Targeted sequencing of immune receptors is a powerful tool for interrogating the adaptive immune system. Single-cell technology has increased the resolution of this type of data tremendously. While many tools exist to analyze single-cell RNA sequencing data, there are fewer options available for targeted assays like adaptive immune receptor sequencing (AIRRseq).
The VDJdive
package provides functionality for incorporating AIRRseq (or TCRseq)
data into the Bioconductor single-cell ecosystem and analyzing it in a
variety of ways. We believe this will unlock many powerful tools for the
analysis of immune receptor data and make it easily accessible to users
already familiar with SingleCellExperiment
objects and the
Bioconductor framework. This vignette will give you a brief overview of
the methods available in the package and demonstrate their usage on a
simple dataset.
To install VDJdive
from Bioconductor, you can use the
following code:
if (!require("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("VDJdive")
Additionally, some features of VDJdive
make use of C++
functionality, which is made available through the Rcpp
package.
The 10X data are in a file called
filtered_contig_annotations.csv
, containing one entry (row)
for each unique contig in each cell. When we read this data into R, we
could produce a single data.frame
, but we want to keep
entries from the same cell together. Hence, we read the data in as a
SplitDataFrameList
, which efficiently stores a collection
of data frames all containing the same column names. The following
snippet demonstrates how to read in the
filtered_contig_annotations.csv
file and convert it to a
CompressedSplitDFrameList
for downstream use.
The function readVDJcontigs
takes a character vector
that contains directory names. Each directory should contain a file
called filtered_contig_annotations.csv
.
readVDJcontigs
will read in the 10X files from the
directory, split by cell barcode, and create a
SplitDataFrameList
from the files. The barcodes will be
unique across samples because the sample name is appended to the
barcode.
Besides keeping data on the same cells together, the primary
advantage of the SplitDataFrameList
is that it has length
equal to the number of cells and can therefore be added to the column
data of a SingleCellExperiment
object. Cells are matched
between the two objects by their barcodes. However, this merging can
lead to information loss, as cells that are not already represented in
the SCE object will be dropped from the SplitDataFrameList
.
When this happens, addVDJtoSCE
will issue a warning with
the number of cells that have been dropped.
require(SingleCellExperiment)
ncells <- 24
u <- matrix(rpois(1000 * ncells, 5), ncol = ncells)
barcodes <- vapply(contigs[,'barcode'], function(x){ x[1] }, 'A')
samples <- vapply(contigs[,'sample'], function(x){ x[1] }, 'A')
sce <- SingleCellExperiment(assays = list(counts = u),
colData = data.frame(Barcode = barcodes,
group = samples))
sce <- addVDJtoSCE(contigs, sce)
sce$contigs
#> SplitDataFrameList of length 24
#> $`ACAGCCGTCACCATAG-2`
#> DataFrame with 3 rows and 20 columns
#> X barcode is_cell
#> <character> <character> <logical>
#> ACAGCCGTCACCATAG-2 ACAGCCGTCACCATAG-2.A.. ACAGCCGTCACCATAG-2 TRUE
#> ACAGCCGTCACCATAG-2 ACAGCCGTCACCATAG-2.A.. ACAGCCGTCACCATAG-2 TRUE
#> ACAGCCGTCACCATAG-2 ACAGCCGTCACCATAG-2.A.. ACAGCCGTCACCATAG-2 TRUE
#> contig_id high_confidence length chain
#> <character> <logical> <integer> <character>
#> ACAGCCGTCACCATAG-2 ACAGCCGTCACCATAG-1_c.. TRUE 512 TRA
#> ACAGCCGTCACCATAG-2 ACAGCCGTCACCATAG-1_c.. TRUE 731 TRB
#> ACAGCCGTCACCATAG-2 ACAGCCGTCACCATAG-1_c.. TRUE 696 TRB
#> v_gene d_gene j_gene c_gene full_length
#> <character> <character> <character> <character> <logical>
#> ACAGCCGTCACCATAG-2 TRAV6 None TRAJ28 TRAC TRUE
#> ACAGCCGTCACCATAG-2 TRBV29-1 TRBD2 TRBJ2-3 TRBC2 TRUE
#> ACAGCCGTCACCATAG-2 TRBV7-3 TRBD2 TRBJ2-1 TRBC2 TRUE
#> productive cdr3 cdr3_nt reads
#> <logical> <character> <character> <integer>
#> ACAGCCGTCACCATAG-2 TRUE CASRPGAGSYQLTF TGTGCTTCCCGGCCGGGGGC.. 23449
#> ACAGCCGTCACCATAG-2 TRUE CSVEPTSRSTDTQYF TGCAGCGTTGAGCCGACTAG.. 44248
#> ACAGCCGTCACCATAG-2 TRUE CASSPRGGGLNEQFF TGTGCCAGCAGCCCTAGGGG.. 46804
#> umis raw_clonotype_id raw_consensus_id
#> <integer> <character> <character>
#> ACAGCCGTCACCATAG-2 4 clonotype113 clonotype113_consens..
