Package 'TRONCO'

Title: TRONCO, an R package for TRanslational ONCOlogy
Description: The TRONCO (TRanslational ONCOlogy) R package collects algorithms to infer progression models via the approach of Suppes-Bayes Causal Network, both from an ensemble of tumors (cross-sectional samples) and within an individual patient (multi-region or single-cell samples). The package provides parallel implementation of algorithms that process binary matrices where each row represents a tumor sample and each column a single-nucleotide or a structural variant driving the progression; a 0/1 value models the absence/presence of that alteration in the sample. The tool can import data from plain, MAF or GISTIC format files, and can fetch it from the cBioPortal for cancer genomics. Functions for data manipulation and visualization are provided, as well as functions to import/export such data to other bioinformatics tools for, e.g, clustering or detection of mutually exclusive alterations. Inferred models can be visualized and tested for their confidence via bootstrap and cross-validation. TRONCO is used for the implementation of the Pipeline for Cancer Inference (PICNIC).
Authors: Marco Antoniotti [ctb], Giulio Caravagna [aut], Luca De Sano [cre, aut] , Alex Graudenzi [aut], Giancarlo Mauri [ctb], Bud Mishra [ctb], Daniele Ramazzotti [aut]
Maintainer: Luca De Sano <[email protected]>
License: GPL-3
Version: 2.39.0
Built: 2025-01-07 05:46:55 UTC
Source: https://github.com/bioc/TRONCO

Help Index


Atypical chronic myeloid leukemia dataset

Description

This file contains a TRONCO compliant dataset

Usage

data(aCML)

Format

TRONCO compliant dataset

Value

A standard TRONCO object

Author(s)

Luca De Sano

Source

data from http://www.nature.com/ng/journal/v45/n1/full/ng.2495.html


AND

Description

AND hypothesis

Usage

AND(...)

Arguments

...

Atoms of the co-occurance pattern given either as labels or as partielly lifted vectors.

Value

Vector to be added to the lifted genotype resolving the co-occurance pattern


annotate.description

Description

Annotate a description on the selected dataset

Usage

annotate.description(x, label)

Arguments

x

A TRONCO compliant dataset.

label

A string

Value

A TRONCO compliant dataset.

Examples

data(test_dataset)
annotate.description(test_dataset, 'new description')

annotate.stages

Description

Annotate stage information on the selected dataset

Usage

annotate.stages(x, stages, match.TCGA.patients = FALSE)

Arguments

x

A TRONCO compliant dataset.

stages

A list of stages. Rownames must match samples list of x

match.TCGA.patients

Match using TCGA notations (only first 12 characters)

Value

A TRONCO compliant dataset.

Examples

data(test_dataset)
data(stage)
test_dataset = annotate.stages(test_dataset, stage)
as.stages(test_dataset)

as.adj.matrix

Description

Extract the adjacency matrix of a TRONCO model. The matrix is indexed with colnames/rownames which represent genotype keys - these can be resolved with function keysToNames. It is possible to specify a subset of events to build the matrix, a subset of models if multiple reconstruction have been performed. Also, either the prima facie matrix or the post-regularization matrix can be extracted.

Usage

as.adj.matrix(x, events = as.events(x), models = names(x$model), type = "fit")

Arguments

x

A TRONCO model.

events

A subset of events as of as.events(x), all by default.

models

A subset of reconstructed models, all by default.

type

Either the prima facie ('pf') or the post-regularization ('fit') matrix, 'fit' by default.

Value

The adjacency matrix of a TRONCO model.

Examples

data(test_model)
as.adj.matrix(test_model)
as.adj.matrix(test_model, events=as.events(test_model)[5:15,])
as.adj.matrix(test_model, events=as.events(test_model)[5:15,], type='pf')

as.alterations

Description

Return a dataset where all events for a gene are merged in a unique event, i.e., a total of gene-level alterations diregarding the event type. Input 'x' is checked to be a TRONCO compliant dataset - see is.compliant.

Usage

as.alterations(x, new.type = "Alteration", new.color = "khaki", silent = FALSE)

Arguments

x

A TRONCO compliant dataset.

new.type

The types label of the new event type, 'Alteration' by default.

new.color

The color of the event new.type, default 'khaki'.

silent

A parameter to disable/enable verbose messages.

Value

A TRONCO compliant dataset with alteration profiles.

Examples

data(muts)
as.alterations(muts)

as.bootstrap.scores

Description

Returns a dataframe with all the bootstrap score in a TRONCO model. It is possible to specify a subset of events or models if multiple reconstruction have been performed.

Usage

as.bootstrap.scores(x, events = as.events(x), models = names(x$model))

Arguments

x

A TRONCO model.

events

A subset of events as of as.events(x), all by default.

models

A subset of reconstructed models, all by default.

Value

All the bootstrap scores in a TRONCO model

Examples

data(test_model)
as.bootstrap.scores(test_model)
as.bootstrap.scores(test_model, events=as.events(test_model)[5:15,])

as.colors

Description

Return the colors associated to each type of event in 'x', which should be a TRONCO compliant dataset - see is.compliant.

Usage

as.colors(x)

Arguments

x

A TRONCO compliant dataset.

Value

A named vector of colors.

Examples

data(test_dataset)
as.colors(test_dataset)

as.conditional.probs

Description

Extract the conditional probabilities from a TRONCO model. The return matrix is indexed with rownames which represent genotype keys - these can be resolved with function keysToNames. It is possible to specify a subset of events to build the matrix, a subset of models if multiple reconstruction have been performed. Also, either the observed or fit probabilities can be extracted.

Usage

as.conditional.probs(
  x,
  events = as.events(x),
  models = names(x$model),
  type = "observed"
)

Arguments

x

A TRONCO model.

events

A subset of events as of as.events(x), all by default.

models

A subset of reconstructed models, all by default.

type

observed ('observed')

Details

#' @examples data(test_model) as.conditional.probs(test_model) as.conditional.probs(test_model, events=as.events(test_model)[5:15,])

Value

The conditional probabilities in a TRONCO model.


as.confidence

Description

Return confidence information for a TRONCO model. Available information are: temporal priority (tp), probability raising (pr), hypergeometric test (hg), parametric (pb), non parametric (npb) or statistical (sb) bootstrap, entropy loss (eloss), prediction error (prederr). Confidence is available only once a model has been reconstructed with any of the algorithms implemented in TRONCO. If more than one model has been reconstructed - for instance via multiple regularizations - confidence information is appropriately nested. The requested confidence is specified via vector parameter conf.

Usage

as.confidence(x, conf, models = names(x$model))

Arguments

x

A TRONCO model.

conf

A vector with any of 'tp', 'pr', 'hg', 'npb', 'pb', 'sb', 'eloss', 'prederr' or 'posterr'.

models

The name of the models to extract, all by default.

Value

A list of matrices with the event-to-event confidence.

Examples

data(test_model)
as.confidence(test_model, conf='tp')
as.confidence(test_model, conf=c('tp', 'hg'))

as.description

Description

Return the description annotating the dataset, if any. Input 'x' should be a TRONCO compliant dataset - see is.compliant.

Usage

as.description(x)

Arguments

x

A TRONCO compliant dataset.

Value

The description annotating the dataset, if any.

Examples

data(test_dataset)
as.description(test_dataset)

as.events

Description

Return all events involving certain genes and of a certain type in 'x', which should be a TRONCO compliant dataset - see is.compliant.

Usage

as.events(x, genes = NA, types = NA, keysToNames = FALSE)

Arguments

x

A TRONCO compliant dataset.

genes

The genes to consider, if NA all available genes are used.

types

The types of events to consider, if NA all available types are used.

keysToNames

If TRUE return a list of mnemonic name composed by type + gene

Value

A matrix with 2 columns (event type, gene name) for the events found.

Examples

data(test_dataset)
as.events(test_dataset)
as.events(test_dataset, types='ins_del')
as.events(test_dataset, genes = 'TET2')
as.events(test_dataset, types='Missing')

as.events.in.patterns

Description

Return the list of events present in selected patterns

Usage

as.events.in.patterns(x, patterns = NULL)

Arguments

x

A TRONCO compliant dataset.

patterns

A list of patterns for which the list will be returned

Value

A list of events present in patterns which consitute CAPRI's hypotheses

Examples

data(test_dataset)
as.events.in.patterns(test_dataset)
as.events.in.patterns(test_dataset, patterns='XOR_EZH2')

as.events.in.sample

Description

Return a list of events which are observed in the input samples list

Usage

as.events.in.sample(x, sample)

Arguments

x

A TRONCO compliant dataset

sample

Vector of sample names

Value

A list of events which are observed in the input samples list

Examples

data(test_dataset)
as.events.in.sample(test_dataset, c('patient 1', 'patient 7'))

as.gene

Description

Return the genotypes for a certain set of genes and type of events. Input 'x' should be a TRONCO compliant dataset - see is.compliant. In this case column names are substituted with events' types.

Usage

as.gene(x, genes, types = NA)

Arguments

x

A TRONCO compliant dataset.

genes

The genes to consider, if NA all available genes are used.

types

The types of events to consider, if NA all available types are used.

Value

A matrix, subset of as.genotypes(x) with colnames substituted with events' types.

