Title: | Analyze thermal proteome profiling (TPP) experiments |
---|---|
Description: | Analyze thermal proteome profiling (TPP) experiments with varying temperatures (TR) or compound concentrations (CCR). |
Authors: | Dorothee Childs, Nils Kurzawa, Holger Franken, Carola Doce, Mikhail Savitski and Wolfgang Huber |
Maintainer: | Dorothee Childs <[email protected]> |
License: | Artistic-2.0 |
Version: | 3.35.0 |
Built: | 2024-12-30 05:23:08 UTC |
Source: | https://github.com/bioc/TPP |
Performs the whole analysis workflow for 2D-TPP experiment by invoking routines for data import, data processing, fold change computation, median normalization, TPP-CCR curve fitting, plotting and production of the result table.
analyze2DTPP( configTable, data = NULL, resultPath = NULL, idVar = "gene_name", fcStr = NULL, intensityStr = "signal_sum_", naStrs = c("NA", "n/d", "NaN", "<NA>"), methods = "doseResponse", qualColName = "qupm", compFc = TRUE, normalize = TRUE, addCol = NULL, nCores = 1, nonZeroCols = "qssm", fcTolerance = 0.1, r2Cutoff = 0.8, fcCutoff = 1.5, slopeBounds = c(1, 50), fractAbund = FALSE, xlsxExport = TRUE, plotAll = FALSE, plotAllR2 = FALSE, plotSingle = FALSE, trRef = NULL, refFcStr = "norm_rel_fc_", addInfo = FALSE, createReport = "none", paletteName = "Spectral", configFile )
analyze2DTPP( configTable, data = NULL, resultPath = NULL, idVar = "gene_name", fcStr = NULL, intensityStr = "signal_sum_", naStrs = c("NA", "n/d", "NaN", "<NA>"), methods = "doseResponse", qualColName = "qupm", compFc = TRUE, normalize = TRUE, addCol = NULL, nCores = 1, nonZeroCols = "qssm", fcTolerance = 0.1, r2Cutoff = 0.8, fcCutoff = 1.5, slopeBounds = c(1, 50), fractAbund = FALSE, xlsxExport = TRUE, plotAll = FALSE, plotAllR2 = FALSE, plotSingle = FALSE, trRef = NULL, refFcStr = "norm_rel_fc_", addInfo = FALSE, createReport = "none", paletteName = "Spectral", configFile )
configTable |
dataframe, or character object with the path to a file,
that specifies important details of the 2D-TPP experiment. See Section
|
data |
single dataframe, containing fold change measurements and
additional annotation columns to be imported. Can be used instead of
specifying the file path in the |
resultPath |
location where to store dose-response curve plots and results table. |
idVar |
character string indicating which data column provides the unique identifiers for each protein. |
fcStr |
character string indicating which columns contain the actual
fold change values. Those column names containing the prefix |
intensityStr |
character string indicating which columns contain the actual
sumionarea values. Those column names containing the prefix |
naStrs |
character vector indicating missing values in the data table.
