
a |
type |
could be "GOterms" to display GOterms MDSplot, or "GOclusters" to display GOclusters MDSplot. |
file |
static image output file name (default to NULL). |
This method build and display the javascript MDSplot (if file
=NULL) from GO_SS-class
or GO_clusters-class
objects.
A static png image could be printed by setting file
argument.
a MDS plot.
# load data example utils::data( myGOs, package="ViSEAGO" ) ## Not run: # compute GO terms Semantic Similarity distances myGOs<-ViSEAGO::compute_SS_distances( myGOs, distance="Wang" ) # build MDS plot for a GO_SS-class distance object ViSEAGO::MDSplot(myGOs,"GOterms") # GOtermsHeatmap with default parameters Wang_clusters_wardD2<-ViSEAGO::GOterms_heatmap( myGOs, showIC=TRUE, showGOlabels=TRUE, GO.tree=list( tree=list( distance="Wang", aggreg.method="ward.D2", rotate=NULL ), cut=list( dynamic=list( pamStage=TRUE, pamRespectsDendro=TRUE, deepSplit=2, minClusterSize =2 ) ) ), samples.tree=NULL ) # build MDS plot for a GO_clusters-class distance object, highlighting GO terms clusters. ViSEAGO::MDSplot( Wang_clusters_wardD2, "GOterms" ) # compute clusters of GO terms Semantic Similarity distances Wang_clusters_wardD2<-ViSEAGO::compute_SS_distances( Wang_clusters_wardD2, distance="BMA" ) # GOclusters heatmap Wang_clusters_wardD2<-ViSEAGO::GOclusters_heatmap( Wang_clusters_wardD2, tree=list( distance="BMA", aggreg.method="ward.D2", rotate=NULL ) ) # build MDS plot for a GO_clusters-class distance object, highlighting GO groups clusters. ViSEAGO::MDSplot( Wang_clusters_wardD2, "GOclusters" ) ## End(Not run)
# load data example utils::data( myGOs, package="ViSEAGO" ) ## Not run: # compute GO terms Semantic Similarity distances myGOs<-ViSEAGO::compute_SS_distances( myGOs, distance="Wang" ) # build MDS plot for a GO_SS-class distance object ViSEAGO::MDSplot(myGOs,"GOterms") # GOtermsHeatmap with default parameters Wang_clusters_wardD2<-ViSEAGO::GOterms_heatmap( myGOs, showIC=TRUE, showGOlabels=TRUE, GO.tree=list( tree=list( distance="Wang", aggreg.method="ward.D2", rotate=NULL ), cut=list( dynamic=list( pamStage=TRUE, pamRespectsDendro=TRUE, deepSplit=2, minClusterSize =2 ) ) ), samples.tree=NULL ) # build MDS plot for a GO_clusters-class distance object, highlighting GO terms clusters. ViSEAGO::MDSplot( Wang_clusters_wardD2, "GOterms" ) # compute clusters of GO terms Semantic Similarity distances Wang_clusters_wardD2<-ViSEAGO::compute_SS_distances( Wang_clusters_wardD2, distance="BMA" ) # GOclusters heatmap Wang_clusters_wardD2<-ViSEAGO::GOclusters_heatmap( Wang_clusters_wardD2, tree=list( distance="BMA", aggreg.method="ward.D2", rotate=NULL ) ) # build MDS plot for a GO_clusters-class distance object, highlighting GO groups clusters. ViSEAGO::MDSplot( Wang_clusters_wardD2, "GOclusters" ) ## End(Not run)
combine results from GO enrichment tests (obtained with topGO package) or from fgsea (obtained with runfgsea
method),
for a given ontology (MF, BP, or CC).