Examples

data(test_dataset)
as.gene(test_dataset, genes = c('EZH2', 'ASXL1'))

as.genes

Description

Return all gene symbols for which a certain type of event exists in 'x', which should be a TRONCO compliant dataset - see is.compliant.

Usage

as.genes(x, types = NA)

Arguments

x

A TRONCO compliant dataset.

types

The types of events to consider, if NA all available types are used.

Value

A vector of gene symbols for which a certain type of event exists

Examples

data(test_dataset)
as.genes(test_dataset)

as.genes.in.patterns

Description

Return the list of genes present in selected patterns

Usage

as.genes.in.patterns(x, patterns = NULL)

Arguments

x

A TRONCO compliant dataset.

patterns

A list of patterns for which the list will be returned

Value

A list of genes present in patterns which consitute CAPRI's hypotheses

Examples

data(test_dataset)
as.genes.in.patterns(test_dataset)
as.genes.in.patterns(test_dataset, patterns='XOR_EZH2')

as.genotypes

Description

Return all genotypes for input 'x', which should be a TRONCO compliant dataset see is.compliant. Function keysToNames can be used to translate colnames to events.

Usage

as.genotypes(x)

Arguments

x

A TRONCO compliant dataset.

Value

A TRONCO genotypes matrix.

Examples

data(test_dataset)
as.genotypes(test_dataset)

as.hypotheses

Description

Return the hypotheses in the dataset which constitute CAPRI's hypotheses.

Usage

as.hypotheses(x, cause = NA, effect = NA)

Arguments

x

A TRONCO compliant dataset.

cause

A list of genes to use as causes

effect

A list of genes to use as effects

Value

The hypotheses in the dataset which constitute CAPRI's hypotheses.

Examples

data(test_dataset)
as.hypotheses(test_dataset)

as.joint.probs

Description

Extract the joint probabilities from a TRONCO model. The return matrix is indexed with rownames/colnames which represent genotype keys - these can be resolved with function keysToNames. It is possible to specify a subset of events to build the matrix, a subset of models if multiple reconstruction have been performed. Also, either the observed or fit probabilities can be extracted.

Usage

as.joint.probs(
  x,
  events = as.events(x),
  models = names(x$model),
  type = "observed"
)

Arguments

x

A TRONCO model.

events

A subset of events as of as.events(x), all by default.

models

A subset of reconstructed models, all by default.

type

observed

Value

The joint probabilities in a TRONCO model.

Examples

data(test_model)
as.joint.probs(test_model)
as.joint.probs(test_model, events=as.events(test_model)[5:15,])

as.kfold.eloss

Description

Returns a dataframe with all the average/stdev entropy loss score of a TRONCO model. It is possible to specify models if multiple reconstruction have been performed.

Usage

as.kfold.eloss(x, models = names(x$model), values = FALSE)

Arguments

x

A TRONCO model.

models

A subset of reconstructed models, all by default.

values

If you want to see also the values

Value

All the bootstrap scores in a TRONCO model

Examples

data(test_model_kfold)
as.kfold.eloss(test_model_kfold)
as.kfold.eloss(test_model_kfold, models='capri_aic')

as.kfold.posterr

Description

Returns a dataframe with all the posterior classification error score in a TRONCO model. It is possible to specify a subset of events or models if multiple reconstruction have been performed.

Usage

as.kfold.posterr(
  x,
  events = as.events(x),
  models = names(x$model),
  values = FALSE,
  table = FALSE
)

Arguments

x

A TRONCO model.

events

A subset of events as of as.events(x), all by default.

models

A subset of reconstructed models, all by default.

values

If you want to see also the values

table

Keep the original table (defaul false)

Value

All the posterior classification error scores in a TRONCO model

Examples

data(test_model_kfold)
data(test_model)
as.kfold.posterr(test_model_kfold)
as.kfold.posterr(test_model_kfold, events=as.events(test_model)[5:15,])

as.kfold.prederr

Description

Returns a dataframe with all the prediction error score in a TRONCO model. It is possible to specify a subset of events or models if multiple reconstruction have been performed.

Usage

as.kfold.prederr(
  x,
  events = as.events(x),
  models = names(x$model),
  values = FALSE,
  table = FALSE
)

Arguments

x

A TRONCO model.

events

A subset of events as of as.events(x), all by default.

models

A subset of reconstructed models, all by default.

values

If you want to see also the values

table

Keep the original table (defaul false)

Value

All the bootstrap scores in a TRONCO model

Examples

data(test_model_kfold)
as.kfold.prederr(test_model_kfold)
as.kfold.prederr(test_model_kfold, models='capri_aic')

as.marginal.probs

Description

Extract the marginal probabilities from a TRONCO model. The return matrix is indexed with rownames which represent genotype keys - these can be resolved with function keysToNames. It is possible to specify a subset of events to build the matrix, a subset of models if multiple reconstruction have been performed. Also, either the observed or fit probabilities can be extracted.

Usage

as.marginal.probs(
  x,
  events = as.events(x),
  models = names(x$model),
  type = "observed"
)

Arguments

x

A TRONCO model.

events

A subset of events as of as.events(x), all by default.

models

A subset of reconstructed models, all by default.

type

observed.

Value

The marginal probabilities in a TRONCO model.

Examples

data(test_model)
as.marginal.probs(test_model)
as.marginal.probs(test_model, events=as.events(test_model)[5:15,])

as.models

Description

Extract the models from a reconstructed object.

Usage

as.models(x, models = names(x$model))

Arguments

x

A TRONCO model.

models

The name of the models to extract, e.g. 'bic', 'aic', 'caprese', all by default.

Value

The models in a reconstructed object.

Examples

data(test_model)
as.models(test_model)

as.parameters

Description

Get parameters of a model

Usage

as.parameters(x)

Arguments

x

A TRONCO model.

Value

A list of parameters

Examples

data(test_model)
as.parameters(test_model)

as.pathway

Description

Given a cohort and a pathway, return the cohort with events restricted to genes involved in the pathway. This might contain a new 'pathway' genotype with an alteration mark if any of the involved genes are altered.

Usage

as.pathway(
  x,
  pathway.genes,
  pathway.name,
  pathway.color = "yellow",
  aggregate.pathway = TRUE,
  silent = FALSE
)

Arguments

x

A TRONCO compliant dataset.

pathway.genes

Gene (symbols) involved in the pathway.

pathway.name

Pathway name for visualization.

pathway.color

Pathway color for visualization.

aggregate.pathway

If TRUE drop the events for the genes in the pathway.

silent

A parameter to disable/enable verbose messages.

Value

Extract the subset of events for genes which are part of a pathway.

Examples

data(test_dataset)
p = as.pathway(test_dataset, c('ASXL1', 'TET2'), 'test_pathway')

as.patterns

Description

Return the patterns in the dataset which constitute CAPRI's hypotheses.

Usage

as.patterns(x)

Arguments

x

A TRONCO compliant dataset.

Value

The patterns in the dataset which constitute CAPRI's hypotheses.

Examples

data(test_dataset)
as.patterns(test_dataset)

as.samples

Description

Return all sample IDs for input 'x', which should be a TRONCO compliant dataset - see is.compliant.

Usage

as.samples(x)

Arguments

x

A TRONCO compliant dataset.

Value

A vector of sample IDs

Examples

data(test_dataset)
as.samples(test_dataset)

as.selective.advantage.relations

Description

Returns a dataframe with all the selective advantage relations in a TRONCO model. Confidence is also shown - see as.confidence. It is possible to specify a subset of events or models if multiple reconstruction have been performed.

Usage

as.selective.advantage.relations(
  x,
  events = as.events(x),
  models = names(x$model),
  type = "fit"
)

Arguments

x

A TRONCO model.

events

A subset of events as of as.events(x), all by default.

models

A subset of reconstructed models, all by default.

type

Either Prima Facie ('pf') or fit ('fit') probabilities, 'fit' by default.

Value

All the selective advantage relations in a TRONCO model

Examples

data(test_model)
as.selective.advantage.relations(test_model)
as.selective.advantage.relations(test_model, events=as.events(test_model)[5:15,])
as.selective.advantage.relations(test_model, events=as.events(test_model)[5:15,], type='pf')

as.stages

Description

Return the association sample -> stage, if any. Input 'x' should be a TRONCO compliant dataset - see is.compliant.

Usage

as.stages(x)

Arguments

x

A TRONCO compliant dataset.

Value

A matrix with 1 column annotating stages and rownames as sample IDs.

Examples

data(test_dataset)
data(stage)
test_dataset = annotate.stages(test_dataset, stage)
as.stages(test_dataset)

as.types

Description

Return the types of events for a set of genes which are in 'x', which should be a TRONCO compliant dataset - see is.compliant.

Usage

as.types(x, genes = NA)

Arguments

x

A TRONCO compliant dataset.

genes

A list of genes to consider, if NA all genes are used.

Value

A matrix with 1 column annotating stages and rownames as sample IDs.