#> ACAGCCGTCACCATAG-2 8 clonotype113 clonotype113_consens..
#> ACAGCCGTCACCATAG-2 8 clonotype113 clonotype113_consens..
#> sample
#> <character>
#> ACAGCCGTCACCATAG-2 sample2
#> ACAGCCGTCACCATAG-2 sample2
#> ACAGCCGTCACCATAG-2 sample2
#>
#> $`ACGCAGCCACTATCTT-1`
#> DataFrame with 6 rows and 20 columns
#> X barcode is_cell
#> <character> <character> <logical>
#> ACGCAGCCACTATCTT-1 ACGCAGCCACTATCTT-1.A.. ACGCAGCCACTATCTT-1 TRUE
#> ACGCAGCCACTATCTT-1 ACGCAGCCACTATCTT-1.A.. ACGCAGCCACTATCTT-1 TRUE
#> ACGCAGCCACTATCTT-1 ACGCAGCCACTATCTT-1.A.. ACGCAGCCACTATCTT-1 TRUE
#> ACGCAGCCACTATCTT-1 ACGCAGCCACTATCTT-1.A.. ACGCAGCCACTATCTT-1 TRUE
#> ACGCAGCCACTATCTT-1 ACGCAGCCACTATCTT-1.A.. ACGCAGCCACTATCTT-1 TRUE
#> ACGCAGCCACTATCTT-1 ACGCAGCCACTATCTT-1.A.. ACGCAGCCACTATCTT-1 TRUE
#> contig_id high_confidence length chain
#> <character> <logical> <integer> <character>
#> ACGCAGCCACTATCTT-1 ACGCAGCCACTATCTT-1_c.. TRUE 514 IGL
#> ACGCAGCCACTATCTT-1 ACGCAGCCACTATCTT-1_c.. TRUE 625 TRD
#> ACGCAGCCACTATCTT-1 ACGCAGCCACTATCTT-1_c.. TRUE 554 IGH
#> ACGCAGCCACTATCTT-1 ACGCAGCCACTATCTT-1_c.. TRUE 800 TRB
#> ACGCAGCCACTATCTT-1 ACGCAGCCACTATCTT-1_c.. TRUE 327 Multi
#> ACGCAGCCACTATCTT-1 ACGCAGCCACTATCTT-1_c.. TRUE 526 TRA
#> v_gene d_gene j_gene c_gene full_length
#> <character> <character> <character> <character> <logical>
#> ACGCAGCCACTATCTT-1 IGLV2-18 None None None FALSE
#> ACGCAGCCACTATCTT-1 TRDV3 None None None FALSE
#> ACGCAGCCACTATCTT-1 IGHV1-45 None None IGHG4 FALSE
#> ACGCAGCCACTATCTT-1 TRBV7-3 TRBD1 TRBJ1-2 None FALSE
#> ACGCAGCCACTATCTT-1 IGHV1-2 None TRBJ2-3 TRBC2 FALSE
#> ACGCAGCCACTATCTT-1 TRAV27 None TRAJ6 None FALSE
#> productive cdr3 cdr3_nt reads umis
#> <logical> <character> <character> <integer> <integer>
#> ACGCAGCCACTATCTT-1 FALSE None None 39 2
#> ACGCAGCCACTATCTT-1 FALSE None None 118 1
#> ACGCAGCCACTATCTT-1 FALSE None None 124 1
#> ACGCAGCCACTATCTT-1 FALSE None None 1492 9
#> ACGCAGCCACTATCTT-1 FALSE None None 2202 2
#> ACGCAGCCACTATCTT-1 FALSE None None 135 2
#> raw_clonotype_id raw_consensus_id sample
#> <character> <character> <character>
#> ACGCAGCCACTATCTT-1 None None sample1
#> ACGCAGCCACTATCTT-1 None None sample1
#> ACGCAGCCACTATCTT-1 None None sample1
#> ACGCAGCCACTATCTT-1 None None sample1
#> ACGCAGCCACTATCTT-1 None None sample1
#> ACGCAGCCACTATCTT-1 None None sample1
#>
#> $`AGCATACAGTCTCAAC-2`
#> DataFrame with 2 rows and 20 columns
#> X barcode is_cell
#> <character> <character> <logical>
#> AGCATACAGTCTCAAC-2 AGCATACAGTCTCAAC-2.A.. AGCATACAGTCTCAAC-2 TRUE
#> AGCATACAGTCTCAAC-2 AGCATACAGTCTCAAC-2.A.. AGCATACAGTCTCAAC-2 TRUE
#> contig_id high_confidence length chain
#> <character> <logical> <integer> <character>
#> AGCATACAGTCTCAAC-2 AGCATACAGTCTCAAC-1_c.. TRUE 698 TRB
#> AGCATACAGTCTCAAC-2 AGCATACAGTCTCAAC-1_c.. TRUE 698 TRA
#> v_gene d_gene j_gene c_gene full_length
#> <character> <character> <character> <character> <logical>