merge_enrich_terms(Input, cutoff = 0.01, envir = .GlobalEnv) ## S4 method for signature 'list' merge_enrich_terms(Input, cutoff = 0.01, envir = .GlobalEnv)
merge_enrich_terms(Input, cutoff = 0.01, envir = .GlobalEnv) ## S4 method for signature 'list' merge_enrich_terms(Input, cutoff = 0.01, envir = .GlobalEnv)
Input |
a list containing named elements. Each element must contain the name of:
|
cutoff |
default pvalue cutoff (default to 0.01). Several cutoff can be use in the same order as list elements. |
envir |
objects environment (default to .GlobalEnv). |
This method extracts for each result of GO enrichment test: informations about GO term (identifiant, name, and description), gene frequency (number of significant genes / Annotated genes), pvalue, -log10(pvalue), significant genes identifiants (GeneID, or Ensembl ID, or uniprot accession), and gene symbols. At the last, this method builds a merged data.table of enriched GO terms at least once and provides all mentionned columns.
an enrich_GO_terms-class
object.
Matt Dowle and Arun Srinivasan (2017). data.table: Extension of data.frame. R package version 1.10.4. https://CRAN.R-project.org/package=data.table
Herve Pages, Marc Carlson, Seth Falcon and Nianhua Li (2017). AnnotationDbi: Annotation Database Interface. R package version 1.38.0.
Other GO_terms:
GOcount()
,
GOterms_heatmap()
,
annotate()
,
create_topGOdata()
,
gene2GO-class
,
runfgsea()
## topGO terms enrichment # load genes identifiants (GeneID,ENS...) universe/background (Expressed genes) background_L<-scan( system.file( "extdata/data/input", "background_L.txt", package = "ViSEAGO" ), quiet=TRUE, what="" ) # load Differentialy Expressed (DE) gene identifiants from files PregnantvslactateDE<-scan( system.file( "extdata/data/input", "pregnantvslactateDE.txt", package = "ViSEAGO" ), quiet=TRUE, what="" ) VirginvslactateDE<-scan( system.file( "extdata/data/input", "virginvslactateDE.txt", package = "ViSEAGO" ), quiet=TRUE, what="" ) VirginvspregnantDE<-scan( system.file( "extdata/data/input", "virginvspregnantDE.txt", package="ViSEAGO" ), quiet=TRUE, what="" ) ## Not run: # connect to Bioconductor Bioconductor<-ViSEAGO::Bioconductor2GO() # load GO annotations from Bioconductor myGENE2GO<-ViSEAGO::annotate( "org.Mm.eg.db", Bioconductor ) # create topGOdata for BP for each list of DE genes BP_Pregnantvslactate<-ViSEAGO::create_topGOdata( geneSel=PregnantvslactateDE, allGenes=background_L, gene2GO=myGENE2GO, ont="BP", nodeSize=5 ) BP_Virginvslactate<-ViSEAGO::create_topGOdata( geneSel=VirginvslactateDE, allGenes=background_L, gene2GO=myGENE2GO, ont="BP", nodeSize=5 ) BP_Virginvspregnant<-ViSEAGO::create_topGOdata( geneSel=VirginvspregnantDE, allGenes=background_L, gene2GO=myGENE2GO, ont="BP", nodeSize=5 ) # perform TopGO tests elim_BP_Pregnantvslactate<-topGO::runTest( BP_L_pregnantvslactate, algorithm ="elim", statistic = "fisher" ) elim_BP_Virginvslactate<-topGO::runTest( BP_L_virginvslactate, algorithm ="elim", statistic = "fisher" ) elim_BP_Virginvspregnant<-topGO::runTest( BP_L_virginvspregnant, algorithm ="elim", statistic = "fisher" ) # merge topGO results BP_sResults<-ViSEAGO::merge_enrich_terms( Input=list( Pregnantvslactate=c("BP_Pregnantvslactate","elim_BP_Pregnantvslactate"), Virginvslactate=c("BP_Virginvslactate","elim_BP_Virginvslactate"), Virginvspregnant=c("BP_Virginvspregnant","elim_BP_Virginvspregnant") ) ) ## End(Not run) ## fgsea analysis # load gene identifiants and padj test results from Differential Analysis complete tables PregnantvsLactate<-data.table::fread( system.file( "extdata/data/input", "pregnantvslactate.complete.txt", package = "ViSEAGO" ), select = c("Id","padj") ) VirginvsLactate<-data.table::fread( system.file( "extdata/data/input", "virginvslactate.complete.txt", package = "ViSEAGO" ), select = c("Id","padj") ) VirginvsPregnant<-data.table::fread( system.file( "extdata/data/input", "virginvspregnant.complete.txt", package = "ViSEAGO" ), select = c("Id","padj") ) # rank Id based on statistical value (padj) PregnantvsLactate<-data.table::setorder(PregnantvsLactate,padj) VirginvsLactate<-data.table::setorder(VirginvsLactate,padj) VirginvsPregnant<-data.table::setorder(VirginvsPregnant,padj) ## Not run: # connect to Bioconductor Bioconductor<-ViSEAGO::Bioconductor2GO() # load GO annotations from Bioconductor myGENE2GO<-ViSEAGO::annotate( "org.Mm.eg.db", Bioconductor ) # perform fgseaMultilevel tests BP_PregnantvsLactate<-runfgsea( geneSel=PregnantvsLactate, gene2GO=myGENE2GO, ont="BP", params = list( scoreType = "pos", minSize=5 ) ) BP_VirginvsLactate<-runfgsea( geneSel=VirginvsLactate, gene2GO=myGENE2GO, ont="BP", params = list( scoreType = "pos", minSize=5 ) ) BP_VirginvsPregnant<-runfgsea( geneSel=VirginvsPregnant, gene2GO=myGENE2GO, ont="BP", params = list( scoreType = "pos", minSize=5 ) ) # merge fgsea results BP_sResults<-merge_enrich_terms( cutoff=0.01, Input=list( PregnantvsLactate="BP_PregnantvsLactate", VirginvsLactate="BP_VirginvsLactate", VirginvsPregnant="BP_VirginvsPregnant" ) ) ## End(Not run)
## topGO terms enrichment # load genes identifiants (GeneID,ENS...) universe/background (Expressed genes) background_L<-scan( system.file( "extdata/data/input", "background_L.txt", package = "ViSEAGO" ), quiet=TRUE, what="" ) # load Differentialy Expressed (DE) gene identifiants from files PregnantvslactateDE<-scan( system.file( "extdata/data/input", "pregnantvslactateDE.txt", package = "ViSEAGO" ), quiet=TRUE, what="" ) VirginvslactateDE<-scan( system.file( "extdata/data/input", "virginvslactateDE.txt", package = "ViSEAGO" ), quiet=TRUE, what="" ) VirginvspregnantDE<-scan( system.file( "extdata/data/input", "virginvspregnantDE.txt", package="ViSEAGO" ), quiet=TRUE, what="" ) ## Not run: # connect to Bioconductor Bioconductor<-ViSEAGO::Bioconductor2GO() # load GO annotations from Bioconductor myGENE2GO<-ViSEAGO::annotate( "org.Mm.eg.db", Bioconductor ) # create topGOdata for BP for each list of DE genes