Examples

data(test_dataset)
as.types(test_dataset)
as.types(test_dataset, genes='TET2')

as.types.in.patterns

Description

Return the list of types present in selected patterns

Usage

as.types.in.patterns(x, patterns = NULL)

Arguments

x

A TRONCO compliant dataset.

patterns

A list of patterns for which the list will be returned

Value

A list of types present in patterns which consitute CAPRI's hypotheses

Examples

data(test_dataset)
as.types.in.patterns(test_dataset)
as.types.in.patterns(test_dataset, patterns='XOR_EZH2')

change.color

Description

Change the color of an event type

Usage

change.color(x, type, new.color)

Arguments

x

A TRONCO compliant dataset.

type

An event type

new.color

The new color (either HEX or R Color)

Value

A TRONCO complian dataset.

Examples

data(test_dataset)
dataset = change.color(test_dataset, 'ins_del', 'red')

consolidate.data

Description

Verify if the input data are consolidate, i.e., if there are events with 0 or 1 probability or indistinguishable in terms of observations

Usage

consolidate.data(x, print = FALSE)

Arguments

x

A TRONCO compliant dataset.

print

A boolean value stating whether to print of not the summary

Value

The list of any 0 probability, 1 probability and indistinguishable.

Examples

data(test_dataset)
consolidate.data(test_dataset)

GISTIC example data

Description

This dataset contains an example of GISTIC input of a crc cohort of patients

Usage

data(crc_gistic)

Format

GISTIC score

Value

A gistic file

Author(s)

Daniele Ramazzotti

Source

data from http://www.nature.com/nature/journal/v487/n7407/full/nature11252.html


MAF example data

Description

This dataset contains an example of MAF input of a crc cohort of patients

Usage

data(crc_maf)

Format

Manual Annotated Format

Value

A MAF file

Author(s)

Daniele Ramazzotti

Source

data from http://www.nature.com/nature/journal/v487/n7407/full/nature11252.html


Plain mutation dataset

Description

This dataset contains an example of plain input of a crc cohort of patients

Usage

data(crc_plain)

Format

plain data

Value

A plain input

Author(s)

Daniele Ramazzotti

Source

data from http://www.nature.com/nature/journal/v487/n7407/full/nature11252.html


delete.event

Description

Delete an event from the dataset

Usage

delete.event(x, gene, type)

Arguments

x

A TRONCO compliant dataset.

gene

The name of the gene to delete.

type

The name of the type to delete.

Value

A TRONCO complian dataset.

Examples

data(test_dataset)
test_dataset = delete.event(test_dataset, 'TET2', 'ins_del')

delete.gene

Description

Delete a gene

Usage

delete.gene(x, gene)

Arguments

x

A TRONCO compliant dataset.

gene

The name of the gene to delete.

Value

A TRONCO complian dataset.

Examples

data(test_dataset)
test_dataset = delete.gene(test_dataset, 'TET2')

delete.hypothesis

Description

Delete an hypothesis from the dataset based on a selected event. Check if the selected event exist in the dataset and delete his associated hypothesis

Usage

delete.hypothesis(x, event = NA, cause = NA, effect = NA)

Arguments

x

A TRONCO compliant dataset.

event

Can be an event or pattern name

cause

Can be an event or pattern name

effect

Can be an event or pattern name

Value

A TRONCO complian dataset.

Examples

data(test_dataset)
delete.hypothesis(test_dataset, event='TET2')
delete.hypothesis(test_dataset, cause='EZH2')
delete.hypothesis(test_dataset, event='XOR_EZH2')

delete.model

Description

Delete a reconstructed model from the dataset

Usage

delete.model(x)

Arguments

x

A TRONCO compliant dataset.

Value

A TRONCO complian dataset.

Examples

data(test_model)
model = delete.model(test_model)
has.model(model)

delete.pattern

Description

Delete a pattern and every associated hypotheses from the dataset

Usage

delete.pattern(x, pattern)

Arguments

x

A TRONCO compliant dataset.

pattern

A pattern name

Value

A TRONCO complian dataset.

Examples

data(test_dataset)
delete.pattern(test_dataset, pattern='XOR_EZH2')

delete.samples

Description

Delete samples from selected dataset

Usage

delete.samples(x, samples)

Arguments

x

A TRONCO compliant dataset.

samples

An array of samples name

Value

A TRONCO complian dataset.

Examples

data(test_dataset)
dataset = delete.samples(test_dataset, c('patient 1', 'patient 4'))

delete.type

Description

Delete an event type

Usage

delete.type(x, type)

Arguments

x

A TRONCO compliant dataset.

type

The name of the type to delete.

Value

A TRONCO complian dataset.

Examples

data(test_dataset)
test_dataset = delete.type(test_dataset, 'Pattern')

duplicates

Description

Return the events duplicated in x, if any. Input 'x' should be a TRONCO compliant dataset - see is.compliant.

Usage

duplicates(x)

Arguments

x

A TRONCO compliant dataset.

Value

A subset of as.events(x) with duplicated events.

Examples

data(test_dataset)
duplicates(test_dataset)

ebind

Description

Binds events from one or more datasets, which must be defined over the same set of samples.

Usage

ebind(..., silent = FALSE)

Arguments

...

the input datasets

silent

A parameter to disable/enable verbose messages.

Value

A TRONCO complian dataset.


enforce.numeric

Description

Convert the internal reprensentation of genotypes to numeric, if not.

Usage

enforce.numeric(x)

Arguments

x

A TRONCO compliant dataset.

Value

Convert the internal reprensentation of genotypes to numeric, if not.

Examples

data(test_dataset)
test_dataset = enforce.numeric(test_dataset)

enforce.string

Description

Convert the internal representation of genotypes to character, if not.

Usage

enforce.string(x)

Arguments

x

A TRONCO compliant dataset.

Value

Convert the internal reprensentation of genotypes to character, if not.

Examples

data(test_dataset)
test_dataset = enforce.string(test_dataset)

events.selection

Description

select a subset of the input genotypes 'x'. Selection can be done by frequency and gene symbols.

Usage

events.selection(
  x,
  filter.freq = NA,
  filter.in.names = NA,
  filter.out.names = NA,
  silent = FALSE
)

Arguments

x

A TRONCO compliant dataset.

filter.freq

[0,1] value which constriants the minimum frequence of selected events

filter.in.names

gene symbols which will be included

filter.out.names

gene symbols which will NOT be included

silent

A parameter to disable/enable verbose messages.

Value

A TRONCO compliant dataset.

Examples

data(test_dataset)
dataset = events.selection(test_dataset, 0.3)

export.graphml

Description

Create a graphML object which can be imported in cytoscape This function is based on the tronco.plot fuction

Usage

export.graphml(x, file, ...)

Arguments

x

A TRONCO compliant dataset

file

Where to save the output

...

parameters for tronco.plot

Examples

data(test_model)
export.graphml(test_model, file='text.xml', scale.nodes=0.3)

export,mutex

Description

Create an input file for MUTEX (ref: https://code.google.com/p/mutex/ )

Usage

export.mutex(
  x,
  filename = "tronco_to_mutex",
  filepath = "./",
  label.mutation = "SNV",
  label.amplification = list("High-level Gain"),
  label.deletion = list("Homozygous Loss")
)

Arguments

x

A TRONCO compliant dataset.

filename

The name of the file

filepath

The path where to save the file

label.mutation

The event type to use as mutation

label.amplification

The event type to use as amplification (can be a list)

label.deletion

The event type to use as amplification (can be a list)

Value

A MUTEX example matrix

Examples

data(crc_gistic)
dataset = import.GISTIC(crc_gistic)
export.mutex(dataset)

export.nbs.input

Description

Create a .mat file which can be used with NBS clustering (ref: http://chianti.ucsd.edu/~mhofree/wordpress/?page_id=26)

Usage

export.nbs.input(x, map_hugo_entrez, file = "tronco_to_nbs.mat")

Arguments

x

A TRONCO compliant dataset.

map_hugo_entrez

Hugo_Symbol-Entrez_Gene_Id map

file

output file name


extract.MAF.HuGO.Entrez.map

Description

Extract a map Hugo_Symbol -> Entrez_Gene_Id from a MAF input file. If some genes map to ID 0 a warning is raised.

Usage

extract.MAF.HuGO.Entrez.map(file, sep = "\t")

Arguments

file

MAF filename

sep

MAF separator, default \'\t\'

Value

A mapHugo_Symbol -> Entrez_Gene_Id.


genes.table.report

Description

Generate PDF and laex tables

Usage

genes.table.report(
  x,
  name,
  dir = getwd(),
  maxrow = 33,
  font = 10,
  height = 11,
  width = 8.5,
  fill = "lightblue",
  silent = FALSE
)

Arguments

x

A TRONCO compliant dataset.

name

filename

dir

working directory

maxrow

maximum number of row per page

font

document fontsize

height

table height

width

table width

fill

fill color

silent

A parameter to disable/enable verbose messages.

Value

LaTEX code


has.duplicates

Description

Return true if there are duplicated events in the TRONCO dataset 'x', which should be a TRONCO compliant dataset - see is.compliant. Events are identified by a gene name, e.g., a HuGO_Symbol, and a type label, e.g., c('SNP', 'KRAS')

Usage

has.duplicates(x)

Arguments

x

A TRONCO compliant dataset.

Value

TRUE if there are duplicated events in x.