#> AGCATACAGTCTCAAC-2 TRBV29-1 TRBD2 TRBJ2-3 TRBC2 TRUE
#> AGCATACAGTCTCAAC-2 TRAV6 None TRAJ28 TRAC TRUE
#> productive cdr3 cdr3_nt reads
#> <logical> <character> <character> <integer>
#> AGCATACAGTCTCAAC-2 TRUE CSVEPTSRSTDTQYF TGCAGCGTTGAGCCGACTAG.. 70053
#> AGCATACAGTCTCAAC-2 TRUE CASRPGAGSYQLTF TGTGCTTCCCGGCCGGGGGC.. 14509
#> umis raw_clonotype_id raw_consensus_id
#> <integer> <character> <character>
#> AGCATACAGTCTCAAC-2 8 clonotype6 clonotype6_consensus_1
#> AGCATACAGTCTCAAC-2 4 clonotype6 clonotype6_consensus_2
#> sample
#> <character>
#> AGCATACAGTCTCAAC-2 sample2
#> AGCATACAGTCTCAAC-2 sample2
#>
#> ...
#> <21 more elements>
VDJdive
contains two methods for assigning clonotype lables. The first considers
only cells with complete, productive alpha and beta chains (exactly one
of each). These are the cells which can only be assigned a single,
unique clonotype label and the resulting abudances are always whole
numbers. Cells that do not meet this criteria are not assigned a
clonotype and do not contribute to downstream analysis. If two cells
have identical amino acid sequences in their CDR3 regions, they are
considered to be the same clonotype. We assign clonotypes in this manner
by running clonoStats
with the option
method = 'unique'
:
UNstats <- clonoStats(contigs, method = 'unique')
class(UNstats)
#> [1] "clonoStats"
#> attr(,"package")
#> [1] "VDJdive"
The other method for assigning clonotype lables is probabalistic and
makes use of the Expectation-Maximization (EM) algorithm. Rather than
filtering out ambiguous cells (ie. cells with no alpha chain, no beta
chain, or more than one of either), this method allows for partial
assignment. For example, if a cell has one productive alpha chain and
two productive beta chains, the EM algorithm will be used to make a
partial clonotype assignment based on the prevalence of each clonotype
in the sample. That means that a cell may have a count of 0.6 for one
clonotype and 0.4 for a different clonotype rather than a count of 1 for
a single clonotype. We assign clonotypes in this manner by running
clonoStats
with the option method = 'EM'
(which is the default):
EMstats <- clonoStats(contigs, method = "EM")
class(EMstats)
#> [1] "clonoStats"
#> attr(,"package")
#> [1] "VDJdive"
Similarly, we can call clonoStats
on a
SingleCellExperiment
object that contains V(D)J data. This
will add a clonoStats
object to the metadata of the
SCE:
sce <- clonoStats(sce, method = 'EM')
metadata(sce)
#> $clonoStats
#> An object of class "clonoStats"
#> clonotypes: 23
#> cells: 24
#> groups(2): sample1 sample2
#> has assignment: FALSE
Functions to access the clonoStats class.
head(clonoAbundance(sce)) # access output of abundance for clonotypes for clonoStats class
#> 6 x 2 sparse Matrix of class "dgCMatrix"
#> sample1 sample2
#> [1,] 0.25 .
#> [2,] 0.25 .
#> [3,] 0.25 .
#> [4,] 0.25 .