When reading data from file, this value will be passed on to the argument
|
methods |
vector of character strings that indicate which methods should be used for the analysis (default: c("doseResponse"), alternative: c("splineFit") or c("doseResponse", "splineFit")) |
qualColName |
character string indicating which column can be used for additional quality criteria when deciding between different non-unique protein identifiers. |
compFc |
boolean flag which indicates whether to perform fold change computation regarding reference column from sumionareas (default: TRUE) |
normalize |
perform median normalization (default: TRUE). |
addCol |
character vector indicating which additional columns to include from the input data |
nCores |
either a numerical value given the desired number of CPUs, or 'max' to automatically assign the maximum possible number (default). |
nonZeroCols |
character string indicating a column that will be used for filtering out zero values. |
fcTolerance |
tolerance for the fcCutoff parameter. See details. |
r2Cutoff |
Quality criterion on dose response curve fit. |
fcCutoff |
Cutoff for highest compound concentration fold change. |
slopeBounds |
Bounds on the slope parameter for dose response curve fitting. |
fractAbund |
boolean variable, if set to TRUE additional information concerning sumionarea fractional abundance and dmso1 vs. dmso2 of adjacent temperatures is added to the output table |
xlsxExport |
produce results table in xlsx format and store at the
location specified by the |
plotAll |
boolean value indicating whether all dose response curves should be generated. Deactivating plotting decreases runtime. |
plotAllR2 |
boolean value indicating whether all dose response curves which fulfill the demanded criteria (Rsquared, maximum plateau) should be generated. Deactivating plotting decreases runtime. |
plotSingle |
boolean value indicating whether all dose response curves which fulfill the demanded criteria (Rsquared, maximum plateau) should be generated. Deactivating plotting decreases runtime. |
trRef |
character string containing a valid system path to a previously generated TPP-TR reference object |
refFcStr |
character string indicating which columns in the reference data set contain the fold change values |
addInfo |
boolean variable, if set to TRUE additional information on counts of stabilization and destabilization of each protein is added to the output table |
createReport |
character string indicating whether a markdown report should be created and which format it have (default: "html_document", alternative: "pdf_document" or "none") |
paletteName |
color palette (see details). |
configFile |
DEPRECATED |
Invokes the following steps:
Import data using the
tpp2dImport
function.
Remove zero sumionarea values.
Compute fold changes from raw data (sumionarea)
Perform normalization by fold
change medians (optional) using the tpp2dNormalize
function.
To perform normalization, set argument normalize=TRUE
.
paletteName
specifies the color palette to be used by the brewer.pal
function from the RColorBrewer
package to assign a separate color to
each concentration.
A data frame in which the model results (slopes and pEC50 values) are stored row-wise for each protein and administered temperatures.
Becher, I., Werner, T., Doce, C., Zaal, E. A., Berkers, C. R., T"ogel, I., Salzer, E., Bantscheff, M., Savitski, M. M. (2016) Thermal profiling reveals phenylalanine hydroxylase as an off-target of panobinostat. Nature Chemical Biology, 12(11), 908-910.
data(panobinostat_2DTPP_smallExample) config_tpp2d <- panobinostat_2DTPP_config data_tpp2d <- panobinostat_2DTPP_data tpp2dResults <- analyze2DTPP(configTable = config_tpp2d, data = data_tpp2d, methods=c("doseResponse"), createReport="none", nCores=1, idVar = "representative", addCol = "clustername", intensityStr = "sumionarea_protein_", nonZeroCols = "qusm")
data(panobinostat_2DTPP_smallExample) config_tpp2d <- panobinostat_2DTPP_config data_tpp2d <- panobinostat_2DTPP_data tpp2dResults <- analyze2DTPP(configTable = config_tpp2d, data = data_tpp2d, methods=c("doseResponse"), createReport="none", nCores=1, idVar = "representative", addCol = "clustername", intensityStr = "sumionarea_protein_", nonZeroCols = "qusm")
Performs analysis of a TPP-CCR experiment by invoking routines for data import, data processing, normalization, curve fitting, and production of the result table.
analyzeTPPCCR( configTable, data = NULL, resultPath = NULL, idVar = "gene_name", fcStr = "rel_fc_", naStrs = c("NA", "n/d", "NaN", "<NA>"), qualColName = "qupm", normalize = TRUE, ggplotTheme = tppDefaultTheme(), nCores = "max", nonZeroCols = "qssm", r2Cutoff = 0.8, fcCutoff = 1.5, slopeBounds = c(1, 50), plotCurves = TRUE, verbose = FALSE, xlsxExport = TRUE, fcTolerance = 0.1 )
analyzeTPPCCR( configTable, data = NULL, resultPath = NULL, idVar = "gene_name", fcStr = "rel_fc_", naStrs = c("NA", "n/d", "NaN", "<NA>"), qualColName = "qupm", normalize = TRUE, ggplotTheme = tppDefaultTheme(), nCores = "max", nonZeroCols = "qssm", r2Cutoff = 0.8, fcCutoff = 1.5, slopeBounds = c(1, 50), plotCurves = TRUE, verbose = FALSE, xlsxExport = TRUE, fcTolerance = 0.1 )
configTable |
dataframe, or character object with the path to a file,
that specifies important details of the TPP-CCR experiment. See Section
|
data |
single dataframe, containing fold change measurements and
additional annotation columns to be imported. Can be used instead of
specifying the file path in the |
resultPath |
location where to store dose-response curve plots and results table. |
idVar |
character string indicating which data column provides the unique identifiers for each protein. |
fcStr |
character string indicating which columns contain the actual
fold change values. Those column names containing the suffix |
naStrs |
character vector indicating missing values in the data table.
