Title: | Detection of ligand-protein interactions from 2D thermal profiles (DLPTP) |
---|---|
Description: | Detection of ligand-protein interactions from 2D thermal profiles (DLPTP), Performs an FDR-controlled analysis of 2D-TPP experiments by functional analysis of dose-response curves across temperatures. |
Authors: | Nils Kurzawa [aut, cre], Holger Franken [aut], Simon Anders [aut], Wolfgang Huber [aut], Mikhail M. Savitski [aut] |
Maintainer: | Nils Kurzawa <[email protected]> |
License: | GPL-3 |
Version: | 1.23.0 |
Built: | 2024-11-22 06:24:51 UTC |
Source: | https://github.com/bioc/TPP2D |
Annotate imported data list using a config table
annotateDataList(dataList, geneNameVar, configLong, intensityStr, fcStr)
annotateDataList(dataList, geneNameVar, configLong, intensityStr, fcStr)
dataList |
list of datasets from different MS runs corresponding to a 2D-TPP dataset |
geneNameVar |
character string of the column name that describes the gene name of a given protein in the raw data files |
configLong |
long formatted data frame of a corresponding config table |
intensityStr |
character string indicating which columns contain raw intensities measurements |
fcStr |
character string indicating which columns contain the actual
fold change values. Those column names containing the suffix |
data frame containing all data annotated by information supplied in the config table
data("config_tab") data("raw_dat_list") dataList <- import2dMain(configTable = config_tab, data = raw_dat_list, idVar = "protein_id", fcStr = "rel_fc_", addCol = "gene_name", naStrs = NA, intensityStr = "signal_sum_", nonZeroCols = "qusm", qualColName = "qupm") configLong <- configWide2Long(configWide = config_tab) annotateDataList(dataList = dataList, geneNameVar = "gene_name", configLong = configLong, intensityStr = "signal_sum_", fcStr = "rel_fc_")
data("config_tab") data("raw_dat_list") dataList <- import2dMain(configTable = config_tab, data = raw_dat_list, idVar = "protein_id", fcStr = "rel_fc_", addCol = "gene_name", naStrs = NA, intensityStr = "signal_sum_", nonZeroCols = "qusm", qualColName = "qupm") configLong <- configWide2Long(configWide = config_tab) annotateDataList(dataList = dataList, geneNameVar = "gene_name", configLong = configLong, intensityStr = "signal_sum_", fcStr = "rel_fc_")
Bootstrap null distribution of F statistics for FDR estimation
bootstrapNull( df, maxit = 500, independentFiltering = FALSE, fcThres = 1.5, minObs = 20, optim_fun_h0 = .min_RSS_h0, optim_fun_h1 = .min_RSS_h1_slope_pEC50, optim_fun_h1_2 = NULL, gr_fun_h0 = NULL, gr_fun_h1 = NULL, gr_fun_h1_2 = NULL, ncores = 1, B = 20, byMsExp = TRUE )
bootstrapNull( df, maxit = 500, independentFiltering = FALSE, fcThres = 1.5, minObs = 20, optim_fun_h0 = .min_RSS_h0, optim_fun_h1 = .min_RSS_h1_slope_pEC50, optim_fun_h1_2 = NULL, gr_fun_h0 = NULL, gr_fun_h1 = NULL, gr_fun_h1_2 = NULL, ncores = 1, B = 20, byMsExp = TRUE )
df |
tidy data_frame retrieved after import of a 2D-TPP dataset, potential filtering and addition of a column "nObs" containing the number of observations per protein |
maxit |
maximal number of iterations the optimization should be given, default is set to 500 |
independentFiltering |
boolean flag indicating whether independent filtering should be performed based on minimal fold changes per protein profile |
fcThres |
numeric value of minimal fold change (or inverse fold change) a protein has to show to be kept upon independent filtering |
minObs |
numeric value of minimal number of observations that should be required per protein |
optim_fun_h0 |
optimization function that should be used for fitting the H0 model |
optim_fun_h1 |
optimization function that should be used for fitting the H1 model |
optim_fun_h1_2 |
optional additional optimization function that will be run with paramters retrieved from optim_fun_h1 and should be used for fitting the H1 model with the trimmed sum model, default is NULL |
gr_fun_h0 |
optional gradient function for optim_fun_h0, default is NULL |
gr_fun_h1 |
optional gradient function for optim_fun_h1, default is NULL |
gr_fun_h1_2 |
optional gradient function for optim_fun_h1_2, default is NULL |
ncores |
numeric value of numbers of cores that the function should use to parallelize |
B |
numeric value of rounds of bootstrap, default: 20 |
byMsExp |
boolean flag indicating whether resampling of residuals should be performed separately for data generated by different MS experiments, default TRUE, recommended |
data frame containing F statistics of proteins with permuted 2D thermal profiles that are informative on the Null distribution of F statistics
data("simulated_cell_extract_df") temp_df <- simulated_cell_extract_df %>% filter(clustername %in% paste0("protein", 1:3)) %>% group_by(representative) %>% mutate(nObs = n()) %>% ungroup boot_df <- bootstrapNull(temp_df, B = 2/10)
data("simulated_cell_extract_df") temp_df <- simulated_cell_extract_df %>% filter(clustername %in% paste0("protein", 1:3)) %>% group_by(representative) %>% mutate(nObs = n()) %>% ungroup boot_df <- bootstrapNull(temp_df, B = 2/10)
Bootstrap null distribution of F statistics for FDR estimation based on resampling alternative model residuals
bootstrapNullAlternativeModel( df, params_df, maxit = 500, independentFiltering = FALSE, fcThres = 1.5, minObs = 20, optim_fun_h0 = TPP2D:::.min_RSS_h0, optim_fun_h1 = TPP2D:::.min_RSS_h1_slope_pEC50, optim_fun_h1_2 = NULL, gr_fun_h0 = NULL, gr_fun_h1 = NULL, gr_fun_h1_2 = NULL, BPPARAM = BiocParallel::SerialParam(progressbar = TRUE), B = 20, byMsExp = TRUE, verbose = FALSE )
bootstrapNullAlternativeModel( df, params_df, maxit = 500, independentFiltering = FALSE, fcThres = 1.5, minObs = 20, optim_fun_h0 = TPP2D:::.min_RSS_h0, optim_fun_h1 = TPP2D:::.min_RSS_h1_slope_pEC50, optim_fun_h1_2 = NULL, gr_fun_h0 = NULL, gr_fun_h1 = NULL, gr_fun_h1_2 = NULL, BPPARAM = BiocParallel::SerialParam(progressbar = TRUE), B = 20, byMsExp = TRUE, verbose = FALSE )
