This vignette outlines a work flow for annotating and filtering genetic variants using the VariantAnnotation package. Sample data are in VariantCall Format (VCF) and are a subset of chromosome 22 from 1000 Genomes. VCF text files contain meta-information lines, a header line with column names, data lines with information about a position in the genome, and optional genotype information on samples for each position. Samtools organisation and repositories describes the VCF format in detail.
Data are read in from a VCF file and variants identified according to
region such as coding
, intron
,
intergenic
, spliceSite
etc. Amino acid coding
changes are computed for the non-synonymous variants and SIFT and
PolyPhen databases provide predictions of how severly the coding changes
affect protein function.
Data are parsed into a VCF
object with
readVcf
.
library(VariantAnnotation)
fl <- system.file("extdata", "chr22.vcf.gz", package="VariantAnnotation")
vcf <- readVcf(fl, "hg19")
vcf
## class: CollapsedVCF
## dim: 10376 5
## rowRanges(vcf):
## GRanges with 5 metadata columns: paramRangeID, REF, ALT, QUAL, FILTER
## info(vcf):
## DataFrame with 22 columns: LDAF, AVGPOST, RSQ, ERATE, THETA, CIEND, CIPOS,...
## info(header(vcf)):
## Number Type Description
## LDAF 1 Float MLE Allele Frequency Accounting for LD
## AVGPOST 1 Float Average posterior probability from MaCH/Thunder
## RSQ 1 Float Genotype imputation quality from MaCH/Thunder
## ERATE 1 Float Per-marker Mutation rate from MaCH/Thunder
## THETA 1 Float Per-marker Transition rate from MaCH/Thunder
## CIEND 2 Integer Confidence interval around END for imprecise var...
## CIPOS 2 Integer Confidence interval around POS for imprecise var...
## END 1 Integer End position of the variant described in this re...
## HOMLEN . Integer Length of base pair identical micro-homology at ...
## HOMSEQ . String Sequence of base pair identical micro-homology a...
## SVLEN 1 Integer Difference in length between REF and ALT alleles
## SVTYPE 1 String Type of structural variant
## AC . Integer Alternate Allele Count
## AN 1 Integer Total Allele Count
## AA 1 String Ancestral Allele, ftp://ftp.1000genomes.ebi.ac.u...
## AF 1 Float Global Allele Frequency based on AC/AN
## AMR_AF 1 Float Allele Frequency for samples from AMR based on A...
## ASN_AF 1 Float Allele Frequency for samples from ASN based on A...
## AFR_AF 1 Float Allele Frequency for samples from AFR based on A...
## EUR_AF 1 Float Allele Frequency for samples from EUR based on A...
## VT 1 String indicates what type of variant the line represents
## SNPSOURCE . String indicates if a snp was called when analysing the...
## geno(vcf):
## List of length 3: GT, DS, GL
## geno(header(vcf)):
## Number Type Description
## GT 1 String Genotype
## DS 1 Float Genotype dosage from MaCH/Thunder
## GL G Float Genotype Likelihoods
Header information can be extracted from the VCF with
header()
. We see there are 5 samples, 1 piece of meta
information, 22 info fields and 3 geno fields.
## class: VCFHeader
## samples(5): HG00096 HG00097 HG00099 HG00100 HG00101
## meta(1): fileformat
## fixed(2): FILTER ALT
## info(22): LDAF AVGPOST ... VT SNPSOURCE
## geno(3): GT DS GL
Data can be further extracted using the named accessors.
## [1] "HG00096" "HG00097" "HG00099" "HG00100" "HG00101"
## DataFrame with 3 rows and 3 columns
## Number Type Description
## <character> <character> <character>
## GT 1 String Genotype
## DS 1 Float Genotype dosage from..
## GL G Float Genotype Likelihoods
rowRanges
contains information from the CHROM, POS, and
ID fields of the VCF file, represented as a GRanges
. The
paramRangeID
column is meaningful when reading subsets of
data and is discussed further below.
## GRanges object with 3 ranges and 5 metadata columns:
## seqnames ranges strand | paramRangeID REF
## <Rle> <IRanges> <Rle> | <factor> <DNAStringSet>
## rs7410291 22 50300078 * | NA A
## rs147922003 22 50300086 * | NA C
## rs114143073 22 50300101 * | NA G
## ALT QUAL FILTER
## <DNAStringSetList> <numeric> <character>
## rs7410291 G 100 PASS
## rs147922003 T 100 PASS
## rs114143073 A 100 PASS
## -------
## seqinfo: 1 sequence from hg19 genome; no seqlengths
Individual fields can be pulled out with named accessors. Here we see
REF
is stored as a DNAStringSet
and
qual
is a numeric vector.
