A common task in bioinformatics is to create visualization of genomic data along genomic coordinates, together with necessary genomic annotation features like genes and transcripts on the same coordinate, in order to make sense of those data.
Typically, this can be accomplished with a browser-based genome
browser like UCSC genome browser or IGV, which requires to export the
data from R. There are also R packages developed to address this issue
but using static graphs, e.g. Gviz
and
ggbio
.
While bioconductor have packages that excel at representing and analyzing such genomic data, there lacks a flexible and interactive way to view them. Sometimes there is no need for a full-functional genome browser but a fast and convenient way to view the data which are typically represented by a R object. It should also be interactive to aid exploration, for example it may be dragable and it may enable tooltips to get detailed information about a separate feature quickly.
This is just the motivation of TnT: it aims to provide an interactive and flexible approach to visualize genomic data right in R. In order to accomplish this goal, TnT wraps the TnT javascript libraries and provides bindings to common bioconductor classes (e.g. GRanges, TxDb) that represent genomic data. The TnT javascript libraries which the R package is based on are a set of javascript libraries for visualizing trees- and track-based annotations, which can be used to create a simple genome browser.
TnT is a new package, any feedback or suggestion would appreciated, please email to Jialin Ma < [email protected] >. You can also find the source repository at https://github.com/marlin-na/TnT and the documentation site at http://tnt.marlin.pub . This vignette will also be extended in the future to include more details.
You can install the stable version of TnT from Bioconductor:
if (!requireNamespace("BiocManager", quietly=TRUE))
install.packages("BiocManager")
BiocManager::install("TnT")
Or alternatively, install the devel version from github:
Then attach the package.
This vignette will assume readers have experience with common data
structures in bioconductor, especially GRanges
class from
GenomicRanges
package.
Overall, the package works by constructing tracks from data (GRanges, TxDb, EnsDb, etc.), and then constructing a tnt board from a list of tracks.
So the first step is to choose a track constructor and use it to construct tracks from data. Different constructors have been provided by the package for different features and data types.
As a simple example, to construct a block track from GRanges object
gr <- GenomicRanges::GRanges("chr7",
ranges = IRanges(
start = c(26549019L, 26564119L, 26585667L, 26591772L, 26594192L, 26623835L,
26659284L, 26721294L, 26821518L, 26991322L),
end = c(26550183L, 26564500L, 26586158L, 26593309L, 26594570L, 26624150L,
26660352L, 26721717L, 26823297L, 26991841L)),
ID = 1:10,
Name = paste("My Range", 1:10)
)
btrack <- TnT::BlockTrack(gr)
btrack
## A BlockTrack
## | Label: gr
## | Background: missing, use 'white'
## | Height: 30
## | Data:
## | seqnames start end width strand tooltip.ID tooltip.Name
## | <factor> <integer> <integer> <integer> <factor> <integer> <character>
## | 1 chr7 26549019 26550183 1165 * 1 My Range 1
## | 2 chr7 26564119 26564500 382 * 2 My Range 2
## | 3 chr7 26585667 26586158 492 * 3 My Range 3
## | 4 chr7 26591772 26593309 1538 * 4 My Range 4
## | 5 chr7 26594192 26594570 379 * 5 My Range 5
## | 6 chr7 26623835 26624150 316 * 6 My Range 6
## | 7 chr7 26659284 26660352 1069 * 7 My Range 7
## | 8 chr7 26721294 26721717 424 * 8 My Range 8
## | 9 chr7 26821518 26823297 1780 * 9 My Range 9
## | 10 chr7 26991322 26991841 520 * 10 My Range 10
## | color key
## | <character> <integer>
## | 1 blue 1
## | 2 blue 2
## | 3 blue 3
## | 4 blue 4
## | 5 blue 5
## | 6 blue 6
## | 7 blue 7
## | 8 blue 8
## | 9 blue 9
## | 10 blue 10
As you can see, meta-columns of GRanges have been converted to the tooltip column in track data. This is the default argument behavior, see
## function (range, label = deparse(substitute(range)), tooltip = mcols(range),
## color = "blue", background = NULL, height = 30)
## NULL
The tooltip
can be given as a data frame parallel to the
data, the color
argument can also be a character vector
parallel to the data setting colors for each individual range.
In order to view track, simply put that track into a TnTBoard/TnTGenome:
## - Missing argument `view.range`:
## automatically select 26493666..27047193 on seqlevel chr7...
## - Missing argument `coord.range` and seqlength is unknown:
## automatically set coordinate limit to 26454128..27086731 ...
You can drag to move, scroll to zoom and click on feature to see the tooltip.