df |
tidy data frame retrieved after import of a 2D-TPP dataset, potential filtering and addition of a column "nObs" containing the number of observations per protein |
params_df |
data frame listing all null and alternative model parameters as obtained by 'getModelParamsDf' |
maxit |
maximal number of iterations the optimization should be given, default is set to 500 |
independentFiltering |
boolean flag indicating whether independent filtering should be performed based on minimal fold changes per protein profile |
fcThres |
numeric value of minimal fold change (or inverse fold change) a protein has to show to be kept upon independent filtering |
minObs |
numeric value of minimal number of observations that should be required per protein |
optim_fun_h0 |
optimization function that should be used for fitting the H0 model |
optim_fun_h1 |
optimization function that should be used for fitting the H1 model |
optim_fun_h1_2 |
optional additional optimization function that will be run with paramters retrieved from optim_fun_h1 and should be used for fitting the H1 model with the trimmed sum model, default is NULL |
gr_fun_h0 |
optional gradient function for optim_fun_h0, default is NULL |
gr_fun_h1 |
optional gradient function for optim_fun_h1, default is NULL |
gr_fun_h1_2 |
optional gradient function for optim_fun_h1_2, default is NULL |
BPPARAM |
BiocParallel parameter for optional parallelization of null distribution generation through bootstrapping, default: BiocParallel::SerialParam() |
B |
numeric value of rounds of bootstrap, default: 20 |
byMsExp |
boolean flag indicating whether resampling of residuals should be performed separately for data generated by different MS experiments, default TRUE, recommended |
verbose |
logical indicating whether to print each protein while its profile is boostrapped |
data frame containing F statistics of proteins with permuted 2D thermal profiles that are informative on the Null distribution of F statistics
data("simulated_cell_extract_df") temp_df <- simulated_cell_extract_df %>% filter(clustername %in% paste0("protein", 1:3)) %>% group_by(representative) %>% mutate(nObs = n()) %>% ungroup temp_params_df <- getModelParamsDf(temp_df) boot_df <- bootstrapNullAlternativeModel( temp_df, params_df = temp_params_df, B = 2)
data("simulated_cell_extract_df") temp_df <- simulated_cell_extract_df %>% filter(clustername %in% paste0("protein", 1:3)) %>% group_by(representative) %>% mutate(nObs = n()) %>% ungroup temp_params_df <- getModelParamsDf(temp_df) boot_df <- bootstrapNullAlternativeModel( temp_df, params_df = temp_params_df, B = 2)
Bootstrap null distribution of F statistics for FDR estimation based on resampling alternative model residuals with only one round of model fitting on resampled data and subsequent resampling of thereby obtained residuals
bootstrapNullAlternativeModelFast( df, params_df, maxit = 500, independentFiltering = FALSE, fcThres = 1.5, minObs = 20, optim_fun_h0 = TPP2D:::.min_RSS_h0, optim_fun_h1 = TPP2D:::.min_RSS_h1_slope_pEC50, optim_fun_h1_2 = NULL, gr_fun_h0 = NULL, gr_fun_h1 = NULL, gr_fun_h1_2 = NULL, BPPARAM = BiocParallel::SerialParam(progressbar = TRUE), B = 20, byMsExp = TRUE, verbose = FALSE )
bootstrapNullAlternativeModelFast( df, params_df, maxit = 500, independentFiltering = FALSE, fcThres = 1.5, minObs = 20, optim_fun_h0 = TPP2D:::.min_RSS_h0, optim_fun_h1 = TPP2D:::.min_RSS_h1_slope_pEC50, optim_fun_h1_2 = NULL, gr_fun_h0 = NULL, gr_fun_h1 = NULL, gr_fun_h1_2 = NULL, BPPARAM = BiocParallel::SerialParam(progressbar = TRUE), B = 20, byMsExp = TRUE, verbose = FALSE )
df |
tidy data frame retrieved after import of a 2D-TPP dataset, potential filtering and addition of a column "nObs" containing the number of observations per protein |
params_df |
data frame listing all null and alternative model parameters as obtained by 'getModelParamsDf' |
maxit |
maximal number of iterations the optimization should be given, default is set to 500 |
independentFiltering |
boolean flag indicating whether independent filtering should be performed based on minimal fold changes per protein profile |
fcThres |
numeric value of minimal fold change (or inverse fold change) a protein has to show to be kept upon independent filtering |
minObs |
numeric value of minimal number of observations that should be required per protein |
optim_fun_h0 |
optimization function that should be used for fitting the H0 model |
optim_fun_h1 |
optimization function that should be used for fitting the H1 model |
optim_fun_h1_2 |
optional additional optimization function that will be run with paramters retrieved from optim_fun_h1 and should be used for fitting the H1 model with the trimmed sum model, default is NULL |
gr_fun_h0 |
optional gradient function for optim_fun_h0, default is NULL |
gr_fun_h1 |
optional gradient function for optim_fun_h1, default is NULL |
gr_fun_h1_2 |
optional gradient function for optim_fun_h1_2, default is NULL |
BPPARAM |
BiocParallel parameter for optional parallelization of null distribution generation through bootstrapping, default: BiocParallel::SerialParam() |
B |
numeric value of rounds of bootstrap, default: 20 |
byMsExp |
boolean flag indicating whether resampling of residuals should be performed separately for data generated by different MS experiments, default TRUE, recommended |
verbose |
logical indicating whether to print each protein while its profile is boostrapped |
data frame containing F statistics of proteins with permuted 2D thermal profiles that are informative on the Null distribution of F statistics