## DNAStringSet object of length 5:
## width seq
## [1] 1 A
## [2] 1 C
## [3] 1 G
## [4] 1 C
## [5] 1 C
## [1] 100 100 100 100 100
ALT
is a DNAStringSetList
(allows for
multiple alternate alleles per variant) or a DNAStringSet
.
When structural variants are present it will be a
CharacterList
.
## DNAStringSetList of length 5
## [[1]] G
## [[2]] T
## [[3]] A
## [[4]] T
## [[5]] T
Genotype data described in the FORMAT
fields are parsed
into the geno slot. The data are unique to each sample and each sample
may have multiple values variable. Because of this, the data are parsed
into matrices or arrays where the rows represent the variants and the
columns the samples. Multidimentional arrays indicate multiple values
per sample. In this file all variables are matrices.
## List of length 3
## names(3): GT DS GL
## GT DS GL
## [1,] "matrix" "matrix" "matrix"
## [2,] "array" "array" "array"
Let’s take a closer look at the genotype dosage (DS) variable. The header provides the variable definition and type.
## DataFrame with 1 row and 3 columns
## Number Type Description
## <character> <character> <character>
## DS 1 Float Genotype dosage from..
These data are stored as a 10376 x 5 matrix. Each of the five samples (columns) has a single value per variant location (row).
## [1] 10376 5
## HG00096 HG00097 HG00099 HG00100 HG00101
## rs7410291 0 0 1 0 0
## rs147922003 0 0 0 0 0
## rs114143073 0 0 0 0 0
DS is also known as ‘posterior mean genotypes’ and range in value from [0, 2]. To get a sense of variable distribution, we compute a five number summary of the minimum, lower-hinge (first quartile), median, upper-hinge (third quartile) and maximum.
## [1] 0 0 0 0 2
The majority of these values (86%) are zero.
## [1] 0.8621627
View the distribution of the non-zero values.
In contrast to the genotype data, the info data are unique to the
variant and the same across samples. All info variables are represented
in a single DataFrame
.
## DataFrame with 4 rows and 5 columns
## LDAF AVGPOST RSQ ERATE THETA
## <numeric> <numeric> <numeric> <numeric> <numeric>
## rs7410291 0.3431 0.9890 0.9856 2e-03 0.0005
## rs147922003 0.0091 0.9963 0.8398 5e-04 0.0011
## rs114143073 0.0098 0.9891 0.5919 7e-04 0.0008
## rs141778433 0.0062 0.9950 0.6756 9e-04 0.0003
We will use the info data to compare quality measures between novel (i.e., not in dbSNP) and known (i.e., in dbSNP) variants and the variant type present in the file. Variants with membership in dbSNP can be identified by using the appropriate SNPlocs package for the hg19 genome (GRCh37).
library(SNPlocs.Hsapiens.dbSNP144.GRCh37)
vcf_rsids <- names(rowRanges(vcf))
chr22snps <- snpsBySeqname(SNPlocs.Hsapiens.dbSNP144.GRCh37, "22")
chr22_rsids <- mcols(chr22snps)$RefSNP_id
in_dbSNP <- vcf_rsids %in% chr22_rsids
table(in_dbSNP)
## in_dbSNP
## FALSE TRUE
## 1114 9262
Info variables of interest are ‘VT’, ‘LDAF’ and ‘RSQ’. The header offers more details on these variables.
## DataFrame with 3 rows and 3 columns
## Number Type Description
## <character> <character> <character>
## VT 1 String indicates what type ..
## LDAF 1 Float MLE Allele Frequency..
## RSQ 1 Float Genotype imputation ..
Create a data frame of quality measures of interest …
metrics <- data.frame(QUAL=qual(vcf), in_dbSNP=in_dbSNP,
VT=info(vcf)$VT, LDAF=info(vcf)$LDAF, RSQ=info(vcf)$RSQ)
and visualize the distribution of qualities using ggplot2. For instance, genotype imputation quality is higher for the known variants in dbSNP.
When working with large VCF files it may be more efficient to read in subsets of the data. This can be accomplished by selecting genomic coordinates (ranges) or by specific fields from the VCF file.