Similarly, tracks of different features could be constructed with other constructors. Here is a table showing these constructors and their data sources. Links to examples of each track type are also provided and you are recommended to go through them.
Constructor | Source | Feature type | Example |
---|---|---|---|
BlockTrack | GRanges | block | Block Track |
VlineTrack | Width-one GRanges | vline | Vline Track |
PinTrack | Width-one GRanges paired with values | pin | Pin Track |
LineTrack | Width-one GRanges paired with values | line | Line and Area Track |
AreaTrack | Width-one GRanges paired with values | area | Line and Area Track |
GeneTrackFromTxDb | TxDb | gene | Gene Track and Feature Track |
FeatureTrack | GRanges | gene | Gene Track and Feature Track |
GroupFeatureTrack | GRangesList | tx | Tx Track and GroupFeatureTrack |
TxTrackFromTxDb | TxDb | tx | Tx Track and GroupFeatureTrack |
TxTrackFromGRanges | GRanges paired with ‘type’ and ‘tx_id’ | tx | Tx Track and GroupFeatureTrack |
merge | Two or more tracks | composite | Composite Track |
It is worthwhile to mention CompositeTrack here: you can
merge
multiple tracks to construct a CompositeTrack so that
different types of features can be shown within one track. See example
here.
Given a constructed track, we may want to access or modify its data and options.
There are three common options for all types of tracks, they are
background
, height
and label
.
These three options can be accessed and modified via
trackSpec
and trackSpec<-
. For example:
## NULL
btrack2 <- btrack
TnT::trackSpec(btrack2, "background") <- "blanchedalmond"
TnT::trackSpec(btrack2, "label") <- "My Ranges"
TnT::trackSpec(btrack2, "height") <- 50
Data of tracks are normally stored with a class that inherits
GRanges
(except CompositeTrack, in which the data is stored
as a list of tracks), and can be accessed or modified via
trackData
or trackData<-
. There are also
convenience shortcuts track$name
and
track$name <- value
for
trackData(track)$name
and
trackData(track)$name <- value
, respectively. As an
example:
## [1] "blue" "blue" "blue" "blue" "blue" "blue" "blue" "blue" "blue" "blue"
As an example, let’s also modify the data:
Finally, we put the modified track and the original track together to see the difference.
## - Missing argument `view.range`:
## automatically select 26504916..27045943 on seqlevel chr7...
## - Missing argument `coord.range` and seqlength is unknown:
## automatically set coordinate limit to 26451985..27098874 ...
Another thing we may want to modify is tooltip. By constructing the
track via constructors (except those constructed from TxDb), tooltip can
be given as a data frame parallel to the data. After the track is
constructed, the tooltip can accessed via tooltip(track)
which is an shortcut to trackData(track)$tooltip
. For
example:
TnT::tooltip(btrack2) <- cbind(TnT::tooltip(btrack2),
as.data.frame(TnT::trackData(btrack2)))
TnT::TnTGenome(btrack2, view.range = TnT::trackData(btrack2)[4] * .05)
## - Missing argument `coord.range` and seqlength is unknown:
## automatically set coordinate limit to 26464128..27096731 ...
Try to click on the block to see the tooltip.
In previous examples, we have already seen how to show tracks with a TnTBoard or TnTGenome. A TnTBoard stores a list of tracks and show them with the same coordinate. You may already have noticed the difference between TnTBoard and TnTGenome: TnTGenome is just a TnTBoard with axis and location label.
In this part, I will introduce some arguments that can be optionally provided to control the board. They are:
view.range
: GRanges, to set the initial view
range.coord.range
: IRanges or numeric, to set the cooordinate
limit.zoom.allow
: IRanges or numeric, to set the limit of
extent when zooming in and out.allow.drag
: Logical, if FALSE, the board will not be
able to move or zoom.In case that view.range
, coord.range
and
zoom.allow
not provided, TnT will take a guess on them.
Some considerations are:
view.range
: Try to use the seqlevel on which all tracks
have features and try to use intersection of ranges of all tracks.coord.range
: If seqinfo
of the tracks have
seqlengths
available, then use 1 to seqlength as coordinate
range. If not, try to find based on ranges of features (i.e. to cover
all features on that seqlevel).An example using these arguments:
set.seed(6)
pintrack <- TnT::PinTrack(GRanges("chr7", IRanges(start = sample(26300000:27000000, 4), width = 1)),
value = c(1,3,2,4), color = c("blue", "yellow", "green", "red"))
TnT::TnTGenome(
list(pintrack, btrack2),
view.range = GRanges("chr7", IRanges(26550000, 26600000)),
coord.range = IRanges(26350000, 27050000),
zoom.allow = IRanges(50000, 200000)
)