Examples

data(test_dataset)
has.duplicates(test_dataset)

has.model

Description

Return true if there is a reconstructed model in the TRONCO dataset 'x', which should be a TRONCO compliant dataset - see is.compliant.

Usage

has.model(x)

Arguments

x

A TRONCO compliant dataset.

Value

TRUE if there is a reconstructed model in x.

Examples

data(test_dataset)
has.model(test_dataset)

has stages

Description

Return true if the TRONCO dataset 'x', which should be a TRONCO compliant dataset - see is.compliant - has stage annotations for samples. Some sample stages might be annotated as NA, but not all.

Usage

has.stages(x)

Arguments

x

A TRONCO compliant dataset.

Value

TRUE if the TRONCO dataset has stage annotations for samples.

Examples

data(test_dataset)
has.stages(test_dataset)
data(stage)
test_dataset = annotate.stages(test_dataset, stage)
has.stages(test_dataset)

hypothesis add

Description

Add a new hypothesis by creating a new event and adding it to the compliant genotypes

Usage

hypothesis.add(
  data,
  pattern.label,
  lifted.pattern,
  pattern.effect = "*",
  pattern.cause = "*"
)

Arguments

data

A TRONCO compliant dataset.

pattern.label

Label of the new hypothesis.

lifted.pattern

Vector to be added to the lifted genotype resolving the pattern related to the new hypothesis

pattern.effect

Possibile effects for the pattern.

pattern.cause

Possibile causes for the pattern.

Value

A TRONCO compliant object with the added hypothesis


hypothesis add group

Description

Add all the hypotheses related to a group of events

Usage

hypothesis.add.group(
  x,
  FUN,
  group,
  pattern.cause = "*",
  pattern.effect = "*",
  dim.min = 2,
  dim.max = length(group),
  min.prob = 0,
  silent = FALSE
)

Arguments

x

A TRONCO compliant dataset.

FUN

Type of pattern to be added, e.g., co-occurance, soft or hard exclusivity.

group

Group of events to be considered.

pattern.cause

Possibile causes for the pattern.

pattern.effect

Possibile effects for the pattern.

dim.min

Minimum cardinality of the subgroups to be considered.

dim.max

Maximum cardinality of the subgroups to be considered.

min.prob

Minimum probability associated to each valid group.

silent

A parameter to disable/enable verbose messages.

Value

A TRONCO compliant object with the added hypotheses


hypothesis.add.homologous

Description

Add all the hypotheses related to homologou events

Usage

hypothesis.add.homologous(
  x,
  pattern.cause = "*",
  pattern.effect = "*",
  genes = as.genes(x),
  silent = FALSE
)

Arguments

x

A TRONCO compliant dataset.

pattern.cause

Possibile causes for the pattern.

pattern.effect

Possibile effects for the pattern.

genes

List of genes to be considered as possible homologous. For these genes, all the types of mutations will be considered functionally equivalent.

silent

A parameter to disable/enable verbose messages.

Value

A TRONCO compliant object with the added hypotheses


import.genotypes

Description

Import a matrix of 0/1 alterations as a TRONCO compliant dataset. Input "geno" can be either a dataframe or a file name. In any case the dataframe or the table stored in the file must have a column for each altered gene and a rows for each sample. Colnames will be used to determine gene names, if data is loaded from file the first column will be assigned as rownames. For details and examples regarding the loading functions provided by the package we refer to the Vignette Section 3.

Usage

import.genotypes(geno, event.type = "variant", color = "Darkgreen")

Arguments

geno

Either a dataframe or a filename

event.type

Any 1 in "geno" will be interpreted as a an observed alteration labeled with type "event.type"

color

This is the color used for visualization of events labeled as of "event.type"

Value

A TRONCO compliant dataset


import.GISTIC

Description

Transform GISTIC scores for CNAs in a TRONCO compliant object. Input can be either a matrix, with columns for each altered gene and rows for each sample; in this case colnames/rownames mut be provided. If input is a character an attempt to load a table from file is performed. In this case the input table format should be constitent with TCGA data for focal CNA; there should hence be: one column for each sample, one row for each gene, a column Hugo_Symbol with every gene name and a column Entrez_Gene_Id with every gene\'s Entrez ID. A valid GISTIC score should be any value of: "Homozygous Loss" (-2), "Heterozygous Loss" (-1), "Low-level Gain" (+1), "High-level Gain" (+2). For details and examples regarding the loading functions provided by the package we refer to the Vignette Section 3.

Usage

import.GISTIC(
  x,
  filter.genes = NULL,
  filter.samples = NULL,
  silent = FALSE,
  trim = TRUE,
  rna.seq.data = NULL,
  rna.seq.up = NULL,
  rna.seq.down = NULL
)

Arguments

x

Either a dataframe or a filename

filter.genes

A list of genes

filter.samples

A list of samples

silent

A parameter to disable/enable verbose messages.

trim

Remove the events without occurrence

rna.seq.data

Either a dataframe or a filename

rna.seq.up

TODO

rna.seq.down

TODO

Value

A TRONCO compliant representation of the input CNAs.

Examples

data(crc_gistic)
gistic = import.GISTIC(crc_gistic)

import.MAF

Description

Import mutation profiles from a Manual Annotation Format (MAF) file. All mutations are aggregated as a unique event type labeled "Mutation" and assigned a color according to the default of function import.genotypes. If this is a TCGA MAF file check for multiple samples per patient is performed and a warning is raised if these occurr. Customized MAF files can be imported as well provided that they have columns Hugo_Symbol, Tumor_Sample_Barcode and Variant_Classification. Custom filters are possible (via filter.fun) to avoid loading the full MAF data. For details and examples regarding the loading functions provided by the package we refer to the Vignette Section 3.

Usage

import.MAF(
  file,
  sep = "\t",
  is.TCGA = TRUE,
  filter.fun = NULL,
  to.TRONCO = TRUE,
  irregular = FALSE,
  paste.to.Hugo_Symbol = NULL,
  merge.mutation.types = TRUE,
  silent = FALSE
)

Arguments

file

MAF filename

sep

MAF separator, default \'\t\'

is.TCGA

TRUE if this MAF is from TCGA; thus its sample codenames can be interpreted

filter.fun

A filter function applied to each row. This is expected to return TRUE/FALSE.

to.TRONCO

If FALSE returns a dataframe with MAF data, not a TRONCO object

irregular

If TRUE seeks only for columns Hugo_Symbol, Tumor_Sample_Barcode and Variant_Classification

paste.to.Hugo_Symbol

If a list of column names, this will be pasted each Hugo_Symbol to yield names such as PHC2.chr1.33116215.33116215

merge.mutation.types

If TRUE, all mutations are considered equivalent, regardless of their Variant_Classification value. Otherwise no.

silent

A parameter to disable/enable verbose messages.

Value

A TRONCO compliant representation of the input MAF

Examples

data(maf)
mutations = import.MAF(maf)
mutations = annotate.description(mutations, 'Example MAF')
mutations = TCGA.shorten.barcodes(mutations)
oncoprint(mutations)

import.model

Description

Add an adjacency matrix as a model to a TRONCO compliant object. Input model can be either a dataframe or a file name.

Usage

import.model(tronco_object, model, model.name = "imported_model")

Arguments

tronco_object

A TRONCO compliant object

model

Either a dataframe or a filename

model.name

Name of the imported model

Value

A TRONCO compliant object


import.mutex.groups

Description

Create a list of unique Mutex groups for a given fdr cutoff current Mutex version is Jan 8, 2015 (ref: https://code.google.com/p/mutex/ )

Usage

import.mutex.groups(file, fdr = 0.2, display = TRUE)

Arguments

file

Mutex results ("ranked-groups.txt" file)

fdr

cutoff for fdr

display

print summary table of extracted groups


intersect.datasets

Description

Intersect samples and events of two dataset

Usage

intersect.datasets(x, y, intersect.genomes = TRUE)

Arguments

x

A TRONCO compliant dataset.

y

A TRONCO compliant dataset.

intersect.genomes

If False -> just samples

Value

A TRONCO complian dataset.

Examples

data(test_dataset)

is.compliant

Description

Check if 'x' is compliant with TRONCO's input: that is if it has dataframes x$genotypes, x$annotations, x$types and x$stage (optional)

Usage

is.compliant(
  x,
  err.fun = "[ERR]",
  stage = !(all(is.null(x$stages)) || all(is.na(x$stages)))
)

Arguments

x

A TRONCO compliant dataset.

err.fun

string which identifies the function which called is.compliant

stage

boolean flag to check x$stage datagframe

Value

on error stops the computation

Examples

data(test_dataset)
is.compliant(test_dataset)

join.events

Description

Merge a list of events in an unique event

Usage

join.events(x, ..., new.event, new.type, event.color)

Arguments

x

A TRONCO compliant dataset.

...

A list of events to merge

new.event

The name of the resultant event

new.type

The type of the new event

event.color

The color of the new event

Value

A TRONCO compliant dataset.

Examples

data(muts)
dataset = join.events(muts, 'G1', 'G2', new.event='test', new.type='banana', event.color='yellow')

join.types

Description

For an input dataset merge all the events of two or more distincit types (e.g., say that missense and indel mutations are events of a unique "mutation" type)

Usage

join.types(x, ..., new.type = "new.type", new.color = "khaki", silent = FALSE)

Arguments

x

A TRONCO compliant dataset.