data("simulated_cell_extract_df") temp_df <- simulated_cell_extract_df %>% filter(clustername %in% paste0("protein", 1:3)) %>% group_by(representative) %>% mutate(nObs = n()) %>% ungroup temp_params_df <- getModelParamsDf(temp_df) boot_df <- bootstrapNullAlternativeModelFast( temp_df, params_df = temp_params_df, B = 20)
data("simulated_cell_extract_df") temp_df <- simulated_cell_extract_df %>% filter(clustername %in% paste0("protein", 1:3)) %>% group_by(representative) %>% mutate(nObs = n()) %>% ungroup temp_params_df <- getModelParamsDf(temp_df) boot_df <- bootstrapNullAlternativeModelFast( temp_df, params_df = temp_params_df, B = 20)
Compete H0 and H1 models per protein and obtain F statistic
competeModels( df, fcThres = 1.5, independentFiltering = FALSE, minObs = 20, optim_fun_h0 = .min_RSS_h0, optim_fun_h1 = .min_RSS_h1_slope_pEC50, optim_fun_h1_2 = NULL, gr_fun_h0 = NULL, gr_fun_h1 = NULL, gr_fun_h1_2 = NULL, maxit = 750 )
competeModels( df, fcThres = 1.5, independentFiltering = FALSE, minObs = 20, optim_fun_h0 = .min_RSS_h0, optim_fun_h1 = .min_RSS_h1_slope_pEC50, optim_fun_h1_2 = NULL, gr_fun_h0 = NULL, gr_fun_h1 = NULL, gr_fun_h1_2 = NULL, maxit = 750 )
df |
tidy data frame retrieved after import of a 2D-TPP dataset, potential filtering and addition of a column "nObs" containing the number of observations per protein |
fcThres |
numeric value of minimal fold change (or inverse fold change) a protein has to show to be kept upon independent filtering |
independentFiltering |
boolean flag indicating whether independent filtering should be performed based on minimal fold changes per protein profile |
minObs |
numeric value of minimal number of observations that should be required per protein |
optim_fun_h0 |
optimization function that should be used for fitting the H0 model |
optim_fun_h1 |
optimization function that should be used for fitting the H1 model |
optim_fun_h1_2 |
optional additional optimization function that will be run with paramters retrieved from optim_fun_h1 and should be used for fitting the H1 model with the trimmed sum model, default is NULL |
gr_fun_h0 |
optional gradient function for optim_fun_h0, default is NULL |
gr_fun_h1 |
optional gradient function for optim_fun_h1, default is NULL |
gr_fun_h1_2 |
optional gradient function for optim_fun_h1_2, default is NULL |
maxit |
maximal number of iterations the optimization should be given, default is set to 500 |
data frame summarising the fit characteristics of H0 and H1 models and therof resulting computed F statistics per protein
data("simulated_cell_extract_df") temp_df <- simulated_cell_extract_df %>% filter(clustername %in% paste0("protein", 1:10)) %>% group_by(representative) %>% mutate(nObs = n()) %>% ungroup competeModels(temp_df)
data("simulated_cell_extract_df") temp_df <- simulated_cell_extract_df %>% filter(clustername %in% paste0("protein", 1:10)) %>% group_by(representative) %>% mutate(nObs = n()) %>% ungroup competeModels(temp_df)
Compute F statistic from H1 and H0 model characteristics
computeFstat(h0_df, h1_df)
computeFstat(h0_df, h1_df)
h0_df |
data frame with H0 model characteristics for each protein |
h1_df |
data frame with H1 model characteristics for each protein |
data frame with H0 and H1 model characteristics for each protein and respectively computed F statistics
data("simulated_cell_extract_df") temp_df <- simulated_cell_extract_df %>% filter(clustername %in% paste0("protein", 1:20)) %>% group_by(representative) %>% mutate(nObs = n()) %>% ungroup h0_df <- fitH0Model(temp_df) h1_df <- fitH1Model(temp_df) computeFstat(h0_df, h1_df)
data("simulated_cell_extract_df") temp_df <- simulated_cell_extract_df %>% filter(clustername %in% paste0("protein", 1:20)) %>% group_by(representative) %>% mutate(nObs = n()) %>% ungroup h0_df <- fitH0Model(temp_df) h1_df <- fitH1Model(temp_df) computeFstat(h0_df, h1_df)
Compute F statistics from paramter data frame
computeFStatFromParams(params_df)
computeFStatFromParams(params_df)
params_df |
data frame listing all null and alternative model parameters as obtained by 'getModelParamsDf' |
data frame of all proteins and computed F statistics and parameters that were used for the computation
data("simulated_cell_extract_df") params_df <- getModelParamsDf(simulated_cell_extract_df) computeFStatFromParams(params_df)
data("simulated_cell_extract_df") params_df <- getModelParamsDf(simulated_cell_extract_df) computeFStatFromParams(params_df)
Config table fot import of simulated example dataset obtained by 2D-TPP experiments for analysis by the TPP2D-package. It's a data frame with the columns "Compound" describing the compound used for the assay, "Experiment" listing MS experiment ids of the separate runs (typically comprising two multiplexed adjacent temperature), "Temperature": the temperature used for a given sub-experimet, the respective TMT labels "126"-"131L", RefCol referring to the label used as a reference label for computing relative fold changes (usually the label used for the control treatment). Please note that when the data is not supplied as a list of already imported data frames the config table for the import function should be a path to an txt, csv or xlsx file containing an additional column "Path" listing for each row the respective path to a searched protein output file.
data("config_tab")
data("config_tab")
"Compound" describing the compound used for the assay, "Experiment" listing MS experiment ids of the separate runs (typically comprising two multiplexed adjacent temperature), "Temperature": the temperature used for a given sub-experimet, the respective TMT labels "126"-"131L", RefCol referring to the label used as a reference label for computing relative fold changes (usually the label used for the control treatment).