To read in a portion of chromosome 22, create a GRanges
with the regions of interest.
rng <- GRanges(seqnames="22", ranges=IRanges(
start=c(50301422, 50989541),
end=c(50312106, 51001328),
names=c("gene_79087", "gene_644186")))
When ranges are specified, the VCF file must have an accompanying
Tabix index file. See indexTabix
for help creating an
index.
The paramRangesID
column distinguishes which records
came from which param range.
## GRanges object with 3 ranges and 5 metadata columns:
## seqnames ranges strand | paramRangeID REF
## <Rle> <IRanges> <Rle> | <factor> <DNAStringSet>
## rs114335781 22 50301422 * | gene_79087 G
## rs8135963 22 50301476 * | gene_79087 T
## 22:50301488_C/T 22 50301488 * | gene_79087 C
## ALT QUAL FILTER
## <DNAStringSetList> <numeric> <character>
## rs114335781 A 100 PASS
## rs8135963 C 100 PASS
## 22:50301488_C/T T 100 PASS
## -------
## seqinfo: 1 sequence from hg19 genome; no seqlengths
Data import can also be defined by the fixed
,
info
and geno
fields. Fields available for
import are described in the header information. To view the header
before reading in the data, use ScanVcfHeader
.
## DataFrame with 3 rows and 3 columns
## Number Type Description
## <character> <character> <character>
## LDAF 1 Float MLE Allele Frequency..
## AVGPOST 1 Float Average posterior pr..
## RSQ 1 Float Genotype imputation ..
## DataFrame with 3 rows and 3 columns
## Number Type Description
## <character> <character> <character>
## GT 1 String Genotype
## DS 1 Float Genotype dosage from..
## GL G Float Genotype Likelihoods
To subset on “LDAF” and “GT” we specify them as
character
vectors in the info
and
geno
arguments to ScanVcfParam
. This creates a
ScanVcfParam
object which is used as the param
argument to readVcf
.
## Return all 'fixed' fields, "LAF" from 'info' and "GT" from 'geno'
svp <- ScanVcfParam(info="LDAF", geno="GT")
vcf1 <- readVcf(fl, "hg19", svp)
names(geno(vcf1))
## [1] "GT"
To subset on both genomic coordinates and fields the
ScanVcfParam
object must contain both.
## class: ScanVcfParam
## vcfWhich: 1 elements
## vcfFixed: character() [All]
## vcfInfo: LDAF
## vcfGeno: GT
## vcfSamples:
Variant location with respect to genes can be identified with the
locateVariants
function. Regions are specified in the
region
argument and can be one of the following
constructors: CodingVariants, IntronVariants, FiveUTRVariants,
ThreeUTRVariants, IntergenicVariants, SpliceSiteVariants or
PromoterVariants. Location definitions are shown in Table
@ref(tab:table).
Location | Details |
---|---|
coding | falls within a coding region |
fiveUTR | falls within a 5’ untranslated region |
threeUTR | falls within a 3’ untranslated region |
intron | falls within an intron region |
intergenic | does not fall within a transcript associated with a gene |
spliceSite | overlaps any portion of the first 2 or last 2 |
promoter | falls within a promoter region of a transcript |
For overlap methods to work properly the chromosome names (seqlevels)
must be compatible in the objects being compared. The VCF data
chromosome names are represented by number, i.e., ‘22’, but the TxDb
chromosome names are preceded with ‘chr’. Seqlevels in the VCF can be
modified with the seqlevels
function.
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene
seqlevels(vcf) <- "chr22"
rd <- rowRanges(vcf)
loc <- locateVariants(rd, txdb, CodingVariants())
head(loc, 3)
## GRanges object with 3 ranges and 9 metadata columns:
## seqnames ranges strand | LOCATION LOCSTART LOCEND
## <Rle> <IRanges> <Rle> | <factor> <integer> <integer>
## rs114335781 chr22 50301422 - | coding 939 939
## rs8135963 chr22 50301476 - | coding 885 885
## 22:50301488_C/T chr22 50301488 - | coding 873 873
## QUERYID TXID CDSID GENEID
## <integer> <character> <IntegerList> <character>
## rs114335781 24 75253 218562 79087
## rs8135963 25 75253 218562 79087
## 22:50301488_C/T 26 75253 218562 79087
## PRECEDEID FOLLOWID
## <CharacterList> <CharacterList>
## rs114335781
## rs8135963
## 22:50301488_C/T
## -------
## seqinfo: 1 sequence from an unspecified genome; no seqlengths
Locate variants in all regions with the AllVariants()
constructor,
To answer gene-centric questions data can be summarized by gene reguardless of transcript.