BP_Pregnantvslactate<-ViSEAGO::create_topGOdata( geneSel=PregnantvslactateDE, allGenes=background_L, gene2GO=myGENE2GO, ont="BP", nodeSize=5 ) BP_Virginvslactate<-ViSEAGO::create_topGOdata( geneSel=VirginvslactateDE, allGenes=background_L, gene2GO=myGENE2GO, ont="BP", nodeSize=5 ) BP_Virginvspregnant<-ViSEAGO::create_topGOdata( geneSel=VirginvspregnantDE, allGenes=background_L, gene2GO=myGENE2GO, ont="BP", nodeSize=5 ) # perform TopGO tests elim_BP_Pregnantvslactate<-topGO::runTest( BP_L_pregnantvslactate, algorithm ="elim", statistic = "fisher" ) elim_BP_Virginvslactate<-topGO::runTest( BP_L_virginvslactate, algorithm ="elim", statistic = "fisher" ) elim_BP_Virginvspregnant<-topGO::runTest( BP_L_virginvspregnant, algorithm ="elim", statistic = "fisher" ) # merge topGO results BP_sResults<-ViSEAGO::merge_enrich_terms( Input=list( Pregnantvslactate=c("BP_Pregnantvslactate","elim_BP_Pregnantvslactate"), Virginvslactate=c("BP_Virginvslactate","elim_BP_Virginvslactate"), Virginvspregnant=c("BP_Virginvspregnant","elim_BP_Virginvspregnant") ) ) ## End(Not run) ## fgsea analysis # load gene identifiants and padj test results from Differential Analysis complete tables PregnantvsLactate<-data.table::fread( system.file( "extdata/data/input", "pregnantvslactate.complete.txt", package = "ViSEAGO" ), select = c("Id","padj") ) VirginvsLactate<-data.table::fread( system.file( "extdata/data/input", "virginvslactate.complete.txt", package = "ViSEAGO" ), select = c("Id","padj") ) VirginvsPregnant<-data.table::fread( system.file( "extdata/data/input", "virginvspregnant.complete.txt", package = "ViSEAGO" ), select = c("Id","padj") ) # rank Id based on statistical value (padj) PregnantvsLactate<-data.table::setorder(PregnantvsLactate,padj) VirginvsLactate<-data.table::setorder(VirginvsLactate,padj) VirginvsPregnant<-data.table::setorder(VirginvsPregnant,padj) ## Not run: # connect to Bioconductor Bioconductor<-ViSEAGO::Bioconductor2GO() # load GO annotations from Bioconductor myGENE2GO<-ViSEAGO::annotate( "org.Mm.eg.db", Bioconductor ) # perform fgseaMultilevel tests BP_PregnantvsLactate<-runfgsea( geneSel=PregnantvsLactate, gene2GO=myGENE2GO, ont="BP", params = list( scoreType = "pos", minSize=5 ) ) BP_VirginvsLactate<-runfgsea( geneSel=VirginvsLactate, gene2GO=myGENE2GO, ont="BP", params = list( scoreType = "pos", minSize=5 ) ) BP_VirginvsPregnant<-runfgsea( geneSel=VirginvsPregnant, gene2GO=myGENE2GO, ont="BP", params = list( scoreType = "pos", minSize=5 ) ) # merge fgsea results BP_sResults<-merge_enrich_terms( cutoff=0.01, Input=list( PregnantvsLactate="BP_PregnantvsLactate", VirginvsLactate="BP_VirginvsLactate", VirginvsPregnant="BP_VirginvsPregnant" ) ) ## End(Not run)
an example of object returned by build_GO_SS
method
from mouse functional analysis of mouse mammary gland RNA-Seq (2_mouse_bioconductor vignette)
data(myGOs,package="ViSEAGO")
data(myGOs,package="ViSEAGO")
An object of class GO_SS-class
.
This method perform fast gene set enrichment analysis (GSEA) using fgsea package.