Tranform configuration table from wide to long
configWide2Long(configWide)
configWide2Long(configWide)
configWide |
data frame containing a config table |
data frame containing config table in long format
data("config_tab") configWide2Long(configWide = config_tab)
data("config_tab") configWide2Long(configWide = config_tab)
Filter out contaminants
filterOutContaminants(dataLong)
filterOutContaminants(dataLong)
dataLong |
long format data frame of imported dataset |
data frame containing full dataset filtered to contain no contaminants
data("simulated_cell_extract_df") filterOutContaminants(simulated_cell_extract_df)
data("simulated_cell_extract_df") filterOutContaminants(simulated_cell_extract_df)
Find hits according to FDR threshold
findHits(fdr_df, alpha)
findHits(fdr_df, alpha)
fdr_df |
data frame obtained from computeFdr |
alpha |
significance threshold, default is set to 0.1 |
data frame of significant hits at FDR <= alpha
data("simulated_cell_extract_df") temp_df <- simulated_cell_extract_df %>% filter(clustername %in% paste0("protein", 1:5)) %>% group_by(representative) %>% mutate(nObs = n()) %>% ungroup example_out <- fitAndEvalDataset(temp_df) example_null <- bootstrapNull(temp_df, B = 1) fdr_df <- getFDR(example_out, example_null) findHits(fdr_df, 0.1)
data("simulated_cell_extract_df") temp_df <- simulated_cell_extract_df %>% filter(clustername %in% paste0("protein", 1:5)) %>% group_by(representative) %>% mutate(nObs = n()) %>% ungroup example_out <- fitAndEvalDataset(temp_df) example_null <- bootstrapNull(temp_df, B = 1) fdr_df <- getFDR(example_out, example_null) findHits(fdr_df, 0.1)
Fit H0 and H1 model to 2D thermal profiles of proteins and compute F statistic
fitAndEvalDataset( df, maxit = 500, optim_fun_h0 = .min_RSS_h0, optim_fun_h1 = .min_RSS_h1_slope_pEC50, optim_fun_h1_2 = NULL, gr_fun_h0 = NULL, gr_fun_h1 = NULL, gr_fun_h1_2 = NULL, ec50_lower_limit = NULL, ec50_upper_limit = NULL, slopEC50 = TRUE )
fitAndEvalDataset( df, maxit = 500, optim_fun_h0 = .min_RSS_h0, optim_fun_h1 = .min_RSS_h1_slope_pEC50, optim_fun_h1_2 = NULL, gr_fun_h0 = NULL, gr_fun_h1 = NULL, gr_fun_h1_2 = NULL, ec50_lower_limit = NULL, ec50_upper_limit = NULL, slopEC50 = TRUE )
df |
tidy data_frame retrieved after import of a 2D-TPP dataset, potential filtering and addition of a column "nObs" containing the number of observations per protein |
maxit |
maximal number of iterations the optimization should be given, default is set to 500 |
optim_fun_h0 |
optimization function that should be used for fitting the H0 model |
optim_fun_h1 |
optimization function that should be used for fitting the H1 model |
optim_fun_h1_2 |
optional additional optimization function that will be run with paramters retrieved from optim_fun_h1 and should be used for fitting the H1 model with the trimmed sum model, default is NULL |
gr_fun_h0 |
optional gradient function for optim_fun_h0, default is NULL |
gr_fun_h1 |
optional gradient function for optim_fun_h1, default is NULL |
gr_fun_h1_2 |
optional gradient function for optim_fun_h1_2, default is NULL |
ec50_lower_limit |
lower limit of ec50 parameter |
ec50_upper_limit |
lower limit of ec50 parameter |
slopEC50 |
logical flag indicating whether the h1 model is fitted with a linear model describing the shift od the pEC50 over temperatures |
data frame with H0 and H1 model characteristics for each protein and respectively computed F statistics
data("simulated_cell_extract_df") temp_df <- simulated_cell_extract_df %>% group_by(representative) %>% mutate(nObs = n()) %>% ungroup fitAndEvalDataset(temp_df)
data("simulated_cell_extract_df") temp_df <- simulated_cell_extract_df %>% group_by(representative) %>% mutate(nObs = n()) %>% ungroup fitAndEvalDataset(temp_df)
Fit H0 model and evaluate fit statistics
fitH0Model(df, maxit = 500, optim_fun = .min_RSS_h0, gr_fun = NULL)
fitH0Model(df, maxit = 500, optim_fun = .min_RSS_h0, gr_fun = NULL)
df |
tidy data_frame retrieved after import of a 2D-TPP dataset, potential filtering and addition of a column "nObs" containing the number of observations per protein |
maxit |
maximal number of iterations the optimization should be given, default is set to 500 |
optim_fun |
optimization function that should be used for fitting the H0 model |
gr_fun |
optional gradient function for optim_fun, default is NULL |
data frame with H0 model characteristics for each protein
data("simulated_cell_extract_df") temp_df <- simulated_cell_extract_df %>% filter(clustername %in% paste0("protein", 1:5)) %>% group_by(representative) %>% mutate(nObs = n()) %>% ungroup fitH0Model(temp_df)
data("simulated_cell_extract_df") temp_df <- simulated_cell_extract_df %>% filter(clustername %in% paste0("protein", 1:5)) %>% group_by(representative) %>% mutate(nObs = n()) %>% ungroup fitH0Model(temp_df)
Fit H1 model and evaluate fit statistics
fitH1Model( df, maxit = 500, optim_fun = .min_RSS_h1_slope_pEC50, optim_fun_2 = NULL, gr_fun = NULL, gr_fun_2 = NULL, ec50_lower_limit = NULL, ec50_upper_limit = NULL, slopEC50 = TRUE )
fitH1Model( df, maxit = 500, optim_fun = .min_RSS_h1_slope_pEC50, optim_fun_2 = NULL, gr_fun = NULL, gr_fun_2 = NULL, ec50_lower_limit = NULL, ec50_upper_limit = NULL, slopEC50 = TRUE )
df |
tidy data_frame retrieved after import of a 2D-TPP dataset, potential filtering and addition of a column "nObs" containing the number of observations per protein |
maxit |
maximal number of iterations the optimization should be given, default is set to 500 |
optim_fun |
optimization function that should be used for fitting the H0 model |
optim_fun_2 |
optional secound optimization function for fitting the H1 model that should be used based on the fitted parameters of the optimizationfor based on optim_fun |
gr_fun |
optional gradient function for optim_fun, default is NULL |
gr_fun_2 |
optional gradient function for optim_fun_2, default is NULL |
ec50_lower_limit |
lower limit of ec50 parameter |
ec50_upper_limit |
lower limit of ec50 parameter |
slopEC50 |
logical flag indicating whether the h1 model is fitted with a linear model describing the shift od the pEC50 over temperatures |
data frame with H1 model characteristics for each protein
data("simulated_cell_extract_df") temp_df <- simulated_cell_extract_df %>% filter(clustername %in% paste0("protein", 1:5)) %>% group_by(representative) %>% mutate(nObs = n()) %>% ungroup fitH1Model(temp_df)
data("simulated_cell_extract_df") temp_df <- simulated_cell_extract_df %>% filter(clustername %in% paste0("protein", 1:5)) %>% group_by(representative) %>% mutate(nObs = n()) %>% ungroup fitH1Model(temp_df)
Get FDR for given F statistics based on true and null dataset
getFDR(df_out, df_null, squeezeDenominator = TRUE)
getFDR(df_out, df_null, squeezeDenominator = TRUE)
df_out |
data frame containing results from analysis by fitAndEvalDataset |
df_null |
data frame containing results from analysis by bootstrapNull |
squeezeDenominator |
logical indicating whether F statistic denominator should be shrinked using limma::squeezeVar |
data frame annotating each protein with a FDR based on it's F statistic and number of observations
data("simulated_cell_extract_df") temp_df <- simulated_cell_extract_df %>% filter(clustername %in% paste0("protein", 1:5)) %>% group_by(representative) %>% mutate(nObs = n()) %>% ungroup example_out <- fitAndEvalDataset(temp_df) example_null <- bootstrapNull(temp_df, B = 1) getFDR(example_out, example_null)