## Did any coding variants match more than one gene?
splt <- split(mcols(loc)$GENEID, mcols(loc)$QUERYID)
table(sapply(splt, function(x) length(unique(x)) > 1))
##
## FALSE TRUE
## 965 15
## Summarize the number of coding variants by gene ID.
splt <- split(mcols(loc)$QUERYID, mcols(loc)$GENEID)
head(sapply(splt, function(x) length(unique(x))), 3)
## 113730 1890 23209
## 22 15 30
predictCoding
computes amino acid coding changes for
non-synonymous variants. Only ranges in query that overlap with a coding
region in the subject
are considered. Reference sequences
are retrieved from either a BSgenome
or fasta file
specified in seqSource
. Variant sequences are constructed
by substituting, inserting or deleting values in the
varAllele
column into the reference sequence. Amino acid
codes are computed for the variant codon sequence when the length is a
multiple of 3.
The query argument to predictCoding
can be a
GRanges
or VCF
. When a GRanges
is
supplied the varAllele
argument must be specified. In the
case of a VCF
, the alternate alleles are taken from
alt(<VCF>)
and the varAllele
argument is
not specified.
The result is a modified query
containing only variants
that fall within coding regions. Each row represents a
variant-transcript match so more than one row per original variant is
possible.
library(BSgenome.Hsapiens.UCSC.hg19)
coding <- predictCoding(vcf, txdb, seqSource=Hsapiens)
coding[5:7]
## GRanges object with 3 ranges and 17 metadata columns:
## seqnames ranges strand | paramRangeID REF
## <Rle> <IRanges> <Rle> | <factor> <DNAStringSet>
## 22:50301584_C/T chr22 50301584 - | NA C
## rs114264124 chr22 50302962 - | NA C
## rs149209714 chr22 50302995 - | NA C
## ALT QUAL FILTER varAllele
## <DNAStringSetList> <numeric> <character> <DNAStringSet>
## 22:50301584_C/T T 100 PASS A
## rs114264124 T 100 PASS A
## rs149209714 G 100 PASS C
## CDSLOC PROTEINLOC QUERYID TXID CDSID
## <IRanges> <IntegerList> <integer> <character> <IntegerList>
## 22:50301584_C/T 777 259 28 75253 218562
## rs114264124 698 233 57 75253 218563
## rs149209714 665 222 58 75253 218563
## GENEID CONSEQUENCE REFCODON VARCODON
## <character> <factor> <DNAStringSet> <DNAStringSet>
## 22:50301584_C/T 79087 synonymous CCG CCA
## rs114264124 79087 nonsynonymous CGG CAG
## rs149209714 79087 nonsynonymous GGA GCA
## REFAA VARAA
## <AAStringSet> <AAStringSet>
## 22:50301584_C/T P P
## rs114264124 R Q
## rs149209714 G A
## -------
## seqinfo: 1 sequence from hg19 genome; no seqlengths
Using variant rs114264124 as an example, we see varAllele
A
has been substituted into the refCodon
CGG
to produce varCodon
CAG.
The
refCodon
is the sequence of codons necessary to make the
variant allele substitution and therefore often includes more
nucleotides than indicated in the range (i.e. the range is 50302962,
50302962, width of 1). Notice it is the second position in the
refCodon
that has been substituted. This position in the
codon, the position of substitution, corresponds to genomic position
50302962. This genomic position maps to position 698 in coding
region-based coordinates and to triplet 233 in the protein. This is a
non-synonymous coding variant where the amino acid has changed from
R
(Arg) to Q
(Gln).
When the resulting varCodon
is not a multiple of 3 it
cannot be translated. The consequence is considered a
frameshift
and varAA
will be missing.
