Package: UPDhmm (via r-universe)

July 1, 2024

Title Detecting Uniparental Disomy through NGS trio data

Version 1.1.0

BugReports https://github.com/martasevilla/UPDhmm/issues

Description Uniparental disomy (UPD) is a genetic condition where an individual inherits both copies of a chromosome or part of it from one parent, rather than one copy from each parent. This package contains a HMM for detecting UPDs through HTS (High Throughput Sequencing) data from trio assays. By analyzing the genotypes in the trio, the model infers a hidden state (normal, father isodisomy, mother isodisomy, father heterodisomy and mother heterodisomy).

biocViews Software, HiddenMarkovModel, Genetics

License MIT + file LICENSE

Encoding UTF-8

LazyData false

RoxygenNote 7.3.1

Depends R (>= 4.3.0)

Imports HMM, utils, VariantAnnotation, GenomicRanges, S4Vectors, IRanges, stats

Suggests knitr, testthat (>= 2.1.0), BiocStyle, rmarkdown, markdown, karyoploteR, regioneR, dplyr

VignetteBuilder knitr

Roxygen list(markdown = TRUE)

URL https://github.com/martasevilla/UPDhmm

Language en-US

Repository https://bioc.r-universe.dev

RemoteUrl https://github.com/bioc/UPDhmm

RemoteRef HEAD

RemoteSha a88d0ff55009506bf773cefb3cb2d3a171ef28da

2 addOr

Contents

add0r		·	,		dataframe, in- thood ratio and
Index					7
	applyViterbi asDfVcf blocksVcf calculateEvents hmm vcfCheck	 		 	
	addOr				

Description

Function to transform a large collapsed VCF into a dataframe, incorporating predicted states along with the log-likelihood ratio and p-value.

Usage

```
addOr(filtered_def_blocks_states, largeCollapsedVcf, hmm, genotypes)
```

Arguments

filtered_def_blocks_states

data.frame object containing the blocks

large Collapsed Vcf

Input VCF file

hmm

Hidden Markov Model used to infer the events. The format should adhere to the general HMM format from HMM package with a series of elements:

- 1. The hidden states names in the "States" vector.
- 2. All possible observations in the "Symbols" vector.
- 3. Start probabilities of every hidden state in the "startProbs" vector.
- 4. Transition probabilities matrix of the hidden states in "transProbs".
- 5. Probabilities associated between every hidden state and all possible observations in the "emissionProbs" matrix.

genotypes

Possible GT formats and its correspondence with the hmm

Value

data.frame containing the transformed information.

applyViterbi 3

applyViterbi Apply the hidden Markov model using the Viterbi algorithm.	applyViterbi	Apply the hidden Markov model using the Viterbi algorithm.
---	--------------	--

Description

Apply the hidden Markov model using the Viterbi algorithm.

Usage

```
applyViterbi(largeCollapsedVcf, hmm, genotypes)
```

Arguments

largeCollapsedVcf

input vcf file

hmm Hidden Markov Model used to infer the events

genotypes Possible GT formats and its correspondence with the hmm

Value

large Collapsed Vcf

asDfVcf	Function to transform a large collapsed VCF into a dataframe with
	predicted states, including chromosome, start position, end position

and metadata.

Description

Function to transform a large collapsed VCF into a dataframe with predicted states, including chromosome, start position, end position and metadata.

Usage

```
asDfVcf(largeCollapsedVcf, genotypes)
```

Arguments

largeCollapsedVcf

Name of the large collapsed VCF file.

genotypes Possible GT formats and its correspondence with the hmm

Value

dataframe

4 calculateEvents

blocksVcf	Function to simplify contiguous variants with the same state into blocks.
-----------	---

Description

Function to simplify contiguous variants with the same state into blocks.

Usage

```
blocksVcf(df)
```

Arguments

df

data.frame resulting from the as_df_vcf function.

Value

data.frame containing information on the chromosome, start #' position of the block, end position of the block, and predicted state.

calculateEvents

Calculate UPD events in trio VCFs.

Description

This function predicts the hidden states by applying the Viterbi algorithm using the Hidden Markov Model (HMM) from the UPDhmm package. It takes the genotypes of the trio as input and includes a final step to simplify the results into blocks.

Usage

```
calculateEvents(largeCollapsedVcf, hmm = NULL)
```

Arguments

largeCollapsedVcf

The VCF file in the general format (largeCollapsedVcf) with VariantAnnotation package. Previously edited with vcfCheck() function from UPDhmm package

hmm

Default = NULL. If no arguments are added, the package will use the default HMM already implemented, based on Mendelian inheritance. If an optional HMM is desired, it should adhere to the general HMM format from HMM package with the following elements inside a list:

- 1. The hidden state names in the "States" vector.
- 2. All possible observations in the "Symbols" vector.

hmm 5

- 3. Start probabilities of every hidden state in the "startProbs" vector.
- 4. Transition probabilities matrix between states in "transProbs".
- 5. Probabilities associated between every hidden state and all possible observations in the "emissionProbs" matrix.

Value

A data.frame object containing all detected events in the provided trio. If no events are found, the function will return an empty data.frame.

Examples

```
file <- system.file(package = "UPDhmm", "extdata", "test_het_mat.vcf.gz")
vcf <- VariantAnnotation::readVcf(file)
processedVcf <- vcfCheck(vcf,
    proband = "NA19675", mother = "NA19678",
    father = "NA19679"
)</pre>
```

hmm

HMM data for predicting UPD events in trio genomic data

Description

This dataset provides Hidden Markov Model (HMM) parameters for predicting uniparental disomy (UPD) events in trio genomic data.

states Five different possible states.

symbols Code symbols used for genotype combinations.

startProbs The initial probabilities of each state.

transProbs Probabilities of transitioning from one state to another.

emissionProbs Given a certain genotype combination, the odds of each possible state.

Usage

```
data(hmm)
```

Format

A list with 5 different elements

Source

Created in-house based on basic Mendelian rules for calculating UPD events.

Examples

```
data(hmm)
```

6 vcfCheck

vcfCheck

Check quality parameters (optional) and change IDs.

Description

This function takes a VCF file and converts it into a largeCollapsedVcf object using the VariantAnnotation package. It also rename the sample for subsequent steps needed in UPDhmm package. Additionally, it features an optional parameter, quality_check, which triggers warnings when variants lack sufficient quality based on RD and GQ parameters in the input VCF.

Usage

```
vcfCheck(largeCollapsedVcf, father, mother, proband, check_quality = FALSE)
```

Arguments

largeCollapsedVcf

The file in largeCollapsedVcf format.

father Name of the father's sample.

mother Name of the mother's sample.

proband Name of the proband's sample.

check_quality Optional argument. TRUE/FALSE. If quality parameters want to be measured.

Default = FALSE

Value

largeCollapsedVcf (VariantAnnotation VCF format).

Examples

```
f1 <- system.file("extdata", "test_het_mat.vcf.gz", package = "UPDhmm")
vcf <- VariantAnnotation::readVcf(f1)
processedVcf <-
   vcfCheck(vcf, proband = "Sample1", mother = "Sample3", father = "Sample2")</pre>
```

Index

```
* datasets
    hmm, 5

addOr, 2
applyViterbi, 3
asDfVcf, 3

blocksVcf, 4

calculateEvents, 4

hmm, 5

vcfCheck, 6
```