data("simulated_cell_extract_df") temp_df <- simulated_cell_extract_df %>% filter(clustername %in% paste0("protein", 1:5)) %>% group_by(representative) %>% mutate(nObs = n()) %>% ungroup example_out <- fitAndEvalDataset(temp_df) example_null <- bootstrapNull(temp_df, B = 1) getFDR(example_out, example_null)
Get H0 and H1 model parameters
getModelParamsDf( df, minObs = 20, optim_fun_h0 = .min_RSS_h0, optim_fun_h1 = .min_RSS_h1_slope_pEC50, optim_fun_h1_2 = NULL, gr_fun_h0 = NULL, gr_fun_h1 = NULL, gr_fun_h1_2 = NULL, slopEC50 = TRUE, maxit = 500, qualColName = "qupm" )
getModelParamsDf( df, minObs = 20, optim_fun_h0 = .min_RSS_h0, optim_fun_h1 = .min_RSS_h1_slope_pEC50, optim_fun_h1_2 = NULL, gr_fun_h0 = NULL, gr_fun_h1 = NULL, gr_fun_h1_2 = NULL, slopEC50 = TRUE, maxit = 500, qualColName = "qupm" )
df |
tidy data_frame retrieved after import of a 2D-TPP dataset, potential filtering and addition of a column "nObs" containing the number of observations per protein |
minObs |
numeric value of minimal number of observations that should be required per protein |
optim_fun_h0 |
optimization function that should be used for fitting the H0 model |
optim_fun_h1 |
optimization function that should be used for fitting the H1 model |
optim_fun_h1_2 |
optional additional optimization function that will be run with paramters retrieved from optim_fun_h1 and should be used for fitting the H1 model with the trimmed sum model, default is NULL |
gr_fun_h0 |
optional gradient function for optim_fun_h0, default is NULL |
gr_fun_h1 |
optional gradient function for optim_fun_h1, default is NULL |
gr_fun_h1_2 |
optional gradient function for optim_fun_h1_2, default is NULL |
slopEC50 |
logical flag indicating whether the h1 model is fitted with a linear model describing the shift od the pEC50 over temperatures |
maxit |
maximal number of iterations the optimization should be given, default is set to 500 |
qualColName |
name of column indicating quantification quality e.g. number of unique peptides used for quantification, default: "qupm" |
a data.frame with fitted null and alternative model parameters
data("simulated_cell_extract_df") getModelParamsDf(simulated_cell_extract_df)
data("simulated_cell_extract_df") getModelParamsDf(simulated_cell_extract_df)
Get pEC50 for a protein of interest at a specific temperatures (optimally the melting point of the protein)
getPEC504Temperature(fstat_df, protein, temperaturePEC50 = 60)
getPEC504Temperature(fstat_df, protein, temperaturePEC50 = 60)
fstat_df |
data frame as obtained after calling
|
protein |
character string referring to the protein of interest |
temperaturePEC50 |
temperature (numeric) at which pEC50 should be inferred |
numeric value specifying the pEC50 for the indicated protein and temperature
data("simulated_cell_extract_df") model_params_df <- getModelParamsDf( df = filter(simulated_cell_extract_df, clustername == "tp1")) getPEC504Temperature( fstat_df = model_params_df, protein = "tp1", temperaturePEC50 = 60)
data("simulated_cell_extract_df") model_params_df <- getModelParamsDf( df = filter(simulated_cell_extract_df, clustername == "tp1")) getPEC504Temperature( fstat_df = model_params_df, protein = "tp1", temperaturePEC50 = 60)
Compute p-values for given F statistics based on true and null dataset
getPvalues(df_out, df_null, pseudo_count = 1, squeezeDenominator = FALSE)
getPvalues(df_out, df_null, pseudo_count = 1, squeezeDenominator = FALSE)
df_out |
data frame containing results from analysis by fitAndEvalDataset |
df_null |
data frame containing results from analysis by bootstrapNull |
pseudo_count |
numeric larger or equal to 0 added to both counts of protein with an F-statistic higher than a threshold theta of the true and bootstrapped datasets |
squeezeDenominator |
logical indicating whether F statistic denominator should be shrinked using limma::squeezeVar |
data frame annotating each protein with a FDR based on it's F statistic and number of observations
data("simulated_cell_extract_df") temp_df <- simulated_cell_extract_df %>% filter(clustername %in% paste0("protein", 1:3)) %>% group_by(representative) %>% mutate(nObs = n()) %>% ungroup example_out <- fitAndEvalDataset(temp_df) example_null <- bootstrapNull(temp_df, B = 2) getPvalues( example_out, example_null)
data("simulated_cell_extract_df") temp_df <- simulated_cell_extract_df %>% filter(clustername %in% paste0("protein", 1:3)) %>% group_by(representative) %>% mutate(nObs = n()) %>% ungroup example_out <- fitAndEvalDataset(temp_df) example_null <- bootstrapNull(temp_df, B = 2) getPvalues( example_out, example_null)
Plot qq-plot of true data and bootstrapped null with ggplot
gg_qq( x, y, xlab = "F-statistics from sampled Null distr.", ylab = "observed F-statistics", alpha = 0.25, gg_theme = theme_classic(), offset = 1, plot_diagonal = TRUE )
gg_qq( x, y, xlab = "F-statistics from sampled Null distr.", ylab = "observed F-statistics", alpha = 0.25, gg_theme = theme_classic(), offset = 1, plot_diagonal = TRUE )
x |
vector containing values of values of first distribution to compare |
y |
vector containing values of values of secound distribution to compare |
xlab |
x-axis label |
ylab |
y-axis label |
alpha |
transparency paramenter between 0 and 1 |
gg_theme |
ggplot theme, default is theme_classic() |
offset |
offset for x and y axis on top of maximal values |
plot_diagonal |
logical parameter indicating whether an identity line should be plotted |
A ggplot displaying the qq-plot of a true and a a bootstrapped null distribution
data("simulated_cell_extract_df") recomputeSignalFromRatios(simulated_cell_extract_df)
data("simulated_cell_extract_df") recomputeSignalFromRatios(simulated_cell_extract_df)
Import 2D-TPP dataset using a config table
import2dDataset( configTable, data, idVar = "representative", intensityStr = "sumionarea_protein_", fcStr = "rel_fc_protein_", nonZeroCols = "qssm", geneNameVar = "clustername", addCol = NULL, qualColName = "qupm", naStrs = c("NA", "n/d", "NaN"), concFactor = 1e+06, medianNormalizeFC = TRUE, filterContaminants = TRUE )
import2dDataset( configTable, data, idVar = "representative", intensityStr = "sumionarea_protein_", fcStr = "rel_fc_protein_", nonZeroCols = "qssm", geneNameVar = "clustername", addCol = NULL, qualColName = "qupm", naStrs = c("NA", "n/d", "NaN"), concFactor = 1e+06, medianNormalizeFC = TRUE, filterContaminants = TRUE )
configTable |
character string of a file path to a config table |
data |
possible list of datasets from different MS runs corresponding to a 2D-TPP dataset, circumvents loading datasets referencend in config table, default is NULL |
idVar |
character string indicating which data column provides the unique identifiers for each protein. |
intensityStr |
character string indicating which columns contain raw intensities measurements |
fcStr |
character string indicating which columns contain the actual
fold change values. Those column names containing the suffix |
nonZeroCols |
column like default qssm that should be imported and requested to be non-zero in analyzed data |
geneNameVar |
character string of the column name that describes the gene name of a given protein in the raw data files |
addCol |
character string indicating additional column to import |
qualColName |
character string indicating which column can be used for additional quality criteria when deciding between different non-unique protein identifiers. |
naStrs |
character vector indicating missing values in the data table.