#> [5,] 2.00 1
#> [6,] 0.50 .
clonoFrequency(sce) # access output of frequency for clonotypes for clonoStats class
#> 3 x 2 sparse Matrix of class "dgCMatrix"
#> sample1 sample2
#> 1 4 7
#> 2 2 2
#> 3 1 .
clonoFrequency(sce) # access output of clonotypes assignment for clonoStats class
#> 3 x 2 sparse Matrix of class "dgCMatrix"
#> sample1 sample2
#> 1 4 7
#> 2 2 2
#> 3 1 .
clonoGroup(sce) # access output of clonotypes grouping for clonoStats class
#> [1] sample2 sample1 sample2 sample1 sample1 sample1 sample2 sample1 sample1
#> [10] sample2 sample1 sample1 sample2 sample2 sample1 sample2 sample2 sample2
#> [19] sample1 sample2 sample2 sample2 sample1 sample1
#> Levels: sample1 sample2
clonoNames(sce) # access output of clonotypes samples for clonoStats class
#> [1] "CAASISGGSNYKLTF CASSVDSGRGETQYF" "CAACVEGLMF CASSVDSGRGETQYF"
#> [3] "CAASISGGSNYKLTF CASSLADGLNTEAFF" "CAACVEGLMF CASSLADGLNTEAFF"
#> [5] "CVVLPGSSNTGKLIF CASSLSAGARYEQYF" "CAMLDSNYQLIW CASSESEVAEPDTQYF"
#> [7] "CAMLDSNYQLIW CASSTSGDFYEQYF" "CAMSAEDDKIIF CASSYSTVYEQYF"
#> [9] "CATYPWTSYDKVIF CASSFDEGGGETQYF" "CAVSDAGGTSYGKLTF CASSVSGNRGNYGYTF"
#> [11] "CALSGRGEGGSEKLVF CASSWGLGTEAFF" "CAGLDTGTASKLTF CASSWGLGTEAFF"
#> [13] "CASRPGAGSYQLTF CSVEPTSRSTDTQYF" "CAVRTLADYKLSF CASSITPDSPSYGYTF"
#> [15] "CIVRVAFGQNFVF CSADISGSSYNEQFF" "CAPSFSGNTPLVF CSADISGSSYNEQFF"
#> [17] "CAGFFYNQGGKLIF CSAARTGSYEQYF" "CAVGEGGSTLGRLYF CASTRYNEQFF"
#> [19] "CIVSSHQGAQKLVF CASTRYNEQFF" "CAVGEGGSTLGRLYF CASSVLGGKTDTQYF"
#> [21] "CIVSSHQGAQKLVF CASSVLGGKTDTQYF" "CAETWGQGNLIF CASSGPGVGSTDTQYF"
#> [23] "CAVGGMTTDSWGKLQF CASSLSSGNTGELFF"
Diversity metrics can be computed from the clonoStats
object or a SingleCellExperiment
object containing the
relevant output. The calculateDiversity
function can
compute (normalized) Shannon entropy, Simpson index, inverse-Simpson
index, Chao diversity, and Chao-Bunge diversity. The Chao and Chao-Bunge
diversity measures require clonotype frequencies that may be
philosophically incompatible with the expected counts generated by the
EM algorithm. In these cases, the results for the EM counts are taken as
Bernoulli probabilities and we calculate the expected number of
singletons, doubletons, etc. The entropy measures and Simpson indices do
not require integer counts so no additional calculation is needed for
those measures.
All of the diversity measures can be computed for each sample with the following:
div <- calculateDiversity(EMstats, methods = "all")
div
#> sample1 sample2
#> nCells 11.0000000 11.0000000
#> nClonotypes 7.0000000 9.0000000
#> shannon 2.0982737 2.3348819
#> normentropy 0.8444075 0.9103033
#> invsimpson 6.2857143 8.8000000
#> ginisimpson 0.8409091 0.8863636
#> chao1 9.0000000 16.0000000
#> chaobunge.est 9.8108108 15.1250000
#> chaobunge.CI.lower 7.0000000 10.0000000
#> chaobunge.CI.upper 31.0000000 45.0000000
We also provide a function for estimation of species richness through breakaway (Willis et al, biometrics 2015). For this section please ensure to install the breakaway package from CRAN https://cran.r-project.org/web/packages/breakaway/index.html . The method uses the frequency (number of singletons, doubletons etc to provide a more accurate estimate for richness with standard error and confidence intervals).
Rather than grouping cells by sample, we may be interested in other
groupings, such as clusters based on RNA expression. In this case, if we
have the original clonotype assignment matrix, we can calculate new
summary statistics based on a different grouping variable. This is
preferable to grouping by cluster in the original call to
clonoStats
because the most accurate clonotype assignment
is achieved cells are grouped by sample. Otherwise, we may see unwanted
crosstalk between samples leading to nonsensical counts (ie. a clonotype
that never appears in a particular sample may receive non-zero counts
from some ambiguous cells in that sample).