runfgsea( geneSel, gene2GO, ont, method = c("fgseaSimple", "fgseaMultilevel"), params = list(nperm = 10000, sampleSize = 101, minSize = 1, maxSize = Inf, eps = 0, scoreType = c("std", "pos", "neg"), nproc = 0, gseaParam = 1, BPPARAM = NULL, absEps = NULL) ) ## S4 method for signature 'ANY,gene2GO,character' runfgsea( geneSel, gene2GO, ont, method = c("fgseaSimple", "fgseaMultilevel"), params = list(nperm = 10000, sampleSize = 101, minSize = 1, maxSize = Inf, eps = 0, scoreType = c("std", "pos", "neg"), nproc = 0, gseaParam = 1, BPPARAM = NULL, absEps = NULL) )
runfgsea( geneSel, gene2GO, ont, method = c("fgseaSimple", "fgseaMultilevel"), params = list(nperm = 10000, sampleSize = 101, minSize = 1, maxSize = Inf, eps = 0, scoreType = c("std", "pos", "neg"), nproc = 0, gseaParam = 1, BPPARAM = NULL, absEps = NULL) ) ## S4 method for signature 'ANY,gene2GO,character' runfgsea( geneSel, gene2GO, ont, method = c("fgseaSimple", "fgseaMultilevel"), params = list(nperm = 10000, sampleSize = 101, minSize = 1, maxSize = Inf, eps = 0, scoreType = c("std", "pos", "neg"), nproc = 0, gseaParam = 1, BPPARAM = NULL, absEps = NULL) )
geneSel |
a 2 columns |
gene2GO |
a |
ont |
the ontology used is "MF" (Molecuar Function), "BP" (Biological Process), or "CC" (Cellular Component). |
method |
fgsea method to use with |
params |
a |
This method is a convenient wrapper using a given ontology category (ont
argument)
in order to perform gene set enrichment analysis using fgseaSimple
or
fgseaMultilevel
algorithm from fgsea package.
The complete GO annotation is required (gene2GO
argument), and also a 2 columns data.table
with preranked
gene identifiants (in first column) based on statistical values (second column).
Defaults fgseaSimple parameters were used for perform test with nperm
set to 10,000.
Defaults fgseaMultilevel parameters were used for perform test
except the eps
arg that was set to 0 for better pvalues estimation.
A gene frequency (%) of leadingEdge/size is added to output data.table
.
a fgsea-class
object.
Korotkevich G, Sukhov V, Sergushichev A (2019). "Fast gene set enrichment analysis." bioRxiv. doi: 10.1101/060012, http://biorxiv.org/content/early/2016/06/20/060012.
Other GO_terms:
GOcount()
,
GOterms_heatmap()
,
annotate()
,
create_topGOdata()
,
gene2GO-class
,
merge_enrich_terms()
# gene list PregnantvsLactate<-data.table::fread( system.file( "extdata/data/input", "pregnantvslactate.complete.txt", package = "ViSEAGO" ), select = c("Id","padj") ) # rank Id based on statistical value (padj here) PregnantvsLactate<-data.table::setorder(PregnantvsLactate,padj) ## Not run: # connect to Bioconductor Bioconductor<-ViSEAGO::Bioconductor2GO() myGENE2GO<-ViSEAGO::annotate( "org.Mm.eg.db", Bioconductor ) # run fgseaMultilevel pregnantvslactate<-ViSEAGO::runfgsea( geneSel=PregnantvsLactate, gene2GO=myGENE2GO, ont="BP", method="fgseaMultilevel", params=list( minSize=5, scoreType="pos" ) ) ## End(Not run)
# gene list PregnantvsLactate<-data.table::fread( system.file( "extdata/data/input", "pregnantvslactate.complete.txt", package = "ViSEAGO" ), select = c("Id","padj") ) # rank Id based on statistical value (padj here) PregnantvsLactate<-data.table::setorder(PregnantvsLactate,padj) ## Not run: # connect to Bioconductor Bioconductor<-ViSEAGO::Bioconductor2GO() myGENE2GO<-ViSEAGO::annotate( "org.Mm.eg.db", Bioconductor ) # run fgseaMultilevel pregnantvslactate<-ViSEAGO::runfgsea( geneSel=PregnantvsLactate, gene2GO=myGENE2GO, ont="BP", method="fgseaMultilevel", params=list( minSize=5, scoreType="pos" ) ) ## End(Not run)
Display a heatmap in interactive or static mode.
show_heatmap(object, type, file = NULL, plotly_update = FALSE) ## S4 method for signature 'GO_clusters,character' show_heatmap(object, type, file = NULL, plotly_update = FALSE)
show_heatmap(object, type, file = NULL, plotly_update = FALSE) ## S4 method for signature 'GO_clusters,character' show_heatmap(object, type, file = NULL, plotly_update = FALSE)
object |
a |
type |
could be "GOterms" to display GOterms clustering heatmap, or "GOclusters" to display GOclusters heatmap. |
file |
static image output file name (default to NULL). |
plotly_update |
update plotly html dependencies (default to FALSE). |
This method displays an interactive heatmap (if file
=NULL) from GO_clusters-class
object for "GOterms" or "GOclusters" type.