## CONSEQUENCE is 'frameshift' where translation is not possible
coding[mcols(coding)$CONSEQUENCE == "frameshift"]
## GRanges object with 2 ranges and 17 metadata columns:
## seqnames ranges strand | paramRangeID REF
## <Rle> <IRanges> <Rle> | <factor> <DNAStringSet>
## 22:50317001_G/GCACT chr22 50317001 + | NA G
## 22:50317001_G/GCACT chr22 50317001 + | NA G
## ALT QUAL FILTER varAllele
## <DNAStringSetList> <numeric> <character> <DNAStringSet>
## 22:50317001_G/GCACT GCACT 233 PASS GCACT
## 22:50317001_G/GCACT GCACT 233 PASS GCACT
## CDSLOC PROTEINLOC QUERYID TXID
## <IRanges> <IntegerList> <integer> <character>
## 22:50317001_G/GCACT 808 270 359 74357
## 22:50317001_G/GCACT 628 210 359 74358
## CDSID GENEID CONSEQUENCE REFCODON
## <IntegerList> <character> <factor> <DNAStringSet>
## 22:50317001_G/GCACT 216303 79174 frameshift GCC
## 22:50317001_G/GCACT 216303 79174 frameshift GCC
## VARCODON REFAA VARAA
## <DNAStringSet> <AAStringSet> <AAStringSet>
## 22:50317001_G/GCACT GCACTCC
## 22:50317001_G/GCACT GCACTCC
## -------
## seqinfo: 1 sequence from hg19 genome; no seqlengths
From predictCoding
we identified the amino acid coding
changes for the non-synonymous variants. For this subset we can retrieve
predictions of how damaging these coding changes may be. SIFT (Sorting
Intolerant From Tolerant) and PolyPhen (Polymorphism Phenotyping) are
methods that predict the impact of amino acid substitution on a human
protein. The SIFT method uses sequence homology and the physical
properties of amino acids to make predictions about protein function.
PolyPhen uses sequence-based features and structural information
characterizing the substitution to make predictions about the structure
and function of the protein.
Collated predictions for specific dbSNP builds are available as downloads from the SIFT and PolyPhen web sites. These results have been packaged into SIFT.Hsapiens.dbSNP132 and PolyPhen.Hsapiens.dbSNP131 and are designed to be searched by rsid. Variants that are in dbSNP can be searched with these database packages. When working with novel variants, SIFT and PolyPhen must be called directly. See references for home pages.
Identify the non-synonymous variants and obtain the rsids.
nms <- names(coding)
idx <- mcols(coding)$CONSEQUENCE == "nonsynonymous"
nonsyn <- coding[idx]
names(nonsyn) <- nms[idx]
rsids <- unique(names(nonsyn)[grep("rs", names(nonsyn), fixed=TRUE)])
Detailed descriptions of the database columns can be found with
?SIFTDbColumns
and ?PolyPhenDbColumns
.
Variants in these databases often contain more than one row per variant.
The variant may have been reported by multiple sources and therefore the
source will differ as well as some of the other variables.
It is important to keep in mind the pre-computed predictions in the
SIFT and PolyPhen packages are based on specific gene models. SIFT is
based on Ensembl and PolyPhen on UCSC Known Gene. The TxDb
we used to identify the coding snps was based on UCSC Known Gene so we
will use PolyPhen for predictions. PolyPhen provides predictions using
two different training datasets and has considerable information about
3D protein structure. See ?PolyPhenDbColumns
or the
PolyPhen web site listed in the references for more details.
Query the PolyPhen database,
library(PolyPhen.Hsapiens.dbSNP131)
pp <- select(PolyPhen.Hsapiens.dbSNP131, keys=rsids,
cols=c("TRAININGSET", "PREDICTION", "PPH2PROB"))
head(pp[!is.na(pp$PREDICTION), ])