EMstats <- clonoStats(contigs, method = "EM", assignment = TRUE)
clus <- sample(1:2, 24, replace = TRUE)
EMstats.clus <- clonoStats(EMstats, group = clus)
To reiterate: we always recommend running clonoStats
by
sample of origin first, to get the most accurate clonotype assignment.
It is easy to re-calculate summary statistics for other grouping
variables later.
VDJdive has many options for visualization. This section demonstrates the graphs that can be created.
Barplot function which shows the number of T cells in each group (sample) as well as the clonotype abundances within each group (sample). The coloring indicates the number of cells assigned to each clonotype, with darker colors denoting singletons and lighter colors denoting expanded clonotypes (scale = log count of clontypes).
Similar to the bar plot above, these pie charts show the clonotype abundances within each group (sample), as a percentage of cells within that group. The coloring indicates the number of cells assigned to each clonotype, with darker colors denoting singletons and lighter colors denoting expanded clonotypes (scale = log count of clontypes).
#>
#> [[2]]
This scatter plot shows two measures of group-level (sample-level) diversity. The “richness” (total number of clonotypes) is shown on the x-axis and the “evenness” (mixture of clonotypes) on the y-axis. Diversity measures such as Shannon entropy contain information about both the evenness and the abundance of a sample, but because both characteristics are combined into one number, comparison between samples or groups of samples is difficult. Other measures, such as the breakaway measure of diversity, only express the abundance of the sample and not the evenness. The scatterplot shows how evenness and abundance differ between each sample and between each group of samples.
This dot plot shows the clonotype abundances in each group (sample) above a specified cutoff. The most abundant clonotypes for each group (sample) are annotated on the plot and ordered from most abundant to least abundant.
sessionInfo()
#> R version 4.4.1 (2024-06-14)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Ubuntu 24.04.1 LTS
#>
#> Matrix products: default
#> BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
#> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so; LAPACK version 3.12.0
#>
#> locale:
#> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
#> [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
#> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
#> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
#> [9] LC_ADDRESS=C LC_TELEPHONE=C
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
#>
#> time zone: Etc/UTC
#> tzcode source: system (glibc)
#>
#> attached base packages:
#> [1] stats4 stats graphics grDevices utils datasets methods
#> [8] base
#>
#> other attached packages:
#> [1] SingleCellExperiment_1.28.0 SummarizedExperiment_1.36.0
#> [3] Biobase_2.67.0 GenomicRanges_1.59.0
#> [5] GenomeInfoDb_1.43.0 IRanges_2.41.0
#> [7] S4Vectors_0.44.0 BiocGenerics_0.53.1
#> [9] generics_0.1.3 MatrixGenerics_1.19.0
#> [11] matrixStats_1.4.1 VDJdive_1.9.0
#> [13] BiocStyle_2.35.0
#>
#> loaded via a namespace (and not attached):
#> [1] gtable_0.3.6 xfun_0.48 bslib_0.8.0
#> [4] ggplot2_3.5.1 lattice_0.22-6 vctrs_0.6.5
#> [7] tools_4.4.1 parallel_4.4.1 tibble_3.2.1
#> [10] fansi_1.0.6 highr_0.11 pkgconfig_2.0.3
#> [13] Matrix_1.7-1 RColorBrewer_1.1-3 lifecycle_1.0.4
#> [16] GenomeInfoDbData_1.2.13 farver_2.1.2 compiler_4.4.1
#> [19] munsell_0.5.1 codetools_0.2-20 htmltools_0.5.8.1
#> [22] sys_3.4.3 buildtools_1.0.0 sass_0.4.9
#> [25] yaml_2.3.10 pillar_1.9.0 crayon_1.5.3
#> [28] jquerylib_0.1.4 BiocParallel_1.41.0 DelayedArray_0.33.1
#> [31] cachem_1.1.0 abind_1.4-8 digest_0.6.37
#> [34] labeling_0.4.3 maketools_1.3.1 cowplot_1.1.3
#> [37] fastmap_1.2.0 grid_4.4.1 colorspace_2.1-1
#> [40] cli_3.6.3 SparseArray_1.6.0 magrittr_2.0.3
#> [43] S4Arrays_1.6.0 utf8_1.2.4 withr_3.0.2
#> [46] UCSC.utils_1.2.0 scales_1.3.0 rmarkdown_2.28
#> [49] XVector_0.46.0 httr_1.4.7 gridExtra_2.3
#> [52] evaluate_1.0.1 knitr_1.48 viridisLite_0.4.2
#> [55] rlang_1.1.4 Rcpp_1.0.13 glue_1.8.0
#> [58] BiocManager_1.30.25 jsonlite_1.8.9 R6_2.5.1
#> [61] zlibbioc_1.52.0