Package 'VAExprs'

Title: Generating Samples of Gene Expression Data with Variational Autoencoders
Description: A fundamental problem in biomedical research is the low number of observations, mostly due to a lack of available biosamples, prohibitive costs, or ethical reasons. By augmenting a few real observations with artificially generated samples, their analysis could lead to more robust and higher reproducible. One possible solution to the problem is the use of generative models, which are statistical models of data that attempt to capture the entire probability distribution from the observations. Using the variational autoencoder (VAE), a well-known deep generative model, this package is aimed to generate samples with gene expression data, especially for single-cell RNA-seq data. Furthermore, the VAE can use conditioning to produce specific cell types or subpopulations. The conditional VAE (CVAE) allows us to create targeted samples rather than completely random ones.
Authors: Dongmin Jung [cre, aut]
Maintainer: Dongmin Jung <[email protected]>
License: Artistic-2.0
Version: 1.13.0
Built: 2025-01-17 05:26:15 UTC
Source: https://github.com/bioc/VAExprs

Help Index


Variational autoencoder model fitting

Description

A fundamental problem in biomedical research is the low number of observations available. Augmenting a few real observations with generated in silico samples could lead to more robust analysis. Here, the variational autoencoder (VAE) is used for the realistic generation of single-cell RNA-seq data. Also, the conditional variational autoencoder (CVAE) can be used if labels of samples are available. This function allows us to fit variational autoencoders with the standard Gaussian prior to expression data. It is assumed that there will likely be no clusters in the latent space representation of variational autoencoders.

Usage

fit_vae(object = NULL,
        x_train = NULL,
        x_val = NULL,
        y_train = NULL,
        y_val = NULL,
        encoder_layers,
        decoder_layers,
        latent_dim = 2,
        regularization = 1,
        epochs,
        batch_size,
        preprocessing = list(
            x_train = NULL,
            x_val = NULL,
            y_train = NULL,
            y_val = NULL,
            minmax = NULL,
            lenc = NULL),
        use_generator = FALSE,
        optimizer = "adam",
        validation_split = 0, ...)

Arguments

object

SummarizedExperiment object

x_train

expression data for train, where each row is a cell and each column is a gene

x_val

expression data for validation, where each row is a cell and each column is a gene

y_train

labels for train

y_val

labels for validation

encoder_layers

list of layers for encoder

decoder_layers

list of layers for decoder

latent_dim

dimension of latent vector (default: 2)

regularization

regularization parameter, which is nonnegative (default: 1)

epochs

number of epochs

batch_size

batch size

preprocessing

list of preprocessed results, they are set to NULL as default

  • x_train : expression data for train

  • x_val : expression data for validation

  • y_train : labels for train

  • y_val : labels for validation

  • minmax : result of min-max normalization

  • lenc : encoded labels

use_generator

use data generator if TRUE (default: FALSE)

optimizer

name of optimizer (default: adam)

validation_split

proportion of validation data, it is ignored when there is a validation set (default: 0)

...

additional parameters for the "fit" or "fit_generator"

Value

model

trained VAE model

encoder

trained encoder model

decoder

trained decoder model

preprocessing

preprocessed results

Author(s)

Dongmin Jung

References

Marouf, M., Machart, P., Bansal, V., Kilian, C., Magruder, D. S., Krebs, C. F., & Bonn, S. (2020). Realistic in silico generation and augmentation of single-cell RNA-seq data using generative adversarial networks. Nature communications, 11(1), 1-12.

See Also

SummarizedExperiment::assay, SummarizedExperiment::colData, scater::logNormCounts, keras::fit, keras::fit_generator, keras::compile, CatEncoders::LabelEncoder.fit, CatEncoders::transform, DeepPINCS::multiple_sampling_generator

Examples

if (keras::is_keras_available() & reticulate::py_available()) {
    ### simulate differentially expressed genes
    set.seed(1)
    g <- 3
    n <- 100
    m <- 1000
    mu <- 5
    sigma <- 5
    mat <- matrix(rnorm(n*m*g, mu, sigma), m, n*g)
    rownames(mat) <- paste0("gene", seq_len(m))
    colnames(mat) <- paste0("cell", seq_len(n*g))
    group <- factor(sapply(seq_len(g), function(x) { 
        rep(paste0("group", x), n)
    }))
    names(group) <- colnames(mat)
    mu_upreg <- 6
    sigma_upreg <- 10
    deg <- 100
    for (i in seq_len(g)) {
        mat[(deg*(i-1) + 1):(deg*i), group == paste0("group", i)] <- 
            mat[1:deg, group==paste0("group", i)] + rnorm(deg, mu_upreg, sigma_upreg)
    }
    # positive expression only
    mat[mat < 0] <- 0
    x_train <- as.matrix(t(mat)) 
    