When reading data from file, this value will be passed on to the argument
|
qualColName |
character string indicating which column can be used for additional quality criteria when deciding between different non-unique protein identifiers. |
normalize |
perform median normalization (default: TRUE). |
ggplotTheme |
ggplot theme for dose response curve plots. |
nCores |
either a numerical value given the desired number of CPUs, or 'max' to automatically assign the maximum possible number (default). |
nonZeroCols |
character string indicating a column that will be used for filtering out zero values. |
r2Cutoff |
Quality criterion on dose response curve fit. |
fcCutoff |
Cutoff for highest compound concentration fold change. |
slopeBounds |
Bounds on the slope parameter for dose response curve fitting. |
plotCurves |
boolean value indicating whether dose response curves should be plotted. Deactivating plotting decreases runtime. |
verbose |
print name of each fitted or plotted protein to the command line as a means of progress report. |
xlsxExport |
produce results table in xlsx format and store at the
location specified by the |
fcTolerance |
tolerance for the fcCutoff parameter. See details. |
Invokes the following steps:
Import data using the
tppccrImport
function.
Perform normalization by fold
change medians (optional) using the tppccrNormalize
function.
To perform normalization, set argument normalize=TRUE
.
Fit and
analyze dose response curves using the tppccrCurveFit
function.
Export results to Excel using the tppExport
function.
The default settings are tailored towards the output of the python package
isobarQuant, but can be customized to your own dataset by the arguments
idVar, fcStr, naStrs, qualColName
.
If resultPath
is not specified, result files are stored at the path
defined in the first entry of configTable$Path
. If the input data are not
specified in configTable
, no result path will be set. This means
that no output files or dose response curve plots are produced and
analyzeTPPCCR
just returns the results as a data frame.
The function analyzeTPPCCR
reports intermediate results to the
command line. To suppress this, use suppressMessages
.
The dose response curve plots will be stored in a subfolder with
name DoseResponse_Curves
at the location specified by
resultPath
.
Only proteins with fold changes bigger than
[fcCutoff * (1 - fcTolerance)
or smaller than
1/(fcCutoff * (1 - fcTolerance))]
will be used for curve fitting.
Additionally, the proteins fulfilling the fcCutoff criterion without
tolerance will be marked in the output column meets_FC_requirement
.
A data frame in which the fit results are stored row-wise for each protein.
Savitski, M. M., Reinhard, F. B., Franken, H., Werner, T., Savitski, M. F., Eberhard, D., ... & Drewes, G. (2014). Tracking cancer drugs in living cells by thermal profiling of the proteome. Science, 346(6205), 1255784.
Franken, H, Mathieson, T, Childs, D. Sweetman, G. Werner, T. Huber, W. & Savitski, M. M. (2015), Thermal proteome profiling for unbiased identification of drug targets and detection of downstream effectors. Nature protocols 10(10), 1567-1593.
tppDefaultTheme
data(hdacCCR_smallExample) tppccrResults <- analyzeTPPCCR(configTable=hdacCCR_config, data=hdacCCR_data, nCores=1)
data(hdacCCR_smallExample) tppccrResults <- analyzeTPPCCR(configTable=hdacCCR_config, data=hdacCCR_data, nCores=1)
Performs analysis of a TPP-TR experiment by invoking routines for data import, data processing, normalization, curve fitting, and production of the result table.