When reading data from file, this value will be passed on to the argument
|
concFactor |
numeric value that indicates how concentrations need to be adjusted to yield total unit e.g. default mmol - 1e6 |
medianNormalizeFC |
perform median normalization (default: TRUE). |
filterContaminants |
boolean variable indicating whether data should be filtered to exclude contaminants (default: TRUE). |
tidy data frame representing a 2D-TPP dataset
data("config_tab") data("raw_dat_list") import_df <- import2dDataset(configTable = config_tab, data = raw_dat_list, idVar = "protein_id", intensityStr = "signal_sum_", fcStr = "rel_fc_", nonZeroCols = "qusm", geneNameVar = "gene_name", addCol = NULL, qualColName = "qupm", naStrs = c("NA", "n/d", "NaN"), concFactor = 1e6, medianNormalizeFC = TRUE, filterContaminants = TRUE)
data("config_tab") data("raw_dat_list") import_df <- import2dDataset(configTable = config_tab, data = raw_dat_list, idVar = "protein_id", intensityStr = "signal_sum_", fcStr = "rel_fc_", nonZeroCols = "qusm", geneNameVar = "gene_name", addCol = NULL, qualColName = "qupm", naStrs = c("NA", "n/d", "NaN"), concFactor = 1e6, medianNormalizeFC = TRUE, filterContaminants = TRUE)
Import 2D-TPP dataset main function
import2dMain( configTable, data, idVar, fcStr, addCol, naStrs, intensityStr, qualColName, nonZeroCols )
import2dMain( configTable, data, idVar, fcStr, addCol, naStrs, intensityStr, qualColName, nonZeroCols )
configTable |
character string of a file path to a config table |
data |
possible list of datasets from different MS runs corresponding to a 2D-TPP dataset, circumvents loading datasets referencend in config table, default is NULL |
idVar |
character string indicating which data column provides the unique identifiers for each protein. |
fcStr |
character string indicating which columns contain the actual
fold change values. Those column names containing the suffix |
addCol |
character string indicating additional column to import |
naStrs |
character vector indicating missing values in the data table.
When reading data from file, this value will be passed on to the argument
|
intensityStr |
character string indicating which columns contain raw intensities measurements |
qualColName |
character string indicating which column can be used for additional quality criteria when deciding between different non-unique protein identifiers. |
nonZeroCols |
column like default qssm that should be imported and requested to be non-zero in analyzed data |
list of data frames containing different datasets
data("config_tab") data("raw_dat_list") dataList <- import2dMain(configTable = config_tab, data = raw_dat_list, idVar = "protein_id", fcStr = "rel_fc_", addCol = "gene_name", naStrs = NA, intensityStr = "signal_sum_", nonZeroCols = "qusm", qualColName = "qupm")
data("config_tab") data("raw_dat_list") dataList <- import2dMain(configTable = config_tab, data = raw_dat_list, idVar = "protein_id", fcStr = "rel_fc_", addCol = "gene_name", naStrs = NA, intensityStr = "signal_sum_", nonZeroCols = "qusm", qualColName = "qupm")
Plot heatmap of 2D thermal profile fold changes of a protein of choice
plot2dTppFcHeatmap(df, name, drug_name = "", midpoint = 1)
plot2dTppFcHeatmap(df, name, drug_name = "", midpoint = 1)
df |
tidy data frame of a 2D-TPP dataset |
name |
gene name (clustername) of protein that should be visualized |
drug_name |
character string of profiled drug name |
midpoint |
midpoint of fold changes for color scaling, default: 1 |
A ggplot displaying the thermal profile as a heatmap of fold changes of a protein of choice in a dataset of choice
data("simulated_cell_extract_df") plot2dTppFcHeatmap(simulated_cell_extract_df, "tp2", drug_name = "drug1")
data("simulated_cell_extract_df") plot2dTppFcHeatmap(simulated_cell_extract_df, "tp2", drug_name = "drug1")
Plot H0 or H1 fit of 2D thermal profile intensities of a protein of choice
plot2dTppFit( df, name, model_type = "H0", optim_fun = .min_RSS_h0, optim_fun_2 = NULL, maxit = 500, xlab = "-log10(conc.)", ylab = "log2(summed intensities)", dot_size = 1, line_type = "solid", fit_color = "gray30" )
plot2dTppFit( df, name, model_type = "H0", optim_fun = .min_RSS_h0, optim_fun_2 = NULL, maxit = 500, xlab = "-log10(conc.)", ylab = "log2(summed intensities)", dot_size = 1, line_type = "solid", fit_color = "gray30" )
df |
tidy data frame of a 2D-TPP dataset |
name |
gene name (clustername) of protein that should be visualized |
model_type |
character string indicating whether the "H0" or the "H1" model should be fitted |
optim_fun |
optimization function that should be used for fitting either the H0 or H1 model |
optim_fun_2 |
optional additional optimization function that will be run with paramters retrieved from optim_fun and should be used for fitting the H1 model with the trimmed sum model, default is NULL |
maxit |
maximal number of iterations the optimization should be given, default is set to 500 |
xlab |
character string of x-axis label of plot |
ylab |
character string of y-axis label of plot |
dot_size |
numeric indicating the size of the data points to plot |
line_type |
character string defining the line type of the fitted curve, default "dashed" |
fit_color |
character string defining the color of the fitted curve |
A ggplot displaying the thermal profile of a protein of choice in a datset of choice
data("simulated_cell_extract_df") plot2dTppProfile(simulated_cell_extract_df, "protein1")
data("simulated_cell_extract_df") plot2dTppProfile(simulated_cell_extract_df, "protein1")
Plot 2D thermal profile intensities of a protein of choice
plot2dTppProfile(df, name)
plot2dTppProfile(df, name)
df |
tidy data frame of a 2D-TPP dataset |
name |
gene name (clustername) of protein that should be visualized |
A ggplot displaying the thermal profile of a protein of choice in a datset of choice
data("simulated_cell_extract_df") plot2dTppProfile(simulated_cell_extract_df, "protein1")
data("simulated_cell_extract_df") plot2dTppProfile(simulated_cell_extract_df, "protein1")
Plot 2D thermal profile ratios of a protein of choice
plot2dTppRelProfile(df, name)
plot2dTppRelProfile(df, name)
df |
tidy data frame of a 2D-TPP dataset |