    
    ### model
    batch_size <- 32
    original_dim <- 1000
    intermediate_dim <- 512
    epochs <- 2
    # VAE
    vae_result <- fit_vae(x_train = x_train,
                        encoder_layers = list(layer_input(shape = c(original_dim)),
                                            layer_dense(units = intermediate_dim,
                                                        activation = "relu")),
                        decoder_layers = list(layer_dense(units = intermediate_dim,
                                                        activation = "relu"),
                                            layer_dense(units = original_dim,
                                                        activation = "sigmoid")),
                        epochs = epochs, batch_size = batch_size,
                        validation_split = 0.5,
                        use_generator = FALSE,
                        callbacks = keras::callback_early_stopping(
                            monitor = "val_loss",
                            patience = 10,
                            restore_best_weights = TRUE))
    
    
    ### from preprocessing
    vae_result_preprocessing <- fit_vae(preprocessing = vae_result$preprocessing,
                                        encoder_layers = list(layer_input(shape = c(original_dim)),
                                                            layer_dense(units = intermediate_dim,
                                                                        activation = "relu")),
                                        decoder_layers = list(layer_dense(units = intermediate_dim,
                                                                        activation = "relu"),
                                                            layer_dense(units = original_dim,
                                                                        activation = "sigmoid")),
                                        epochs = epochs, batch_size = batch_size,
                                        validation_split = 0.5,
                                        use_generator = FALSE,
                                        callbacks = keras::callback_early_stopping(
                                            monitor = "val_loss",
                                            patience = 10,
                                            restore_best_weights = TRUE))
}

Generate samples with expression data

Description

This function generate expression data by drawing samples from the latent vectors following the standard multivariate Gaussian distribution (the standard multivariate normal distribution) for convenience. However, this assumption for the prior may not be appropriate because there may be underlying distinctions between groups of samples. Any density function can be modeled by the Gaussian mixture model. Here, by using the library "mclust", the finite Gaussian mixture is applied for such sampling. Note that the Gaussian mixture model is not used for fitting in the function "fit_vae".

Usage

gen_exprs(x, num_samples,
        batch_size, use_generator = FALSE)

Arguments

x

result of the function "fit_vae"

num_samples

number of samples to be generated

batch_size

batch size

use_generator

use data generator if TRUE (default: FALSE)

Value

x_gen

generated expression data, where each row is a cell and each column is a gene

y_gen

geneated labels

x_train

real expression data, where each row is a cell and each column is a gene

y_train

real labels

latent_vector

latent vector from real expression data

Author(s)

Dongmin Jung

See Also

mclust::mclustBIC, mclust::mclustModel, mclust::sim, DeepPINCS::multiple_sampling_generator, CatEncoders::inverse.transform

Examples

if (keras::is_keras_available() & reticulate::py_available()) {
    ### simulate differentially expressed genes
    set.seed(1)
    g <- 3
    n <- 100
    m <- 1000
    mu <- 5
    sigma <- 5
    mat <- matrix(rnorm(n*m*g, mu, sigma), m, n*g)
    rownames(mat) <- paste0("gene", seq_len(m))
    colnames(mat) <- paste0("cell", seq_len(n*g))
    group <- factor(sapply(seq_len(g), function(x) { 
        rep(paste0("group", x), n)
    }))
    names(group) <- colnames(mat)
    mu_upreg <- 6
    sigma_upreg <- 10
    deg <- 100
    for (i in seq_len(g)) {
        mat[(deg*(i-1) + 1):(deg*i), group == paste0("group", i)] <- 
            mat[1:deg, group==paste0("group", i)] + rnorm(deg, mu_upreg, sigma_upreg)
    }
    # positive expression only
    mat[mat < 0] <- 0
    x_train <- as.matrix(t(mat))
    
    
    ### model
    batch_size <- 32
    original_dim <- 1000
    intermediate_dim <- 512
    epochs <- 2
    # VAE
    vae_result <- fit_vae(x_train = x_train,
                        encoder_layers = list(layer_input(shape = c(original_dim)),
                                            layer_dense(units = intermediate_dim,
                                                        activation = "relu")),
                        decoder_layers = list(layer_dense(units = intermediate_dim,
                                                        activation = "relu"),
                                            layer_dense(units = original_dim,
                                                        activation = "sigmoid")),
                        epochs = epochs, batch_size = batch_size,
                        validation_split = 0.5,
                        use_generator = FALSE,
                        callbacks = keras::callback_early_stopping(
                            monitor = "val_loss",
                            patience = 10,
                            restore_best_weights = TRUE))
    # plot
    plot_vae(vae_result$model)
    
    
    ### generate samples
    set.seed(1)
    gen_sample_result <- gen_exprs(vae_result, num_samples = 100)
}

Visualization for augmented data

Description

For augmented data, we can create plots for specific types of dimension reduction.

Usage

plot_aug(x, plot_fun, ...)