analyzeTPPTR( configTable, data = NULL, resultPath = NULL, methods = c("meltcurvefit", "splinefit"), idVar = "gene_name", fcStr = "rel_fc_", ciStr = NULL, naStrs = c("NA", "n/d", "NaN", "<NA>"), qualColName = "qupm", normalize = TRUE, normReqs = tpptrDefaultNormReqs(), ggplotTheme = tppDefaultTheme(), nCores = "max", startPars = c(Pl = 0, a = 550, b = 10), splineDF = c(3:7), maxAttempts = 500, plotCurves = TRUE, fixedReference = NULL, pValMethod = "robustZ", pValFilter = list(minR2 = 0.8, maxPlateau = 0.3), pValParams = list(binWidth = 300), verbose = FALSE, xlsxExport = TRUE )
analyzeTPPTR( configTable, data = NULL, resultPath = NULL, methods = c("meltcurvefit", "splinefit"), idVar = "gene_name", fcStr = "rel_fc_", ciStr = NULL, naStrs = c("NA", "n/d", "NaN", "<NA>"), qualColName = "qupm", normalize = TRUE, normReqs = tpptrDefaultNormReqs(), ggplotTheme = tppDefaultTheme(), nCores = "max", startPars = c(Pl = 0, a = 550, b = 10), splineDF = c(3:7), maxAttempts = 500, plotCurves = TRUE, fixedReference = NULL, pValMethod = "robustZ", pValFilter = list(minR2 = 0.8, maxPlateau = 0.3), pValParams = list(binWidth = 300), verbose = FALSE, xlsxExport = TRUE )
configTable |
dataframe, or character object with the path to a file,
that specifies important details of the TPP-TR experiment. See Section
|
data |
single dataframe, or list of dataframes, containing fold change
measurements and additional annotation columns to be imported. Can be used
instead of specifying the file path in the |
resultPath |
location where to store melting curve plots, intermediate results, and the final results table. |
methods |
statistical methods for modeling melting behavior and detecting significant differences between experimental conditions. Ich more than one method are specified, results will be computed for each and concatenated in the result table (default: meltcurvefit). |
idVar |
character string indicating which data column provides the unique identifiers for each protein. |
fcStr |
character string indicating which columns contain the actual
fold change values. Those column names containing the suffix |
ciStr |
character string indicating which columns contain confidence intervals for the fold change measurements. If specified, confidence intervals will be plotted around the melting curves. |
naStrs |
character vector indicating missing values in the data table.
When reading data from file, this value will be passed on to the argument
|
qualColName |
character string indicating which column can be used for additional quality criteria when deciding between different non-unique protein identifiers. |
normalize |
perform normalization (default: TRUE). |
normReqs |
list of filtering criteria for construction of the normalization set. |
ggplotTheme |
ggplot theme for melting curve plots. |
nCores |
either a numerical value given the desired number of CPUs, or 'max' to automatically assign the maximum possible number (default). |
startPars |
start values for the melting curve parameters. Will be
passed to function |
splineDF |
degrees of freedom for natural spline fitting. |
maxAttempts |
maximal number of curve fitting attempts if model does not converge. |
plotCurves |
boolean value indicating whether melting curves should be plotted. Deactivating plotting decreases runtime. |
fixedReference |
name of a fixed reference experiment for normalization. If NULL (default), the experiment with the best R2 when fitting a melting curve through the median fold changes is chosen as the reference. |
pValMethod |
Method for p-value computation. Currently restricted to 'robustZ' (see Cox & Mann (2008)). |
pValFilter |
optional list of filtering criteria to be applied before p-value computation. |
pValParams |
optional list of parameters for p-value computation. |
verbose |
print name of each fitted protein to the command lin as a means of progress report. |
xlsxExport |
boolean value indicating whether to produce result table in
.xlsx format (requires package |
Invokes the following steps:
Import data using the
tpptrImport
function.
Perform normalization (optional)
using the tpptrNormalize
function. To perform normalization,
set argument normalize=TRUE
. The normalization will be filtered
according to the criteria specified in the normReqs
argument (also
see the documentation of tpptrNormalize
and
tpptrDefaultNormReqs
for further information).