...

type to merge

new.type

label for the new type to create

new.color

color for the new type to create

silent

A parameter to disable/enable verbose messages.

Value

A TRONCO compliant dataset.

Examples

data(test_dataset_no_hypos)
join.types(test_dataset_no_hypos, 'ins_del', 'missense_point_mutations')
join.types(test_dataset_no_hypos, 'ins_del',
     'missense_point_mutations', new.type='mut', new.color='green')

keysToNames

Description

Convert colnames/rownames of a matrix into intelligible event names, e.g., change a key G23 in 'Mutation KRAS'. If a name is not found, the original name is left unchanged.

Usage

keysToNames(x, matrix)

Arguments

x

A TRONCO compliant dataset.

matrix

A matrix with colnames/rownames which represent genotypes keys.

Value

The matrix with intelligible colnames/rownames.

Examples

data(test_model)
adj_matrix = as.adj.matrix(test_model, events=as.events(test_model)[5:15,])$capri_bic
keysToNames(test_model, adj_matrix)

MAF example data

Description

This dataset contains a standard MAF input for TRONCO

Usage

data(maf)

Format

Manual Annotated Format

Value

A standard TRONCO object

Author(s)

Luca De Sano

Source

fake data


Simple mutation dataset

Description

A simple mutation dataset without hypotheses

Usage

data(muts)

Format

TRONCO compliant dataset

Value

A standard TRONCO object

Author(s)

Luca De Sano

Source

fake data


nameToKey

Description

Convert to key an intelligible event names, e.g., change 'Mutation KRAS' in G23. If a name is not found, an error is raised!

Usage

nameToKey(x, name)

Arguments

x

A TRONCO compliant dataset.

name

A intelligible event name

Value

A TRONCO dataset key name

Examples

data(test_model)
adj_matrix = as.adj.matrix(test_model, events=as.events(test_model)[5:15,])$bic

nevents

Description

Return the number of events in the dataset involving a certain gene or type of event.

Usage

nevents(x, genes = NA, types = NA)

Arguments

x

A TRONCO compliant dataset.

genes

The genes to consider, if NA all available genes are used.

types

The types of events to consider, if NA all available types are used.

Value

The number of events in the dataset involving a certain gene or type of event.

Examples

data(test_dataset)
nevents(test_dataset)

ngenes

Description

Return the number of genes in the dataset involving a certain type of event.

Usage

ngenes(x, types = NA)

Arguments

x

A TRONCO compliant dataset.

types

The types of events to consider, if NA all available types are used.

Value

The number of genes in the dataset involving a certain type of event.

Examples

data(test_dataset)
ngenes(test_dataset)

Return the number of hypotheses in the dataset

Description

Return the number of hypotheses in the dataset

Usage

nhypotheses(x)

Arguments

x

the dataset.

Examples

data(test_dataset)
nhypotheses(test_dataset)

Return the number of patterns in the dataset

Description

Return the number of patterns in the dataset

Usage

npatterns(x)

Arguments

x

the dataset.

Examples

data(test_dataset)
npatterns(test_dataset)

nsamples

Description

Return the number of samples in the dataset.

Usage

nsamples(x)

Arguments

x

A TRONCO compliant dataset.

Value

The number of samples in the dataset.

Examples

data(test_dataset)
nsamples(test_dataset)

ntypes

Description

Return the number of types in the dataset.

Usage

ntypes(x)

Arguments

x

A TRONCO compliant dataset.

Value

The number of types in the dataset.

Examples

data(test_dataset)
ntypes(test_dataset)

oncoprint

Description

oncoPrint : plot a genotype. For details and examples regarding the visualization through oncoprints, we refer to the Vignette Section 4.4.

Usage

oncoprint(
  x,
  excl.sort = TRUE,
  samples.cluster = FALSE,
  genes.cluster = FALSE,
  file = NA,
  ann.stage = has.stages(x),
  ann.hits = TRUE,
  stage.color = "YlOrRd",
  hits.color = "Purples",
  null.color = "lightgray",
  border.color = "white",
  text.cex = 1,
  font.column = NA,
  font.row = NA,
  title = as.description(x),
  sample.id = FALSE,
  hide.zeroes = FALSE,
  legend = TRUE,
  legend.cex = 0.5,
  cellwidth = NA,
  cellheight = NA,
  group.by.label = FALSE,
  group.by.stage = FALSE,
  group.samples = NA,
  gene.annot = NA,
  gene.annot.color = "Set1",
  show.patterns = FALSE,
  annotate.consolidate.events = FALSE,
  txt.stats = paste(nsamples(x), " samples\n", nevents(x), " events\n", ngenes(x),
    " genes\n", npatterns(x), " patterns", sep = ""),
  gtable = FALSE,
  ...
)

Arguments

x

A TRONCO compliant dataset

excl.sort

Boolean value, if TRUE sorts samples to enhance exclusivity of alterations

samples.cluster

Boolean value, if TRUE clusters samples (columns). Default FALSE

genes.cluster

Boolean value, if TRUE clusters genes (rows). Default FALSE

file

If not NA write to file the Oncoprint, default is NA (just visualization).

ann.stage

Boolean value to annotate stage classification, default depends on x

ann.hits

Boolean value to annotate the number of events in each sample, default is TRUE

stage.color

RColorbrewer palette to color stage annotations. Default is 'YlOrRd'

hits.color

RColorbrewer palette to color hits annotations. Default is 'Purples'

null.color

Color for the Oncoprint cells with 0s, default is 'lightgray'

border.color

Border color for the Oncoprint, default is white' (no border)

text.cex

Title and annotations cex, multiplied by font size 7

font.column

If NA, half of font.row is used

font.row

If NA, max(c(15 * exp(-0.02 * nrow(data)), 2)) is used, where data is the data visualized in the Oncoprint

title

Oncoprint title, default is as.name(x) - see as.name

sample.id

If TRUE shows samples name (columns). Default is FALSE

hide.zeroes

If TRUE trims data - see trim - before plot. Default is FALSE

legend

If TRUE shows a legend for the types of events visualized. Defualt is TRUE

legend.cex

Default 0.5; determines legend size if legend = TRUE

cellwidth

Default NA, sets autoscale cell width

cellheight

Default NA, sets autoscale cell height

group.by.label

Sort samples (rows) by event label - usefull when multiple events per gene are available

group.by.stage

Default FALSE; sort samples by stage.

group.samples

If this samples -> group map is provided, samples are grouped as of groups and sorted according to the number of mutations per sample - usefull when data was clustered

gene.annot

Genes'groups, e.g. list(RAF=c('KRAS','NRAS'), Wnt=c('APC', 'CTNNB1')). Default is NA.

gene.annot.color

Either a RColorColorbrewer palette name or a set of custom colors matching names(gene.annot)

show.patterns

If TRUE shows also a separate oncoprint for each pattern. Default is FALSE

annotate.consolidate.events

Default is FALSE. If TRUE an annotation for events to consolidate is shown.

txt.stats

By default, shows a summary statistics for shown data (n,m, |G| and |P|)

gtable

If TRUE return the gtable object

...

other arguments to pass to pheatmap


oncoprint.cbio

Description

export input for cbio visualization at http://www.cbioportal.org/public-portal/oncoprinter.jsp

Usage

oncoprint.cbio(
  x,
  file = "oncoprint-cbio.txt",
  hom.del = "Homozygous Loss",
  het.loss = "Heterozygous Loss",
  gain = "Low-level Gain",
  amp = "High-level Gain"
)

Arguments

x

A TRONCO compliant dataset.

file

name of the file where to save the output

hom.del

type of Homozygous Deletion

het.loss

type of Heterozygous Loss

gain

type of Gain

amp

type of Amplification

Value

A file containing instruction for the CBio visualization Tool

Examples

data(crc_gistic)
gistic = import.GISTIC(crc_gistic)
oncoprint.cbio(gistic)

OR

Description

OR hypothesis

Usage

OR(...)

Arguments

...

Atoms of the soft exclusive pattern given either as labels or as partielly lifted vectors.

Value

Vector to be added to the lifted genotype resolving the soft exclusive pattern


order.frequency

Description

Sort the internal genotypes according to event frequency.

Usage

order.frequency(x, decreasing = TRUE)

Arguments

x

A TRONCO compliant dataset.

decreasing

Inverse order. Default TRUE

Value

A TRONCO compliant dataset with the internal genotypes sorted according to event frequency.

Examples

data(test_dataset)
order.frequency(test_dataset)

pathway.visualization

Description

Visualise pathways informations

Usage

pathway.visualization(
  x,
  title = paste("Pathways:", paste(names(pathways), collapse = ", ", sep = "")),
  file = NA,
  pathways.color = "Set2",
  aggregate.pathways,
  pathways,
  ...
)

Arguments

x

A TRONCO complian dataset

title

Plot title

file

To generate a PDF a filename have to be given

pathways.color

A RColorBrewer color palette

aggregate.pathways

Boolean parameter

pathways

Pathways

...

Additional parameters

Value

plot information


A function to draw clustered heatmaps.

Description

A function to draw clustered heatmaps where one has better control over some graphical parameters such as cell size, etc.