name |
gene name (clustername) of protein that should be visualized |
A ggplot displaying the thermal profile ratios of a protein of choice in a datset of choice
data("simulated_cell_extract_df") plot2dTppRelProfile(simulated_cell_extract_df, "protein1")
data("simulated_cell_extract_df") plot2dTppRelProfile(simulated_cell_extract_df, "protein1")
Plot Volcano plot of TPP2D results
plot2dTppVolcano( fdr_df, hits_df, alpha = 0.5, title_string = "", x_lim = NULL, y_lim = NULL, facet_by_obs = FALSE )
plot2dTppVolcano( fdr_df, hits_df, alpha = 0.5, title_string = "", x_lim = NULL, y_lim = NULL, facet_by_obs = FALSE )
fdr_df |
data frame obtained from 'getFDR' |
hits_df |
hits_df data frame obtained from 'findHits' |
alpha |
transparency level of plotted points |
title_string |
character argument handed over to ggtitle |
x_lim |
vector with two numerics indicating the x axis limits |
y_lim |
vector with two numerics indicating the y axis limits |
facet_by_obs |
logical indicating whether plot should be facetted by number of observations, default: FALSE |
a ggplot displaying a volcano plot of the results obtained after a TPP2D analysis
data("simulated_cell_extract_df") temp_df <- simulated_cell_extract_df %>% filter(clustername %in% paste0("protein", 1:5)) %>% group_by(representative) %>% mutate(nObs = n()) %>% ungroup example_params <- getModelParamsDf(temp_df) example_fstat <- computeFStatFromParams(example_params) example_null <- bootstrapNullAlternativeModel( df = temp_df, params_df = example_params, B = 2) fdr_df <- getFDR(example_fstat, example_null) hits_df <- findHits(fdr_df, 0.1) plot2dTppVolcano(fdr_df = fdr_df, hits_df = hits_df)
data("simulated_cell_extract_df") temp_df <- simulated_cell_extract_df %>% filter(clustername %in% paste0("protein", 1:5)) %>% group_by(representative) %>% mutate(nObs = n()) %>% ungroup example_params <- getModelParamsDf(temp_df) example_fstat <- computeFStatFromParams(example_params) example_null <- bootstrapNullAlternativeModel( df = temp_df, params_df = example_params, B = 2) fdr_df <- getFDR(example_fstat, example_null) hits_df <- findHits(fdr_df, 0.1) plot2dTppVolcano(fdr_df = fdr_df, hits_df = hits_df)
Simulated example dataset obtained by 2D-TPP experiments for analysis by the TPP2D-package. It contains a list of data frames resembling raw data files returned from a MS database search with 200 simulated protein profiles (protein1-200) and 3 spiked-in true positives (TP1-3).
data("raw_dat_list")
data("raw_dat_list")
list of data frames with columns representative (protein id), clustername (gene name), temperature, log_conc, raw_value, rel_value, value and log2_value
Recompute robust signal intensities based on bootstrapped TMT channel ratios
recomputeSignalFromRatios(df)
recomputeSignalFromRatios(df)
df |
tidy data_frame retrieved after import of a 2D-TPP dataset |
A data_frame with recomputed signal intensities (columname: value) and log2 transformed signal intensities (columnanme: log2_value) that more reliably reflect relative ratios between the TMT channels
data("simulated_cell_extract_df") recomputeSignalFromRatios(simulated_cell_extract_df)
data("simulated_cell_extract_df") recomputeSignalFromRatios(simulated_cell_extract_df)
Rename columns of imported data frame
renameColumns(dataLong, idVar, geneNameVar)
renameColumns(dataLong, idVar, geneNameVar)
dataLong |
long format data frame of imported dataset |
idVar |
character string indicating which data column provides the unique identifiers for each protein. |
geneNameVar |
character string of the column name that describes the gene name of a given protein in the raw data files |
data frame containing imported data with renamed columns
data("config_tab") data("raw_dat_list") dataList <- import2dMain(configTable = config_tab, data = raw_dat_list, idVar = "protein_id", fcStr = "rel_fc_", addCol = "gene_name", naStrs = NA, intensityStr = "signal_sum_", nonZeroCols = "qusm", qualColName = "qupm") configLong <- configWide2Long(configWide = config_tab) annoDat <- annotateDataList(dataList = dataList, geneNameVar = "gene_name", configLong = configLong, intensityStr = "signal_sum_", fcStr = "rel_fc_") renameColumns(annoDat, idVar = "protein_id", geneNameVar = "gene_name")
data("config_tab") data("raw_dat_list") dataList <- import2dMain(configTable = config_tab, data = raw_dat_list, idVar = "protein_id", fcStr = "rel_fc_", addCol = "gene_name", naStrs = NA, intensityStr = "signal_sum_", nonZeroCols = "qusm", qualColName = "qupm") configLong <- configWide2Long(configWide = config_tab) annoDat <- annotateDataList(dataList = dataList, geneNameVar = "gene_name", configLong = configLong, intensityStr = "signal_sum_", fcStr = "rel_fc_") renameColumns(annoDat, idVar = "protein_id", geneNameVar = "gene_name")
Resolve ambiguous protein names
resolveAmbiguousProteinNames(df, includeIsoforms = FALSE)
resolveAmbiguousProteinNames(df, includeIsoforms = FALSE)
df |
tidy data_frame retrieved after import of a 2D-TPP dataset |
includeIsoforms |
logical indicating whether protein isoform should be kept for analysis |
data frame with resolved protein name ambiguity
tst_df <- bind_rows(tibble(representative = rep(1:3, each = 3), clustername = rep(letters[1:3], each = 3)), tibble(representative = rep(c(4, 5), c(3, 2)), clustername = rep(c("a", "b"), c(3, 2)))) resolveAmbiguousProteinNames(tst_df)
tst_df <- bind_rows(tibble(representative = rep(1:3, each = 3), clustername = rep(letters[1:3], each = 3)), tibble(representative = rep(c(4, 5), c(3, 2)), clustername = rep(c("a", "b"), c(3, 2)))) resolveAmbiguousProteinNames(tst_df)
Run complete TPP2D analysis
runTPP2D( df = NULL, configTable = NULL, data = NULL, idVar = "protein_id", intensityStr = "signal_sum_", fcStr = "rel_fc_", nonZeroCols = "qusm", geneNameVar = "gene_name", addCol = NULL, qualColName = "qupm", naStrs = c("NA", "n/d", "NaN"), concFactor = 1e+06, medianNormalizeFC = TRUE, filterContaminants = TRUE, recomputeSignalRatios = FALSE, minObs = 20, independentFiltering = FALSE, fcThres = 1.5, optim_fun_h0 = .min_RSS_h0, optim_fun_h1 = .min_RSS_h1_slope_pEC50, optim_fun_h1_2 = NULL, gr_fun_h0 = NULL, gr_fun_h1 = NULL, gr_fun_h1_2 = NULL, slopEC50 = TRUE, maxit = 750, BPPARAM = BiocParallel::SerialParam(progressbar = TRUE), B = 20, byMsExp = TRUE, alpha = 0.1 )