Fit
melting curves using the function tpptrCurveFit
.
Produce result table using the function tpptrAnalyzeMeltingCurves
.
Export results to Excel using the function tppExport
.
The default settings are tailored towards the output of the python package
isobarQuant, but can be customized to your own dataset by the arguments
idVar, fcStr, naStrs, qualColName
.
If resultPath
is not specified, the location of the first input file
specified in configTable
will be used. If the input data are not
specified in configTable
, no result path will be set. This means
that no output files or melting curve plots are produced and
analyzeTPPTR
just returns the results as a data frame.
The function analyzeTPPTR
reports intermediate results to the
command line. To suppress this, use suppressMessages
.
The configTable
argument is a dataframe, or the path to a
spreadsheet (tab-delimited text-file or xlsx format). Information about
each experiment is stored row-wise. It contains the following columns:
Path
:location of each datafile. Alternatively,
data can be directly handed over by the data
argument.
Experiment
: unique experiment names.
Condition
: experimental conditions of each dataset.
Label columns: each isobaric label names a column that contains the temperatures administered for the label in the individual experiments.
The argument methods
can be one of the following:
More than one method can be specified. For example, parametric testing of
melting points and nonparametric spline-based goodness-of-fit tests can be
performed sequentially in the same analysis. The results are then written
to separate columns of the output table.
If methods
contains "meltcurvefit", melting curve plots will be
stored in a subfolder with name Melting_Curves
at the location
specified by resultPath
.
If methods
contains "splinefit", plots of the natural spline fits will be
stored in a subfolder with name Spline_Fits
at the location
specified by resultPath
.
The argument nCores
could be either 'max' (use all available cores)
or an upper limit of CPUs to be used.
If doPlot = TRUE
, melting curve plots are generated separately for
each protein and stored in separate pdfs.
Each file is named by the unique protein identifier. Filenames are
truncated to 255 characters (requirement by most operation systems).
Truncated filenames are indicated by the suffix "_truncated[d]", where [d]
is a unique number to avoid redundancies.
All melting curve plots are stored in a subfolder with name
Melting_Curves
at the location specified by resultPath
.
If the melting curve fitting procedure does not converge, it will be
repeatedly started from perturbed starting parameters (maximum iterations
defined by argument maxAttempts
).
Argument splineDF
specifies the degrees of freedom for natural
spline fitting. As a single numeric value, it is directly passed on to the
splineDF
argument of splines::ns
. Experience shows that
splineDF = 4
yields good results for TPP data sets with 10
temperature points. It is also possible to provide a numeric vector. In
this case, splines are fitted for each entry and the optimal value is
chosen per protein using Akaike's Information criterion.
A data frame in which the fit results are stored row-wise for each protein.
Savitski, M. M., Reinhard, F. B., Franken, H., Werner, T., Savitski, M. F., Eberhard, D., ... & Drewes, G. (2014). Tracking cancer drugs in living cells by thermal profiling of the proteome. Science, 346(6205), 1255784.
Franken, H, Mathieson, T, Childs, D. Sweetman, G. Werner, T. Huber, W. & Savitski, M. M. (2015), Thermal proteome profiling for unbiased identification of drug targets and detection of downstream effectors. Nature protocols 10(10), 1567-1593.
tppDefaultTheme, tpptrImport, tpptrNormalize, tpptrCurveFit, tpptrAnalyzeMeltingCurves
data(hdacTR_smallExample) tpptrResults <- analyzeTPPTR(configTable = hdacTR_config, data = hdacTR_data, methods = "meltcurvefit", nCores = 1)
data(hdacTR_smallExample) tpptrResults <- analyzeTPPTR(configTable = hdacTR_config, data = hdacTR_data, methods = "meltcurvefit", nCores = 1)
The configuration table to analyze hdacCCR_data.
hdacCCR_config
is a data frame that specifies the experiment
names, isobaric labels, and the administered drug concentrations at each
label.