## RSID TRAININGSET OSNPID OACC OPOS OAA1 OAA2 SNPID
## 13 rs8139422 humdiv rs8139422 Q6UXH1-5 182 D E rs8139422
## 14 rs8139422 humvar rs8139422 <NA> <NA> <NA> <NA> rs8139422
## 15 rs74510325 humdiv rs74510325 Q6UXH1-5 189 R G rs74510325
## 16 rs74510325 humvar rs74510325 <NA> <NA> <NA> <NA> rs74510325
## 21 rs73891177 humdiv rs73891177 Q6UXH1-5 207 P A rs73891177
## 22 rs73891177 humvar rs73891177 <NA> <NA> <NA> <NA> rs73891177
## ACC POS AA1 AA2 NT1 NT2 PREDICTION BASEDON EFFECT PPH2CLASS
## 13 Q6UXH1-5 182 D E T A possibly damaging alignment <NA> neutral
## 14 Q6UXH1-5 182 D E <NA> <NA> possibly damaging <NA> <NA> <NA>
## 15 Q6UXH1-5 189 R G C G possibly damaging alignment <NA> neutral
## 16 Q6UXH1-5 189 R G <NA> <NA> possibly damaging <NA> <NA> <NA>
## 21 Q6UXH1-5 207 P A C G benign alignment <NA> neutral
## 22 Q6UXH1-5 207 P A <NA> <NA> benign <NA> <NA> <NA>
## PPH2PROB PPH2FPR PPH2TPR PPH2FDR SITE REGION PHAT DSCORE SCORE1 SCORE2 NOBS
## 13 0.228 0.156 0.892 0.258 <NA> <NA> <NA> 0.951 1.382 0.431 37
## 14 0.249 0.341 0.874 <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 15 0.475 0.131 0.858 0.233 <NA> <NA> <NA> 1.198 1.338 0.14 36
## 16 0.335 0.311 0.851 <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 21 0.001 0.86 0.994 0.61 <NA> <NA> <NA> -0.225 -0.45 -0.225 1
## 22 0.005 0.701 0.981 <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## NSTRUCT NFILT PDBID PDBPOS PDBCH IDENT LENGTH NORMACC SECSTR MAPREG DVOL
## 13 0 <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 14 <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 15 0 <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 16 <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 21 0 <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 22 <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## DPROP BFACT HBONDS AVENHET MINDHET AVENINT MINDINT AVENSIT MINDSIT TRANSV
## 13 <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> 1
## 14 <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 15 <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> 1
## 16 <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 21 <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> 1
## 22 <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## CODPOS CPG MINDJNC PFAMHIT IDPMAX IDPSNP IDQMIN COMMENTS
## 13 2 0 <NA> <NA> 18.261 18.261 48.507 chr22:50315363_CA
## 14 <NA> <NA> <NA> <NA> <NA> <NA> <NA> chr22:50315363_CA
## 15 0 1 <NA> <NA> 19.252 19.252 63.682 chr22:50315382_CG
## 16 <NA> <NA> <NA> <NA> <NA> <NA> <NA> chr22:50315382_CG
## 21 0 0 <NA> <NA> 1.919 <NA> 60.697 chr22:50315971_CG
## 22 <NA> <NA> <NA> <NA> <NA> <NA> <NA> chr22:50315971_CG
The ‘GT’ element in the FORMAT
field of the VCF
represents the genotype. These data can be converted into a
SnpMatrix
object which can then be used with the functions
offered in snpStats
and other packages making use of the SnpMatrix
class.
The genotypeToSnpMatrix
function converts the genotype
calls in geno
to a SnpMatrix
. No dbSNP package
is used in this computation. The return value is a named list where
‘genotypes’ is a SnpMatrix
and ‘map’ is a
DataFrame
with SNP names and alleles at each loci. The
ignore
column in ‘map’ indicates which variants were set to
NA (missing) because they met one or more of the following criteria,
See ?genotypeToSnpMatrix
for more details.
## $genotypes
## A SnpMatrix with 5 rows and 10376 columns
## Row names: HG00096 ... HG00101
## Col names: rs7410291 ... rs114526001
##
## $map
## DataFrame with 10376 rows and 4 columns
## snp.names allele.1 allele.2 ignore
## <character> <DNAStringSet> <DNAStringSetList> <logical>
## 1 rs7410291 A G FALSE
## 2 rs147922003 C T FALSE
## 3 rs114143073 G A FALSE
## 4 rs141778433 C T FALSE
## 5 rs182170314 C T FALSE
## ... ... ... ... ...
## 10372 rs187302552 A G FALSE
## 10373 rs9628178 A G FALSE
## 10374 rs5770892 A G FALSE
## 10375 rs144055359 G A FALSE
## 10376 rs114526001 G C FALSE
In the map DataFrame, allele.1 represents the reference allele and allele.2 is the alternate allele.
allele2 <- res$map[["allele.2"]]
## number of alternate alleles per variant
unique(elementNROWS(allele2))
## [1] 1
In addition to the called genotypes, genotype likelihoods or
probabilities can also be converted to a SnpMatrix
, using
the snpStats
encoding of posterior probabilities as byte values. To use the values in
the ‘GL’ or ‘GP’ FORMAT
field instead of the called
genotypes, use the uncertain=TRUE
option in
genotypeToSnpMatrix
.