runTPP2D( df = NULL, configTable = NULL, data = NULL, idVar = "protein_id", intensityStr = "signal_sum_", fcStr = "rel_fc_", nonZeroCols = "qusm", geneNameVar = "gene_name", addCol = NULL, qualColName = "qupm", naStrs = c("NA", "n/d", "NaN"), concFactor = 1e+06, medianNormalizeFC = TRUE, filterContaminants = TRUE, recomputeSignalRatios = FALSE, minObs = 20, independentFiltering = FALSE, fcThres = 1.5, optim_fun_h0 = .min_RSS_h0, optim_fun_h1 = .min_RSS_h1_slope_pEC50, optim_fun_h1_2 = NULL, gr_fun_h0 = NULL, gr_fun_h1 = NULL, gr_fun_h1_2 = NULL, slopEC50 = TRUE, maxit = 750, BPPARAM = BiocParallel::SerialParam(progressbar = TRUE), B = 20, byMsExp = TRUE, alpha = 0.1 )
df |
tidy data_frame retrieved after import of a 2D-TPP dataset, potential filtering and addition of a column "nObs" containing the number of observations per protein |
configTable |
character string of a file path to a config table |
data |
possible list of datasets from different MS runs corresponding to a 2D-TPP dataset, circumvents loading datasets referencend in config table, default is NULL |
idVar |
character string indicating which data column provides the unique identifiers for each protein. |
intensityStr |
character string indicating which columns contain raw intensities measurements |
fcStr |
character string indicating which columns contain the actual
fold change values. Those column names containing the suffix |
nonZeroCols |
column like default qssm that should be imported and requested to be non-zero in analyzed data |
geneNameVar |
character string of the column name that describes the gene name of a given protein in the raw data files |
addCol |
character string indicating additional column to import |
qualColName |
character string indicating which column can be used for additional quality criteria when deciding between different non-unique protein identifiers. |
naStrs |
character vector indicating missing values in the data table.
When reading data from file, this value will be passed on to the argument
|
concFactor |
numeric value that indicates how concentrations need to be adjusted to yield total unit e.g. default mmol - 1e6 |
medianNormalizeFC |
perform median normalization (default: TRUE). |
filterContaminants |
logical variable indicating whether data should be filtered to exclude contaminants (default: TRUE). |
recomputeSignalRatios |
logical variable indicaiting whether signals should be recomputed from relative fold changes, recommended if Isobarquant was used for protein quantification |
minObs |
number of minimal observations per protein to include it in the analysis |
independentFiltering |
logical variable indicating whether independent filtering should be performed based on minimal fold changes per protein profile |
fcThres |
numeric value of minimal fold change (or inverse fold change) a protein has to show to be kept upon independent filtering |
optim_fun_h0 |
optimization function that should be used for fitting the H0 model |
optim_fun_h1 |
optimization function that should be used for fitting the H1 model |
optim_fun_h1_2 |
optional additional optimization function that will be run with paramters retrieved from optim_fun_h1 and should be used for fitting the H1 model with the trimmed sum model, default is NULL |
gr_fun_h0 |
optional gradient function for optim_fun_h0, default is NULL |
gr_fun_h1 |
optional gradient function for optim_fun_h1, default is NULL |
gr_fun_h1_2 |
optional gradient function for optim_fun_h1_2, default is NULL |
slopEC50 |
logical flag indicating whether the h1 model is fitted with a linear model describing the shift od the pEC50 over temperatures |
maxit |
maximal number of iterations the optimization should be given, default is set to 500 |
BPPARAM |
= BiocParallel::SerialParam(progressbar = TRUE), |
B |
numeric value indicating number of rounds of bootstraps that should be performed to estimate the null distribution |
byMsExp |
logical indicating whether bootstrapping should be performed within MS experiments |
alpha |
FDR level that should be controlled |
a tpp2dExperiment object
data("simulated_cell_extract_df") runTPP2D(df = simulated_cell_extract_df %>% filter(representative %in% 1:3), B = 1)
data("simulated_cell_extract_df") runTPP2D(df = simulated_cell_extract_df %>% filter(representative %in% 1:3), B = 1)
Simulated example dataset obtained by 2D-TPP experiments for analysis by the TPP2D-package. It contains a tidy data frame after import and recomputing of robust signal intensities with 200 simulated protein profiles (protein1-200) and 3 spiked-in true positives (TP1-3)
data("simulated_cell_extract_df")
data("simulated_cell_extract_df")
data frame with columns representative (protein id), clustername (gene name), temperature, log_conc, raw_value, rel_value, value and log2_value
Import and chech configuration table
TPP_importCheckConfigTable(infoTable, type = "2D")
TPP_importCheckConfigTable(infoTable, type = "2D")
infoTable |
character string of a file path to a config table (excel,txt or csv file) or data frame containing a config table |
type |
charater string indicating dataset type default is 2D |
data frame with config table
data("config_tab") TPP_importCheckConfigTable(config_tab, type = "2D")
data("config_tab") TPP_importCheckConfigTable(config_tab, type = "2D")
S4 TPP2D Experiment Class
an object of class tpp2dExperiment
configTable
data.frame.
idVar
character.
intensityStr
character.
fcStr
character.
nonZeroCols
character.
geneNameVar
character.
qualColName
character.
naStrs
character.
concFactor
numeric.
medianNormalizeFC
logical.
filterContaminants
logical.
minObs
numeric.
independentFiltering
logical.
fcThres
numeric.
optim_fun_h0
function.
optim_fun_h1
function.
slopEC50
logical.
maxit
numeric.
BPPARAM
character.
B
numeric
byMsExp
logical.
alpha
numeric.
tidyDataTable
data.frame.
modelParamsDf
data.frame
resultTable
data.frame
bootstrapNullDf
data.frame
hitTable
data.frame
tpp2dObj <- new("tpp2dExperiment")
tpp2dObj <- new("tpp2dExperiment")