Usage

pheatmap(
  mat,
  color = colorRampPalette(rev(brewer.pal(n = 7, name = "RdYlBu")))(100),
  kmeans_k = NA,
  breaks = NA,
  border_color = "grey60",
  cellwidth = NA,
  cellheight = NA,
  scale = "none",
  cluster_rows = TRUE,
  cluster_cols = TRUE,
  clustering_distance_rows = "euclidean",
  clustering_distance_cols = "euclidean",
  clustering_method = "complete",
  cutree_rows = NA,
  cutree_cols = NA,
  treeheight_row = ifelse(cluster_rows, 50, 0),
  treeheight_col = ifelse(cluster_cols, 50, 0),
  legend = TRUE,
  legend_breaks = NA,
  legend_labels = NA,
  annotation_row = NA,
  annotation_col = NA,
  annotation = NA,
  annotation_colors = NA,
  annotation_legend = TRUE,
  drop_levels = TRUE,
  show_rownames = TRUE,
  show_colnames = TRUE,
  main = NA,
  fontsize = 10,
  fontsize_row = fontsize,
  fontsize_col = fontsize,
  display_numbers = FALSE,
  number_format = "%.2f",
  number_color = "grey30",
  fontsize_number = 0.8 * fontsize,
  gaps_row = NULL,
  gaps_col = NULL,
  labels_row = NULL,
  labels_col = NULL,
  filename = NA,
  width = NA,
  height = NA,
  silent = FALSE,
  legend.cex = 1,
  txt.stats = NA,
  ...
)

Arguments

mat

numeric matrix of the values to be plotted.

color

vector of colors used in heatmap.

kmeans_k

the number of kmeans clusters to make, if we want to agggregate the rows before drawing heatmap. If NA then the rows are not aggregated.

breaks

a sequence of numbers that covers the range of values in mat and is one element longer than color vector. Used for mapping values to colors. Useful, if needed to map certain values to certain colors, to certain values. If value is NA then the breaks are calculated automatically.

border_color

color of cell borders on heatmap, use NA if no border should be drawn.

cellwidth

individual cell width in points. If left as NA, then the values depend on the size of plotting window.

cellheight

individual cell height in points. If left as NA, then the values depend on the size of plotting window.

scale

character indicating if the values should be centered and scaled in either the row direction or the column direction, or none. Corresponding values are "row", "column" and "none"

cluster_rows

boolean values determining if rows should be clustered,

cluster_cols

boolean values determining if columns should be clustered.

clustering_distance_rows

distance measure used in clustering rows. Possible values are "correlation" for Pearson correlation and all the distances supported by dist, such as "euclidean", etc. If the value is none of the above it is assumed that a distance matrix is provided.

clustering_distance_cols

distance measure used in clustering columns. Possible values the same as for clustering_distance_rows.

clustering_method

clustering method used. Accepts the same values as hclust.

cutree_rows

number of clusters the rows are divided into, based on the hierarchical clustering (using cutree), if rows are not clustered, the argument is ignored

cutree_cols

similar to cutree_rows, but for columns

treeheight_row

the height of a tree for rows, if these are clustered. Default value 50 points.

treeheight_col

the height of a tree for columns, if these are clustered. Default value 50 points.

legend

logical to determine if legend should be drawn or not.

legend_breaks

vector of breakpoints for the legend.

legend_labels

vector of labels for the legend_breaks.

annotation_row

data frame that specifies the annotations shown on left side of the heatmap. Each row defines the features for a specific row. The rows in the data and in the annotation are matched using corresponding row names. Note that color schemes takes into account if variable is continuous or discrete.

annotation_col

similar to annotation_row, but for columns.

annotation

deprecated parameter that currently sets the annotation_col if it is missing

annotation_colors

list for specifying annotation_row and annotation_col track colors manually. It is possible to define the colors for only some of the features. Check examples for details.

annotation_legend

boolean value showing if the legend for annotation tracks should be drawn.

drop_levels

logical to determine if unused levels are also shown in the legend

show_rownames

boolean specifying if column names are be shown.

show_colnames

boolean specifying if column names are be shown.

main

the title of the plot

fontsize

base fontsize for the plot

fontsize_row

fontsize for rownames (Default: fontsize)

fontsize_col

fontsize for colnames (Default: fontsize)

display_numbers

logical determining if the numeric values are also printed to the cells. If this is a matrix (with same dimensions as original matrix), the contents of the matrix are shown instead of original values.

number_format

format strings (C printf style) of the numbers shown in cells. For example "%.2f" shows 2 decimal places and "%.1e" shows exponential notation (see more in sprintf).

number_color

color of the text

fontsize_number

fontsize of the numbers displayed in cells

gaps_row

vector of row indices that show shere to put gaps into heatmap. Used only if the rows are not clustered. See cutree_row to see how to introduce gaps to clustered rows.

gaps_col

similar to gaps_row, but for columns.

labels_row

custom labels for rows that are used instead of rownames.

labels_col

similar to labels_row, but for columns.

filename

file path where to save the picture. Filetype is decided by the extension in the path. Currently following formats are supported: png, pdf, tiff, bmp, jpeg. Even if the plot does not fit into the plotting window, the file size is calculated so that the plot would fit there, unless specified otherwise.

width

manual option for determining the output file width in inches.

height

manual option for determining the output file height in inches.

silent

do not draw the plot (useful when using the gtable output)

legend.cex

Default 0.5; determines legend size if legend = TRUE

txt.stats

By default, shows a summary statistics for shown data (n,m, |G| and |P|)

...

graphical parameters for the text used in plot. Parameters passed to grid.text, see gpar.

Details

The function also allows to aggregate the rows using kmeans clustering. This is advisable if number of rows is so big that R cannot handle their hierarchical clustering anymore, roughly more than 1000. Instead of showing all the rows separately one can cluster the rows in advance and show only the cluster centers. The number of clusters can be tuned with parameter kmeans_k.

This is a modified version of the original pheatmap (https://cran.r-project.org/web/packages/pheatmap/index.html) edited in accordance with GPL-2.

Value

Invisibly a list of components

  • tree_row the clustering of rows as hclust object

  • tree_col the clustering of columns as hclust object

  • kmeans the kmeans clustering of rows if parameter kmeans_k was specified

Author(s)

Raivo Kolde <[email protected]>

Examples

# Create test matrix
test = matrix(rnorm(200), 20, 10)
test[1:10, seq(1, 10, 2)] = test[1:10, seq(1, 10, 2)] + 3
test[11:20, seq(2, 10, 2)] = test[11:20, seq(2, 10, 2)] + 2
test[15:20, seq(2, 10, 2)] = test[15:20, seq(2, 10, 2)] + 4
colnames(test) = paste("Test", 1:10, sep = "")
rownames(test) = paste("Gene", 1:20, sep = "")

# Draw heatmaps
pheatmap(test)

rank.recurrents

Description

Return the first n recurrent events

Usage

rank.recurrents(x, n)

Arguments

x

A TRONCO compliant dataset.

n

The number of events to rank

Value

the first n recurrent events

Examples

data(test_dataset)
dataset = rank.recurrents(test_dataset, 10)

rename.gene

Description

Rename a gene

Usage

rename.gene(x, old.name, new.name)

Arguments

x

A TRONCO compliant dataset.

old.name

The name of the gene to rename.

new.name

The new name

Value

A TRONCO complian dataset.

Examples

data(test_dataset)
test_dataset = rename.gene(test_dataset, 'TET2', 'gene x')

rename.type

Description

Rename an event type

Usage

rename.type(x, old.name, new.name)

Arguments

x

A TRONCO compliant dataset.

old.name

The type of event to rename.

new.name

The new name

Value

A TRONCO complian dataset.

Examples

data(test_dataset)
test_dataset = rename.type(test_dataset, 'ins_del', 'deletion')

samples.selection

Description

Filter a dataset based on selected samples id

Usage

samples.selection(x, samples)

Arguments

x

A TRONCO compliant dataset.

samples

A list of samples

Value

A TRONCO compliant dataset.

Examples

data(test_dataset)
dataset = samples.selection(test_dataset, c('patient 1', 'patient 2'))

sbind

Description

Binds samples from one or more datasets, which must be defined over the same set of events

Usage

sbind(...)

Arguments

...

the input datasets

Value

A TRONCO complian dataset.


ssplit

Description

Split cohort (samples) into groups, return either all groups or a specific group.

Usage

ssplit(x, clusters, idx = NA)

Arguments

x

A TRONCO compliant dataset.

clusters

A list of clusters. Rownames must match samples list of x

idx

ID of a specific group present in stages. If NA all groups will be extracted

Value

A TRONCO compliant dataset.


Stage information for test_dataset

Description

This dataset contains stage information for patient in test_dataset

Usage

data(stage)

Format

Vector of stages

Value

A list of stages

Author(s)

Luca De Sano

Source

fake data


TCGA.map.clinical.data

Description

Map clinical data from the TCGA format

Usage

TCGA.map.clinical.data(file, sep = "\t", column.samples, column.map)

Arguments

file

A file with the clinical data

sep

file delimiter

column.samples

Required columns

column.map

Map to the required columns

Value

a map


TCGA.multiple.samples

Description

Check if there are multiple sample in x, according to TCGA barcodes naming

Usage

TCGA.multiple.samples(x)

Arguments

x

A TRONCO compliant dataset.