A static png image could be printed by setting file
argument.
Interactive heatmap cannot be displayed between two R versions.
Then interactive view (build with previous R version) can be updated to new R version using plotly_update
argument setting to TRUE.
display or print heatmap.
Other enrich_GO_terms:
Upset()
,
enrich_GO_terms-class
,
overLapper()
,
show_table()
Other GO_clusters:
GO_clusters-class
,
GOclusters_heatmap()
,
clusters_cor()
,
compare_clusters()
,
show_table()
Other visualization:
GOclusters_heatmap()
,
GOcount()
,
GOterms_heatmap()
,
Upset()
,
available_organisms()
,
overLapper()
,
show_table()
# load data example data( myGOs, package="ViSEAGO" ) ## Not run: # compute GO terms Semantic Similarity distances myGOs<-ViSEAGO::compute_SS_distances( myGOs, distance="Wang" ) # build MDS plot for a GO_SS-class distance object ViSEAGO::MDSplot(myGOs) # GOtermsHeatmap with default parameters Wang_clusters_wardD2<-ViSEAGO::GOterms_heatmap( myGOs, showIC=TRUE, showGOlabels=TRUE, GO.tree=list( tree=list( distance="Wang", aggreg.method="ward.D2", rotate=NULL ), cut=list( dynamic=list( pamStage=TRUE, pamRespectsDendro=TRUE, deepSplit=2, minClusterSize =2 ) ) ), samples.tree=NULL ) # Display GO terms heatmap ViSEAGO::show_heatmap( Wang_clusters_wardD2, "GOterms" ) # Print GO terms heatmap ViSEAGO::show_heatmap( Wang_clusters_wardD2, "GOterms", "GOterms_heatmap.png" ) # compute clusters of GO terms Semantic Similarity distances Wang_clusters_wardD2<-ViSEAGO::compute_SS_distances( Wang_clusters_wardD2, distance="BMA" ) # GOclusters heatmap Wang_clusters_wardD2<-ViSEAGO::GOclusters_heatmap( Wang_clusters_wardD2, tree=list( distance="BMA", aggreg.method="ward.D2", rotate=NULL ) ) # Display GO clusters heatmap ViSEAGO::show_heatmap( Wang_clusters_wardD2, "GOclusters" ) # Print GO clusters heatmap ViSEAGO::show_heatmap( Wang_clusters_wardD2, "GOclusters", "GOclusters_heatmap.png" ) ## End(Not run)
# load data example data( myGOs, package="ViSEAGO" ) ## Not run: # compute GO terms Semantic Similarity distances myGOs<-ViSEAGO::compute_SS_distances( myGOs, distance="Wang" ) # build MDS plot for a GO_SS-class distance object ViSEAGO::MDSplot(myGOs) # GOtermsHeatmap with default parameters Wang_clusters_wardD2<-ViSEAGO::GOterms_heatmap( myGOs, showIC=TRUE, showGOlabels=TRUE, GO.tree=list( tree=list( distance="Wang", aggreg.method="ward.D2", rotate=NULL ), cut=list( dynamic=list( pamStage=TRUE, pamRespectsDendro=TRUE, deepSplit=2, minClusterSize =2 ) ) ), samples.tree=NULL ) # Display GO terms heatmap ViSEAGO::show_heatmap( Wang_clusters_wardD2, "GOterms" ) # Print GO terms heatmap ViSEAGO::show_heatmap( Wang_clusters_wardD2, "GOterms", "GOterms_heatmap.png" ) # compute clusters of GO terms Semantic Similarity distances Wang_clusters_wardD2<-ViSEAGO::compute_SS_distances( Wang_clusters_wardD2, distance="BMA" ) # GOclusters heatmap Wang_clusters_wardD2<-ViSEAGO::GOclusters_heatmap( Wang_clusters_wardD2, tree=list( distance="BMA", aggreg.method="ward.D2", rotate=NULL ) ) # Display GO clusters heatmap ViSEAGO::show_heatmap( Wang_clusters_wardD2, "GOclusters" ) # Print GO clusters heatmap ViSEAGO::show_heatmap( Wang_clusters_wardD2, "GOclusters", "GOclusters_heatmap.png" ) ## End(Not run)
This method is used to display or print the table for enrich_GO_terms-class
or GO_clusters-class
objects.