Arguments

x

result of the function "gen_exprs"

plot_fun

"PCA", "MDS", "TSNE", "UMAP", "NMF", or "DiffusionMap"

...

additional parameters for the reduced dimension plots such as "scater::runPCA"

Value

plot for augmented data

Author(s)

Dongmin Jung

See Also

SingleCellExperiment::SingleCellExperiment, scater::logNormCounts, scater::runPCA, scater::runMDS, scater::runTSNE, scater::runUMAP, scater::runNMF, scater::runDiffusionMap, scater::plotPCA, scater::plotMDS, scater::plotTSNE, scater::plotUMAP, scater::plotNMF, scater::plotDiffusionMap

Examples

if (keras::is_keras_available() & reticulate::py_available()) {
    ### simulate differentially expressed genes
    set.seed(1)
    g <- 3
    n <- 100
    m <- 1000
    mu <- 5
    sigma <- 5
    mat <- matrix(rnorm(n*m*g, mu, sigma), m, n*g)
    rownames(mat) <- paste0("gene", seq_len(m))
    colnames(mat) <- paste0("cell", seq_len(n*g))
    group <- factor(sapply(seq_len(g), function(x) { 
        rep(paste0("group", x), n)
    }))
    names(group) <- colnames(mat)
    mu_upreg <- 6
    sigma_upreg <- 10
    deg <- 100
    for (i in seq_len(g)) {
        mat[(deg*(i-1) + 1):(deg*i), group == paste0("group", i)] <- 
            mat[1:deg, group==paste0("group", i)] + rnorm(deg, mu_upreg, sigma_upreg)
    }
    # positive expression only
    mat[mat < 0] <- 0
    x_train <- as.matrix(t(mat))
    
    
    ### model
    batch_size <- 32
    original_dim <- 1000
    intermediate_dim <- 512
    epochs <- 2
    # VAE
    vae_result <- fit_vae(x_train = x_train,
                        encoder_layers = list(layer_input(shape = c(original_dim)),
                                            layer_dense(units = intermediate_dim,
                                                        activation = "relu")),
                        decoder_layers = list(layer_dense(units = intermediate_dim,
                                                        activation = "relu"),
                                            layer_dense(units = original_dim,
                                                        activation = "sigmoid")),
                        epochs = epochs, batch_size = batch_size,
                        validation_split = 0.5,
                        use_generator = FALSE,
                        callbacks = keras::callback_early_stopping(
                            monitor = "val_loss",
                            patience = 10,
                            restore_best_weights = TRUE))
    # plot
    plot_vae(vae_result$model)
    
    
    ### generate samples
    set.seed(1)
    gen_sample_result <- gen_exprs(vae_result, num_samples = 100)
    # plot
    plot_aug(gen_sample_result, "PCA")
}

Visualization for the variational autoencoder

Description

You can create a plot of the VAE model. This plot can help you check that the model is connected the way you intended. The node colors indicate the components of the VAE.

Usage

plot_vae(x, node_color = list(encoder_col = "tomato",
                            mean_vector_col = "orange",
                            stddev_vector_col = "lavender",
                            latent_vector_col = "lightblue",
                            decoder_col = "palegreen",
                            condition_col = "gray"))

Arguments

x

VAE model

node_color

node colors for encoder(default: tomato), mean vector(default: orange), standard deviation vector(default: lavender), latent_vector(default: lightblue), decoder(default: palegreen), and condition(default: gray)

Value

plot for the model architecture

Author(s)

Dongmin Jung

See Also

purrr::map, purrr::map_chr, purrr::pluck, purrr::imap_dfr, DiagrammeR::grViz

Examples

if (keras::is_keras_available() & reticulate::py_available()) {
    ### simulate differentially expressed genes
    set.seed(1)
    g <- 3
    n <- 100
    m <- 1000
    mu <- 5
    sigma <- 5
    mat <- matrix(rnorm(n*m*g, mu, sigma), m, n*g)
    rownames(mat) <- paste0("gene", seq_len(m))
    colnames(mat) <- paste0("cell", seq_len(n*g))
    group <- factor(sapply(seq_len(g), function(x) { 
        rep(paste0("group", x), n)
    }))
    names(group) <- colnames(mat)
    mu_upreg <- 6
    sigma_upreg <- 10
    deg <- 100
    for (i in seq_len(g)) {
        mat[(deg*(i-1) + 1):(deg*i), group == paste0("group", i)] <- 
            mat[1:deg, group==paste0("group", i)] + rnorm(deg, mu_upreg, sigma_upreg)
    }
    # positive expression only
    mat[mat < 0] <- 0
    x_train <- as.matrix(t(mat))
    
    
    ### model
    batch_size <- 32
    original_dim <- 1000
    intermediate_dim <- 512
    epochs <- 2
    # VAE
    vae_result <- fit_vae(x_train = x_train,
                        encoder_layers = list(layer_input(shape = c(original_dim)),
                                            layer_dense(units = intermediate_dim,
                                                        activation = "relu")),
                        decoder_layers = list(layer_dense(units = intermediate_dim,
                                                        activation = "relu"),
                                            layer_dense(units = original_dim,
                                                        activation = "sigmoid")),
                        epochs = epochs, batch_size = batch_size,
                        validation_split = 0.5,
                        use_generator = FALSE,
                        callbacks = keras::callback_early_stopping(
                            monitor = "val_loss",
                            patience = 10,
                            restore_best_weights = TRUE))
    # plot
    plot_vae(vae_result$model)
}