Value

A list of barcodes. NA if no duplicated barcode is found

Examples

data(test_dataset)
TCGA.multiple.samples(test_dataset)

TCGA.remove.multiple.samples

Description

If there are multiple sample in x, according to TCGA barcodes naming, remove them

Usage

TCGA.remove.multiple.samples(x)

Arguments

x

A TRONCO compliant dataset.

Value

A TRONCO compliant dataset

Examples

data(test_dataset)
TCGA.remove.multiple.samples(test_dataset)

TCGA.shorten.barcodes

Description

Keep only the first 12 character of samples barcode if there are no duplicates

Usage

TCGA.shorten.barcodes(x)

Arguments

x

A TRONCO compliant dataset.

Value

A TRONCO compliant dataset

Examples

data(test_dataset)
TCGA.shorten.barcodes(test_dataset)

A complete dataset with hypotheses

Description

This dataset contains a complete test dataset

Usage

data(test_dataset)

Format

TRONCO compliant dataset

Value

A standard TRONCO object

Author(s)

Luca De Sano

Source

fake data


A complete dataset

Description

This dataset contains a complete test dataset

Usage

data(test_dataset_no_hypos)

Format

TRONCO compliant dataset

Value

A standard TRONCO object

Author(s)

Luca De Sano

Source

fake data


A complete dataset with a reconstructed model

Description

This dataset contains a model reconstructed with CAPRI

Usage

data(test_model)

Format

TRONCO compliant dataset

Value

A standard TRONCO object

Author(s)

Luca De Sano

Source

fake data


A complete dataset with a reconstructed model and crossvalidation informations

Description

This dataset contains a model reconstructed with CAPRI

Usage

data(test_model_kfold)

Format

TRONCO compliant dataset

Value

A standard TRONCO object

Author(s)

Luca De Sano

Source

fake data


trim

Description

Deletes all events which have frequency 0 in the dataset.

Usage

trim(x)

Arguments

x

A TRONCO compliant dataset.

Value

A TRONCO compliant dataset.

Examples

data(test_dataset)
test_dataset = trim(test_dataset)

tronco bootstrap

Description

Bootstrap a reconstructed progression model. For details and examples regarding the statistical assesment of an inferred model, we refer to the Vignette Section 7.

Usage

tronco.bootstrap(
  reconstruction,
  type = "non-parametric",
  nboot = 100,
  cores.ratio = 1,
  silent = FALSE
)

Arguments

reconstruction

The output of tronco.capri or tronco.caprese

type

Parameter to define the type of sampling to be performed, e.g., non-parametric for uniform sampling.

nboot

Number of bootstrap sampling to be performed when estimating the model confidence.

cores.ratio

Percentage of cores to use coresRate * (numCores - 1)

silent

A parameter to disable/enable verbose messages.

Value

A TRONCO compliant object with reconstructed model

Examples

data(test_model)
boot = tronco.bootstrap(test_model, nboot = 1, cores.ratio = 0)

tronco caprese

Description

Reconstruct a progression model using CAPRESE algorithm. For details and examples regarding the inference process and on the algorithm implemented in the package, we refer to the Vignette Section 6.

Usage

tronco.caprese(data, lambda = 0.5, silent = FALSE, epos = 0, eneg = 0)

Arguments

data

A TRONCO compliant dataset.

lambda

Coefficient to combine the raw estimate with a correction factor into a shrinkage estimator.

silent

A parameter to disable/enable verbose messages.

epos

Error rate of false positive errors.

eneg

Error rate of false negative errors.

Value

A TRONCO compliant object with reconstructed model

Examples

data(test_dataset_no_hypos)
recon = tronco.caprese(test_dataset_no_hypos)

tronco capri

Description

Reconstruct a progression model using CAPRI algorithm. For details and examples regarding the inference process and on the algorithm implemented in the package, we refer to the Vignette Section 6.

Usage

tronco.capri(
  data,
  command = "hc",
  regularization = c("bic", "aic"),
  do.boot = TRUE,
  nboot = 100,
  pvalue = 0.05,
  min.boot = 3,
  min.stat = TRUE,
  boot.seed = NULL,
  silent = FALSE,
  epos = 0,
  eneg = 0,
  restart = 100
)

Arguments

data

A TRONCO compliant dataset.

command

Parameter to define to heuristic search to be performed. Hill Climbing and Tabu search are currently available.

regularization

Select the regularization for the likelihood estimation, e.g., BIC, AIC.

do.boot

A parameter to disable/enable the estimation of the error rates give the reconstructed model.

nboot

Number of bootstrap sampling (with rejection) to be performed when estimating the selective advantage scores.

pvalue

Pvalue to accept/reject the valid selective advantage relations.

min.boot

Minimum number of bootstrap sampling to be performed.

min.stat

A parameter to disable/enable the minimum number of bootstrap sampling required besides nboot if any sampling is rejected.

boot.seed

Initial seed for the bootstrap random sampling.

silent

A parameter to disable/enable verbose messages.

epos

Error rate of false positive errors.

eneg

Error rate of false negative errors.

restart

An integer, the number of random restarts.

Value

A TRONCO compliant object with reconstructed model

Examples

data(test_dataset)
recon = tronco.capri(test_dataset, nboot = 1)

Tronco Chow Liu

Description

Reconstruct a progression model using Chow Liu algorithm combined with probabilistic causation. For details and examples regarding the inference process and on the algorithm implemented in the package, we refer to the Vignette Section 6.

Usage

tronco.chowliu(
  data,
  regularization = c("bic", "aic"),
  do.boot = TRUE,
  nboot = 100,
  pvalue = 0.05,
  min.boot = 3,
  min.stat = TRUE,
  boot.seed = NULL,
  silent = FALSE,
  epos = 0,
  eneg = 0
)

Arguments

data

A TRONCO compliant dataset.

regularization

Select the regularization for the likelihood estimation, e.g., BIC, AIC.

do.boot

A parameter to disable/enable the estimation of the error rates give the reconstructed model.

nboot

Number of bootstrap sampling (with rejection) to be performed when estimating the selective advantage scores.

pvalue

Pvalue to accept/reject the valid selective advantage relations.

min.boot

Minimum number of bootstrap sampling to be performed.

min.stat

A parameter to disable/enable the minimum number of bootstrap sampling required besides nboot if any sampling is rejected.

boot.seed

Initial seed for the bootstrap random sampling.

silent

A parameter to disable/enable verbose messages.

epos

Error rate of false positive errors.

eneg

Error rate of false negative errors.

Value

A TRONCO compliant object with reconstructed model

Examples

data(test_dataset_no_hypos)
recon = tronco.chowliu(test_dataset_no_hypos, nboot = 1)

Tronco Edmonds

Description

Reconstruct a progression model using Edmonds algorithm combined with probabilistic causation. For details and examples regarding the inference process and on the algorithm implemented in the package, we refer to the Vignette Section 6.

Usage

tronco.edmonds(
  data,
  regularization = "no_reg",
  score = "pmi",
  do.boot = TRUE,
  nboot = 100,
  pvalue = 0.05,
  min.boot = 3,
  min.stat = TRUE,
  boot.seed = NULL,
  silent = FALSE,
  epos = 0,
  eneg = 0
)

Arguments

data

A TRONCO compliant dataset.

regularization

Select the regularization for the likelihood estimation, e.g., BIC, AIC.

score

Select the score for the estimation of the best tree, e.g., pointwise mutual information (pmi), conditional entropy (entropy).

do.boot

A parameter to disable/enable the estimation of the error rates give the reconstructed model.

nboot

Number of bootstrap sampling (with rejection) to be performed when estimating the selective advantage scores.

pvalue

Pvalue to accept/reject the valid selective advantage relations.

min.boot

Minimum number of bootstrap sampling to be performed.

min.stat

A parameter to disable/enable the minimum number of bootstrap sampling required besides nboot if any sampling is rejected.

boot.seed

Initial seed for the bootstrap random sampling.

silent

A parameter to disable/enable verbose messages.

epos

Error rate of false positive errors.

eneg

Error rate of false negative errors.

Value

A TRONCO compliant object with reconstructed model

Examples

data(test_dataset_no_hypos)
recon = tronco.edmonds(test_dataset_no_hypos, nboot = 1)

Tronco Gabow

Description

Reconstruct a progression model using Gabow algorithm combined with probabilistic causation. For details and examples regarding the inference process and on the algorithm implemented in the package, we refer to the Vignette Section 6.