fl.gl <- system.file("extdata", "gl_chr1.vcf", package="VariantAnnotation")
vcf.gl <- readVcf(fl.gl, "hg19")
geno(vcf.gl)
## List of length 3
## names(3): GT DS GL
## Convert the "GL" FORMAT field to a SnpMatrix
res <- genotypeToSnpMatrix(vcf.gl, uncertain=TRUE)
res
## $genotypes
## A SnpMatrix with 85 rows and 9 columns
## Row names: NA06984 ... NA12890
## Col names: rs58108140 ... rs200430748
##
## $map
## DataFrame with 9 rows and 4 columns
## snp.names allele.1 allele.2 ignore
## <character> <DNAStringSet> <DNAStringSetList> <logical>
## 1 rs58108140 G A FALSE
## 2 rs189107123 C TRUE
## 3 rs180734498 C T FALSE
## 4 rs144762171 G TRUE
## 5 rs201747181 TC TRUE
## 6 rs151276478 T TRUE
## 7 rs140337953 G T FALSE
## 8 rs199681827 C TRUE
## 9 rs200430748 G TRUE
## NA06984 NA06986 NA06989 NA06994 NA07000
## rs58108140 "Uncertain" "Uncertain" "A/B" "Uncertain" "Uncertain"
## rs180734498 "Uncertain" "Uncertain" "Uncertain" "Uncertain" "Uncertain"
## rs140337953 "Uncertain" "Uncertain" "Uncertain" "Uncertain" "Uncertain"
## Compare to a SnpMatrix created from the "GT" field
res.gt <- genotypeToSnpMatrix(vcf.gl, uncertain=FALSE)
t(as(res.gt$genotype, "character"))[c(1,3,7), 1:5]
## NA06984 NA06986 NA06989 NA06994 NA07000
## rs58108140 "A/B" "A/B" "A/B" "A/A" "A/A"
## rs180734498 "A/B" "A/A" "A/A" "A/A" "A/B"
## rs140337953 "B/B" "B/B" "A/B" "B/B" "A/B"
## $NA06984
## [1] -4.70 -0.58 -0.13
##
## $NA06986
## [1] -1.15 -0.10 -0.84
##
## $NA06989
## [1] -2.05 0.00 -3.27
##
## $NA06994
## [1] -0.48 -0.48 -0.48
##
## $NA07000
## [1] -0.28 -0.44 -0.96
For variant rs58108140 in sample NA06989, the "A/B" genotype is much
more likely than the others, so the SnpMatrix
object
displays the called genotype.
A VCF file can be written out from data stored in a VCF
class.
fl <- system.file("extdata", "ex2.vcf", package="VariantAnnotation")
out1.vcf <- tempfile()
out2.vcf <- tempfile()
in1 <- readVcf(fl, "hg19")
writeVcf(in1, out1.vcf)
in2 <- readVcf(out1.vcf, "hg19")
writeVcf(in2, out2.vcf)
in3 <- readVcf(out2.vcf, "hg19")
identical(rowRanges(in1), rowRanges(in3))
## [1] TRUE
## [1] TRUE
Targeted queries can greatly improve the speed of data input. When
all data from the file are needed define a yieldSize
in the
TabixFile
to iterate through the file in chunks.
readVcf
can be used with a to select any combination of
INFO and GENO fields, samples or genomic positions.
While readvcf
offers the flexibility to define
combinations of INFO, GENO and samples in the ScanVcfParam
,
sometimes only a single field is needed. In this case the lightweight
read
functions (readGT
, readInfo
and readGeno
) can be used. These functions return the
single field as a matrix instead of a VCF
object.
The table below highlights the speed differences of targeted queries
vs reading in all data. The test file is from 1000 Genomes and has
494328 variants, 1092 samples, 22 INFO, and 3 GENO fields and is located
at http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20101123/.
yieldSize
is used to define chunks of 100, 1000, 10000 and
100000 variants. For each chunk size three function calls are compared:
readGT
reading only GT, readVcf
reading both
GT
and ALT
and finally readVcf
reading in all the data.
library(microbenchmark)
fl <- "ALL.chr22.phase1_release_v3.20101123.snps_indels_svs.genotypes.vcf.gz"
ys <- c(100, 1000, 10000, 100000)
## readGT() input only 'GT':
fun <- function(fl, yieldSize) readGT(TabixFile(fl, yieldSize))
lapply(ys, function(i) microbenchmark(fun(fl, i), times=5)
## readVcf() input only 'GT' and 'ALT':
fun <- function(fl, yieldSize, param)
readVcf(TabixFile(fl, yieldSize), "hg19", param=param)
param <- ScanVcfParam(info=NA, geno="GT", fixed="ALT")
lapply(ys, function(i) microbenchmark(fun(fl, i, param), times=5)
## readVcf() input all variables:
fun <- function(fl, yieldSize) readVcf(TabixFile(fl, yieldSize), "hg19")
lapply(ys, function(i) microbenchmark(fun(fl, i), times=5))
n records | readGT | readVcf (GT and ALT) | readVcf (all) |
---|---|---|---|
100 | 0.082 | 0.128 | 0.501 |
1000 | 0.609 | 0.508 | 5.878 |
10000 | 5.972 | 6.164 | 68.378 |
100000 | 78.593 | 81.156 | 693.654 |
Wang K, Li M, Hakonarson H, (2010), ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Research, Vol 38, No. 16, e164.