Franken, H, Mathieson, T, Childs, D. Sweetman, G. Werner, T. Huber, W. & Savitski, M. M. (2015), Thermal proteome profiling for unbiased identification of drug targets and detection of downstream effectors. Nature protocols 10(10), 1567-1593.
hdacCCR_smallExample
, hdacCCR_data
Example subset of a Panobinostat TPP-CCR dataset (replicates 1 and 2)
A list with two subsets of a dataset obtained by TPP-CCR experiments to investigate drug effects for HDAC inhibitor Panobinostat. It contains 7 HDACs as well as a random selection of 493 further proteins.
You can use this dataset to explore the TPP
package
functionalities without invoking the whole time consuming analysis on the
big dataset.
The original dataset is located in the folder
'example_data/CCR_example_data'
in the package's installation
directory. You can find it on your system by the R
command
system.file('example_data', package = 'TPP')
.
The measurements were generated by four separate multiplexed TMT
experiments with 10 TMT labels each.
Quantitative values per protein were obtained by the python
software isobarQuant and converted to fold changes relative to the lowest
temperature.
The raw data before quantification can be found in the proteomicsDB
database (http://www.proteomicsdb.org/#projects/4221/3102) with the following sample mapping:
Panobinostat_1
: MS-experiment numbers P97404B02-B10
Panobinostat_2
: MS-experiment numbers P97414B02-B10
Franken, H, Mathieson, T, Childs, D. Sweetman, G. Werner, T. Huber, W. & Savitski, M. M. (2015), Thermal proteome profiling for unbiased identification of drug targets and detection of downstream effectors. Nature protocols 10(10), 1567-1593.
hdacCCR_smallExample
, hdacTR_config
Example dataset obtained by TPP-CCR experiments for analysis by the TPP-package. It contains all necessary arguments to start the analysis (config table and list of data frames).
Franken, H, Mathieson, T, Childs, D. Sweetman, G. Werner, T. Huber, W. & Savitski, M. M. (2015), Thermal proteome profiling for unbiased identification of drug targets and detection of downstream effectors. Nature protocols 10(10), 1567-1593.
The configuration table to analyze hdacTR_data.
hdacTR_config
is a data frame that specifies the experiment
name, isobaric labels, and the administered temperatures at each
label.
Franken, H, Mathieson, T, Childs, D. Sweetman, G. Werner, T. Huber, W. & Savitski, M. M. (2015), Thermal proteome profiling for unbiased identification of drug targets and detection of downstream effectors. Nature protocols 10(10), 1567-1593.
hdacTR_smallExample
, hdacTR_data
Example subset of a dataset obtained by TPP-TR experiments to investigate possible targets for HDAC inhibitor Panobinostat.
hdacTR_data
is a list of data frames that contain
measurements for HDACs as well as a random selection of 500 further
proteins.
You can use this dataset to explore the TPP
package
functionalities without invoking the whole time consuming analysis on the
whole dataset.
The original dataset is located in the folder
'example_data/TR_example_data'
in the package's installation
directory. You can find it on your system by the R
command
system.file('example_data', package = 'TPP')
.
The measurements were generated by four separate multiplexed TMT
experiments with 10 TMT labels each.
Quantitative values per protein were obtained by the python
software isobarQuant and converted to fold changes relative to the lowest
temperature.
The raw data before quantification can be found in the proteomicsDB
database (http://www.proteomicsdb.org/#projects/4221/3101) with the following sample mapping:
Panobinostat_1
: MS-experiment numbers P85192B02-B10
Panobinostat_2
: MS-experiment numbers P85881B02-B10
Vehicle_1
: MS-experiment numbers P85202B02-B10
Vehicle_2
: MS-experiment numbers P85891B02-B10
Franken, H, Mathieson, T, Childs, D. Sweetman, G. Werner, T. Huber, W. & Savitski, M. M. (2015), Thermal proteome profiling for unbiased identification of drug targets and detection of downstream effectors. Nature protocols 10(10), 1567-1593.
hdacTR_smallExample
, hdacTR_config
Example of a TPP-TR result table.
Contains the data object resultTable
.