Usage

tronco.gabow(
  data,
  regularization = "no_reg",
  score = "pmi",
  do.boot = TRUE,
  nboot = 100,
  pvalue = 0.05,
  min.boot = 3,
  min.stat = TRUE,
  boot.seed = NULL,
  silent = FALSE,
  epos = 0,
  eneg = 0,
  do.raising = TRUE
)

Arguments

data

A TRONCO compliant dataset.

regularization

Select the regularization for the likelihood estimation, e.g., BIC, AIC.

score

Select the score for the estimation of the best tree, e.g., pointwise mutual information (pmi), conditional entropy (entropy).

do.boot

A parameter to disable/enable the estimation of the error rates give the reconstructed model.

nboot

Number of bootstrap sampling (with rejection) to be performed when estimating the selective advantage scores.

pvalue

Pvalue to accept/reject the valid selective advantage relations.

min.boot

Minimum number of bootstrap sampling to be performed.

min.stat

A parameter to disable/enable the minimum number of bootstrap sampling required besides nboot if any sampling is rejected.

boot.seed

Initial seed for the bootstrap random sampling.

silent

A parameter to disable/enable verbose messages.

epos

Error rate of false positive errors.

eneg

Error rate of false negative errors.

do.raising

Whether to use or not the raising condition as a prior.

Value

A TRONCO compliant object with reconstructed model

Examples

data(test_dataset_no_hypos)
recon = tronco.gabow(test_dataset_no_hypos, nboot = 1)

tronco.kfold.eloss

Description

Perform a k-fold cross-validation using the function bn.cv to estimate the entropy loss. For details and examples regarding the statistical assesment of an inferred model, we refer to the Vignette Section 7.

Usage

tronco.kfold.eloss(
  x,
  models = names(as.models(x)),
  runs = 10,
  k = 10,
  silent = FALSE
)

Arguments

x

A reconstructed model (the output of tronco.capri or tronco.caprese)

models

The names of the selected regularizers (bic, aic or caprese)

runs

a positive integer number, the number of times cross-validation will be run

k

a positive integer number, the number of groups into which the data will be split

silent

A parameter to disable/enable verbose messages.

Examples

data(test_model)
tronco.kfold.eloss(test_model, k = 2, runs = 2)

tronco.kfold.posterr. For details and examples regarding the statistical assesment of an inferred model, we refer to the Vignette Section 7.

Description

Perform a k-fold cross-validation using the function bn.cv and scan every node to estimate its posterior classification error.

Usage

tronco.kfold.posterr(
  x,
  models = names(as.models(x)),
  events = as.events(x),
  runs = 10,
  k = 10,
  cores.ratio = 1,
  silent = FALSE
)

Arguments

x

A reconstructed model (the output of tronco.capri)

models

The names of the selected regularizers (bic, aic or caprese)

events

a list of event

runs

a positive integer number, the number of times cross-validation will be run

k

a positive integer number, the number of groups into which the data will be split

cores.ratio

Percentage of cores to use. coresRate * (numCores - 1)

silent

A parameter to disable/enable verbose messages.

Examples

data(test_model)
tronco.kfold.posterr(test_model, k = 2, runs = 2, cores.ratio = 0)

tronco.kfold.prederr

Description

Perform a k-fold cross-validation using the function bn.cv and scan every node to estimate its prediction error. For details and examples regarding the statistical assesment of an inferred model, we refer to the Vignette Section 7.

Usage

tronco.kfold.prederr(
  x,
  models = names(as.models(x)),
  events = as.events(x),
  runs = 10,
  k = 10,
  cores.ratio = 1,
  silent = FALSE
)

Arguments

x

A reconstructed model (the output of tronco.capri)

models

The names of the selected regularizers (bic, aic or caprese)

events

a list of event

runs

a positive integer number, the number of times cross-validation will be run

k

a positive integer number, the number of groups into which the data will be split

cores.ratio

Percentage of cores to use. coresRate * (numCores - 1)

silent

A parameter to disable/enable verbose messages.

Examples

data(test_model)
tronco.kfold.prederr(test_model, k = 2, runs = 2, cores.ratio = 0)

tronco.pattern.plot

Description

tronco.pattern.plot : plot a genotype

Usage

tronco.pattern.plot(
  x,
  group = as.events(x),
  to,
  gap.cex = 1,
  legend.cex = 1,
  label.cex = 1,
  title = paste(to[1], to[2]),
  mode = "barplot"
)

Arguments

x

A TRONCO compliant dataset

group

A list of events (see as.events() for details)

to

A target event

gap.cex

cex parameter for gap

legend.cex

cex parameter for legend

label.cex

cex parameter for label

title

title

mode

can be 'circos' or 'barplot'


tronco.plot

Description

Plots a progression model from a recostructed dataset. For details and examples regarding the visualization of an inferred model, we refer to the Vignette Section 7.

Usage

tronco.plot(
  x,
  models = names(x$model),
  fontsize = NA,
  height = 2,
  width = 3,
  height.logic = 1,
  pf = FALSE,
  disconnected = FALSE,
  scale.nodes = NA,
  title = as.description(x),
  confidence = NA,
  p.min = 0.05,
  legend = TRUE,
  legend.cex = 1,
  edge.cex = 1,
  label.edge.size = NA,
  expand = TRUE,
  genes = NULL,
  relations.filter = NA,
  edge.color = "black",
  pathways.color = "Set1",
  file = NA,
  legend.pos = "bottom",
  pathways = NULL,
  lwd = 3,
  samples.annotation = NA,
  export.igraph = FALSE,
  create.new.dev = TRUE,
  ...
)

Arguments

x

A reconstructed model (the output of the inference by a tronco function)

models

A vector containing the names of the algorithms used (caprese, capri_bic, etc)

fontsize

For node names. Default NA for automatic rescaling

height

Proportion node height - node width. Default height 2

width

Proportion node height - node width. Default width 2

height.logic

Height of logical nodes. Defaul 1

pf

Should I print Prima Facie? Default False

disconnected

Should I print disconnected nodes? Default False

scale.nodes

Node scaling coefficient (based on node frequency). Default NA (autoscale)

title

Title of the plot. Default as.description(x)

confidence

Should I add confidence informations? No if NA

p.min

p-value cutoff. Default automatic

legend

Should I visualise the legend?

legend.cex

CEX value for legend. Default 1.0

edge.cex

CEX value for edge labels. Default 1.0

label.edge.size

Size of edge labels. Default NA for automatic rescaling

expand

Should I expand hypotheses? Default TRUE

genes

Visualise only genes in this list. Default NULL, visualise all.

relations.filter

Filter relations to dispaly according to this functions. Default NA

edge.color

Edge color. Default 'black'

pathways.color

RColorBrewer colorser for patways. Default 'Set1'.

file

String containing filename for PDF output. If NA no PDF output will be provided

legend.pos

Legend position. Default 'bottom',

pathways

A vector containing pathways information as described in as.patterns()

lwd

Edge base lwd. Default 3

samples.annotation

= List of samples to search for events in model

export.igraph

If TRUE export the generated igraph object

create.new.dev

If TRUE create a new graphical device when calling trono.plot. Set this to FALSE, e.g., if you do not wish to create a new device when executing the command with export.igraph = TRUE

...

Additional arguments for RGraphviz plot function

Value

Information about the reconstructed model

Examples

data(test_model)
tronco.plot(test_model)

Tronco Prim

Description

Reconstruct a progression model using Prim algorithm combined with probabilistic causation. For details and examples regarding the inference process and on the algorithm implemented in the package, we refer to the Vignette Section 6.

Usage

tronco.prim(
  data,
  regularization = "no_reg",
  do.boot = TRUE,
  nboot = 100,
  pvalue = 0.05,
  min.boot = 3,
  min.stat = TRUE,
  boot.seed = NULL,
  silent = FALSE,
  epos = 0,
  eneg = 0
)

Arguments

data

A TRONCO compliant dataset.

regularization

Select the regularization for the likelihood estimation, e.g., BIC, AIC.

do.boot

A parameter to disable/enable the estimation of the error rates give the reconstructed model.

nboot

Number of bootstrap sampling (with rejection) to be performed when estimating the selective advantage scores.

pvalue

Pvalue to accept/reject the valid selective advantage relations.

min.boot

Minimum number of bootstrap sampling to be performed.

min.stat

A parameter to disable/enable the minimum number of bootstrap sampling required besides nboot if any sampling is rejected.

boot.seed

Initial seed for the bootstrap random sampling.

silent

A parameter to disable/enable verbose messages.

epos

Error rate of false positive errors.

eneg

Error rate of false negative errors.

Value

A TRONCO compliant object with reconstructed model

Examples

data(test_dataset_no_hypos)
recon = tronco.prim(test_dataset_no_hypos, nboot = 1)

view

Description

Print to console a short report of a dataset 'x', which should be a TRONCO compliant dataset - see is.compliant.

Usage

view(x, view = 5)

Arguments

x

A TRONCO compliant dataset.

view

The firse view events are shown via head.

Examples

data(test_dataset)
view(test_dataset)

which.samples

Description

Return a list of samples with specified alteration

Usage

which.samples(x, gene, type, neg = FALSE)

Arguments

x

A TRONCO compliant dataset.

gene

A list of gene names

type

A list of types

neg

If FALSE return the list, if TRUE return as.samples() - list

Value

A list of sample

Examples

data(test_dataset)
which.samples(test_dataset, 'TET2', 'ins_del')
which.samples(test_dataset, 'TET2', 'ins_del', neg=TRUE)

XOR

Description

XOR hypothesis

Usage

XOR(...)

Arguments

...

Atoms of the hard exclusive pattern given either as labels or as partielly lifted vectors.

Value

Vector to be added to the lifted genotype resolving the hard exclusive pattern