show_table(object, file = NULL) ## S4 method for signature 'ANY' show_table(object, file = NULL)
show_table(object, file = NULL) ## S4 method for signature 'ANY' show_table(object, file = NULL)
object |
an |
file |
table output file name (default to NULL). |
This method displays an interactive table (if file=NULL) from enrich_GO_terms-class
or GO_clusters-class
objects.
The table could be printed by setting file argument.
display or print table
Yihui Xie (2016). DT: A Wrapper of the JavaScript Library 'DataTables'. R package version 0.2. https://CRAN.R-project.org/package=DT
Other enrich_GO_terms:
Upset()
,
enrich_GO_terms-class
,
overLapper()
,
show_heatmap()
Other GO_clusters:
GO_clusters-class
,
GOclusters_heatmap()
,
clusters_cor()
,
compare_clusters()
,
show_heatmap()
Other visualization:
GOclusters_heatmap()
,
GOcount()
,
GOterms_heatmap()
,
Upset()
,
available_organisms()
,
overLapper()
,
show_heatmap()
# load example object data( myGOs, package="ViSEAGO" ) # display merge_enrich_terms output ViSEAGO::show_table(myGOs) # print merge_enrich_terms output ViSEAGO::show_table( myGOs, "myGOs.txt" ) ## Not run: # compute GO terms Semantic Similarity distances myGOs<-ViSEAGO::compute_SS_distances( distance="Wang" ) # GOtermsHeatmap with default parameters Wang_clusters_wardD2<-ViSEAGO::GOterms_heatmap( myGOs, showIC=TRUE, showGOlabels=TRUE, GO.tree=list( tree=list( distance="Wang", aggreg.method="ward.D2", rotate=NULL ), cut=list( dynamic=list( pamStage=TRUE, pamRespectsDendro=TRUE, deepSplit=2, minClusterSize =2 ) ) ), samples.tree=NULL ) # display table of GO_clusters-class object ViSEAGO::show_table(Wang_clusters_wardD2) # print table of GO_clusters-class object ViSEAGO::show_table( Wang_clusters_wardD2, "Wang_clusters_wardD2.txt" ) ## End(Not run)
# load example object data( myGOs, package="ViSEAGO" ) # display merge_enrich_terms output ViSEAGO::show_table(myGOs) # print merge_enrich_terms output ViSEAGO::show_table( myGOs, "myGOs.txt" ) ## Not run: # compute GO terms Semantic Similarity distances myGOs<-ViSEAGO::compute_SS_distances( distance="Wang" ) # GOtermsHeatmap with default parameters Wang_clusters_wardD2<-ViSEAGO::GOterms_heatmap( myGOs, showIC=TRUE, showGOlabels=TRUE, GO.tree=list( tree=list( distance="Wang", aggreg.method="ward.D2", rotate=NULL ), cut=list( dynamic=list( pamStage=TRUE, pamRespectsDendro=TRUE, deepSplit=2, minClusterSize =2 ) ) ), samples.tree=NULL ) # display table of GO_clusters-class object ViSEAGO::show_table(Wang_clusters_wardD2) # print table of GO_clusters-class object ViSEAGO::show_table( Wang_clusters_wardD2, "Wang_clusters_wardD2.txt" ) ## End(Not run)
Check the Uniprot-GOA available organisms.