Example dataset obtained by TPP-TR experiments for analysis by the TPP-package. It contains all necessary arguments to start the analysis (config table and list of data frames).
Franken, H, Mathieson, T, Childs, D. Sweetman, G. Werner, T. Huber, W. & Savitski, M. M. (2015), Thermal proteome profiling for unbiased identification of drug targets and detection of downstream effectors. Nature protocols 10(10), 1567-1593.
The configuration table to analyze panobinostat_2DTPP_data.
panobinostat_2DTPP_config
is a data frame that specifies the experiment
names, isobaric labels, and the administered drug concentrations at each
label.
panobinostat_2DTPP_data, panobinostat_2DTPP_smallExample
Example subset of a Panobinostat 2D-TPP dataset
A list with two subsets of a dataset obtained by 2D-TPP experiments to investigate drug effects for HDAC inhibitor Panobinostat. The experiment was performed on living HepG2 cells (see Becher et al. (2016). Thermal profiling reveals phenylalanine hydroxylase as an off-target of panobinostat. Nature Chemical Biology, (September)) It contains 7 HDACs as well as a random selection of 493 further proteins.
You can use this dataset to explore the TPP
package
functionalities without invoking the whole time consuming analysis on the
big dataset.
panobinostat_2DTPP_config, panobinostat_2DTPP_smallExample
Example dataset obtained by 2D-TPP experiments for analysis by the TPP-package. It contains all necessary arguments to start the analysis (config table and list of data frames).
panobinostat_2DTPP_data, panobinostat_2DTPP_config
Example of a TPP-TR result table.
resultTable
is a data frame that contains the measurements of
several TPP-TR experiments, the fitted melting curve parameters, as well as
p-values and the results of additional quality checks for each protein. It
can be used as input for the function
tppQCPlotsCorrelateExperiments
.
TPP is a toolbox for analyzing thermal proteome profiling (TPP) experiments.
.onLoad(libname, pkgname)
.onLoad(libname, pkgname)
libname |
a character string giving the library directory where the package defining the namespace was found. Passed to .onLoad function. |
pkgname |
a character string giving the name of the package. Passed to .onLoad function. |
In order to start a TPP-TR analysis, use function
analyzeTPPTR
. For a TPP-CCR analysis, use function
analyzeTPPCCR
. See the vignette for detailed instructions.
No return value defined for this document.
Savitski, M. M., Reinhard, F. B., Franken, H., Werner, T., Savitski, M. F., Eberhard, D., ... & Drewes, G. (2014). Tracking cancer drugs in living cells by thermal profiling of the proteome. Science, 346(6205), 1255784.
Franken, H, Mathieson, T, Childs, D. Sweetman, G. Werner, T. Huber, W. & Savitski, M. M. (2015), Thermal proteome profiling for unbiased identification of drug targets and detection of downstream effectors. Nature protocols 10(10), 1567-1593.
These functions are defunct and no longer available.
tpp2dPlotCCRGoodCurves() tpp2dPlotCCRAllCurves() tpp2dPlotCCRSingleCurves() tpp2dEvalConfigTable() tpp2dRemoveZeroSias() tpp2dReplaceColNames() tpp2dCreateCCRConfigFile()
tpp2dPlotCCRGoodCurves() tpp2dPlotCCRAllCurves() tpp2dPlotCCRSingleCurves() tpp2dEvalConfigTable() tpp2dRemoveZeroSias() tpp2dReplaceColNames() tpp2dCreateCCRConfigFile()
Defunct functions are: tpp2dPlotCCRGoodCurves
, tpp2dPlotCCRAllCurves
,
tpp2dPlotCCRSingleCurves
, tpp2dEvalConfigTable
, tpp2dRemoveZeroSias
,
tpp2dReplaceColNames
, tpp2dCreateCCRConfigFile
No value returned
These functions are deprecated and no longer available.