McLaren W, Pritchard B, RiosD, et. al., (2010), Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor. Bioinformatics, Vol. 26, No. 16, 2069-2070.
SIFT home page: http://sift.bii.a-star.edu.sg/
PolyPhen home page: http://genetics.bwh.harvard.edu/pph2/
## R version 4.4.2 (2024-10-31)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.1 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so; LAPACK version 3.12.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: Etc/UTC
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] snpStats_1.57.0
## [2] Matrix_1.7-1
## [3] survival_3.7-0
## [4] PolyPhen.Hsapiens.dbSNP131_1.0.2
## [5] RSQLite_2.3.8
## [6] BSgenome.Hsapiens.UCSC.hg19_1.4.3
## [7] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2
## [8] GenomicFeatures_1.59.1
## [9] AnnotationDbi_1.69.0
## [10] ggplot2_3.5.1
## [11] SNPlocs.Hsapiens.dbSNP144.GRCh37_0.99.20
## [12] BSgenome_1.75.0
## [13] rtracklayer_1.67.0
## [14] BiocIO_1.17.1
## [15] VariantAnnotation_1.53.0
## [16] Rsamtools_2.23.0
## [17] Biostrings_2.75.1
## [18] XVector_0.47.0
## [19] SummarizedExperiment_1.37.0
## [20] Biobase_2.67.0
## [21] GenomicRanges_1.59.1
## [22] GenomeInfoDb_1.43.1
## [23] IRanges_2.41.1
## [24] S4Vectors_0.45.2
## [25] MatrixGenerics_1.19.0
## [26] matrixStats_1.4.1
## [27] BiocGenerics_0.53.3
## [28] generics_0.1.3
## [29] BiocStyle_2.35.0
##
## loaded via a namespace (and not attached):
## [1] tidyselect_1.2.1 farver_2.1.2 dplyr_1.1.4
## [4] blob_1.2.4 bitops_1.0-9 fastmap_1.2.0
## [7] RCurl_1.98-1.16 GenomicAlignments_1.43.0 XML_3.99-0.17
## [10] digest_0.6.37 lifecycle_1.0.4 KEGGREST_1.47.0
## [13] magrittr_2.0.3 compiler_4.4.2 rlang_1.1.4
## [16] sass_0.4.9 tools_4.4.2 utf8_1.2.4
## [19] yaml_2.3.10 knitr_1.49 labeling_0.4.3
## [22] S4Arrays_1.7.1 bit_4.5.0 curl_6.0.1
## [25] DelayedArray_0.33.2 abind_1.4-8 BiocParallel_1.41.0
## [28] withr_3.0.2 sys_3.4.3 grid_4.4.2
## [31] fansi_1.0.6 colorspace_2.1-1 scales_1.3.0
## [34] cli_3.6.3 rmarkdown_2.29 crayon_1.5.3
## [37] httr_1.4.7 rjson_0.2.23 DBI_1.2.3
## [40] cachem_1.1.0 splines_4.4.2 zlibbioc_1.52.0
## [43] parallel_4.4.2 BiocManager_1.30.25 restfulr_0.0.15
## [46] vctrs_0.6.5 jsonlite_1.8.9 bit64_4.5.2
## [49] maketools_1.3.1 jquerylib_0.1.4 glue_1.8.0
## [52] codetools_0.2-20 gtable_0.3.6 UCSC.utils_1.3.0
## [55] munsell_0.5.1 tibble_3.2.1 pillar_1.9.0
## [58] htmltools_0.5.8.1 GenomeInfoDbData_1.2.13 R6_2.5.1
## [61] evaluate_1.0.1 lattice_0.22-6 png_0.1-8
## [64] memoise_2.0.1 bslib_0.8.0 SparseArray_1.7.2
## [67] xfun_0.49 buildtools_1.0.0 pkgconfig_2.0.3