Uniprot2GO()
Uniprot2GO()
This function downloads the current_release_numbers file (ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/current_release_numbers.txt) from Uniprot-GOA which contains available organisms.
a genomic_ressource-class
object required by annotate
.
Matt Dowle and Arun Srinivasan (2017). data.table: Extension of 'data.frame'. R package version 1.10.4. https://CRAN.R-project.org/package=data.table.
Huntley, RP, Sawford, T, Mutowo-Meullenet, P, Shypitsyna, A, Bonilla, C, Martin, MJ, O'Donovan, C (2015). The GOA database: gene Ontology annotation updates for 2015. Nucleic Acids Res., 43, Database issue:D1057-63.
Other genomic_ressource:
Bioconductor2GO()
,
Custom2GO()
,
Ensembl2GO()
,
EntrezGene2GO()
,
annotate()
,
available_organisms()
,
genomic_ressource-class
,
taxonomy()
## Not run: # List Uniprot-GOA available organisms Uniprot<-ViSEAGO::Uniprot2GO() ## End(Not run)
## Not run: # List Uniprot-GOA available organisms Uniprot<-ViSEAGO::Uniprot2GO() ## End(Not run)
This method allows to visualize GO terms intersections between results of enrichment tests.
Upset(object, file = "./upset.xls") ## S4 method for signature 'ANY' Upset(object, file = "./upset.xls")
Upset(object, file = "./upset.xls") ## S4 method for signature 'ANY' Upset(object, file = "./upset.xls")
object |
an |
file |
output file name (default to "./upset.xls") |
This function displays and print the intersections of enriched GO terms (p<0.01) between all results provided by enrich_GO_terms-class
or GO_clusters-class
objects. The intersections are shown in an upset plot and printed in a table.
print table and upset.
Other enrich_GO_terms:
enrich_GO_terms-class
,
overLapper()
,
show_heatmap()
,
show_table()
Other visualization:
GOclusters_heatmap()
,
GOcount()
,
GOterms_heatmap()
,
available_organisms()
,
overLapper()
,
show_heatmap()
,
show_table()
# load example object data( myGOs, package="ViSEAGO" ) # print upset ViSEAGO::Upset(myGOs)
# load example object data( myGOs, package="ViSEAGO" ) # print upset ViSEAGO::Upset(myGOs)
Easier data mining of biological functions organized into clusters using Gene Ontology and semantic.
The main objective of ViSEAGO workflow is to carry out a data mining of biological functions and establish links between genes involved in the study. We developed ViSEAGO in R to facilitate functional Gene Ontology (GO) analysis of complex experimental design with multiple comparisons of interest.
It allows to study large-scale datasets together and visualize GO profiles to capture biological knowledge.
The acronym stands for three major concepts of the analysis: Visualization, Semantic similarity and Enrichment Analysis of Gene Ontology
(pkgdiagram
).
It provides access to the last current GO annotations (annotate
), which are retrieved from one of
NCBI EntrezGene (Bioconductor2GO
, EntrezGene2GO
),
Ensembl (Ensembl2GO
) or Uniprot (Uniprot2GO
) databases
for available species (available_organisms
).
ViSEAGO extends classical functional GO analysis (create_topGOdata
) to focus on functional coherence
by aggregating closely related biological themes while studying multiple datasets at once (merge_enrich_terms
).
It provides both a synthetic and detailed view using interactive functionalities respecting the GO graph structure
(MDSplot
, GOterms_heatmap
, GOclusters_heatmap
), and ensuring functional
coherence supplied by semantic similarity (build_GO_SS
, compute_SS_distances
).
ViSEAGO has been successfully applied on several datasets from different species with a variety of biological questions. Results can be easily shared between bioinformaticians and biologists, enhancing reporting capabilities while maintaining reproducibility.
Useful links:
https://www.bioconductor.org/packages/release/bioc/html/ViSEAGO.html
Report bugs at https://forgemia.inra.fr/UMR-BOA/ViSEAGO/issues