No value returned
Adds additional info to 2D-TPP CCR output data, like counts on how often a certain protein was stabilized or destabilized
tpp2dAddAdditionalInfo(data, idVar = "gene_name")
tpp2dAddAdditionalInfo(data, idVar = "gene_name")
data |
output table returned by the |
idVar |
character string indicating which column of the data table contains unique protein ids |
A data frame to which additional data like how often a protein has been (de-)stabilized has been attached
load(system.file("example_data/2D_example_data/shortCCRresults.RData", package="TPP")) shortCCRresults <- tpp2dAddAdditionalInfo(data = shortCCRresults, idVar="representative")
load(system.file("example_data/2D_example_data/shortCCRresults.RData", package="TPP")) shortCCRresults <- tpp2dAddAdditionalInfo(data = shortCCRresults, idVar="representative")
Calculates fractional abundance and DMSO ratio of successive sumionareas and creates respective columns which are added two the data frame which is handed over
tpp2dCalcFractAbundance( configTable = NULL, data, intensityStr = NULL, idVar = NULL )
tpp2dCalcFractAbundance( configTable = NULL, data, intensityStr = NULL, idVar = NULL )
configTable |
DEPCRECATED |
data |
data frame of TPP-CCR results (e.g. obtained by |
intensityStr |
DEPCRECATED |
idVar |
DEPCRECATED |
Data frame that was handed over with additional columns of fractional abundance and DMSO1 vs DMSO2 ratio
data(panobinostat_2DTPP_smallExample) # Import data: datIn <- tpp2dImport(configTable = panobinostat_2DTPP_config, data = panobinostat_2DTPP_data, idVar = "representative", addCol = "clustername", intensityStr = "sumionarea_protein_", nonZeroCols = "qusm") # View attributes of imported data (experiment infos and import arguments): attr(datIn, "importSettings") %>% unlist attr(datIn, "configTable") # Compute fractional abundance: datDMSORatio <- tpp2dCalcFractAbundance(data = datIn) colnames(datDMSORatio)
data(panobinostat_2DTPP_smallExample) # Import data: datIn <- tpp2dImport(configTable = panobinostat_2DTPP_config, data = panobinostat_2DTPP_data, idVar = "representative", addCol = "clustername", intensityStr = "sumionarea_protein_", nonZeroCols = "qusm") # View attributes of imported data (experiment infos and import arguments): attr(datIn, "importSettings") %>% unlist attr(datIn, "configTable") # Compute fractional abundance: datDMSORatio <- tpp2dCalcFractAbundance(data = datIn) colnames(datDMSORatio)
Computes fold changes by calculating fold changes of the sumionarea relative to the reference column.
tpp2dComputeFoldChanges( configTable = NULL, data, intensityStr = NULL, fcStr = NULL, newFcStr = "rel_fc_" )
tpp2dComputeFoldChanges( configTable = NULL, data, intensityStr = NULL, fcStr = NULL, newFcStr = "rel_fc_" )
configTable |
DEPRECATED |
data |
dataframe that contain the data for the 2D-TPP experiment |
intensityStr |
DEPRECATED |
fcStr |
DEPRECATED |
newFcStr |
character string indicating how columns that will contain the actual
fold change values will be called. The suffix |
A data.frame with additional columns with constitute fold changes calculated with respect to the intensity values of the zero treatment column
# Preparation: data(panobinostat_2DTPP_smallExample) # Import data: datIn <- tpp2dImport(configTable = panobinostat_2DTPP_config, data = panobinostat_2DTPP_data, idVar = "representative", addCol = "clustername", intensityStr = "sumionarea_protein_", nonZeroCols = "qusm") # View attributes of imported data (experiment infos and import arguments): attr(datIn, "importSettings") %>% unlist attr(datIn, "configTable") # Compute fold changes: datFC <- tpp2dComputeFoldChanges(data = datIn) # View updated attributes. Now contain field 'fcStrNorm' indicating prefix # of the fold change columns after normalization. attr(datFC, "importSettings")["fcStr"]
# Preparation: data(panobinostat_2DTPP_smallExample) # Import data: datIn <- tpp2dImport(configTable = panobinostat_2DTPP_config, data = panobinostat_2DTPP_data, idVar = "representative", addCol = "clustername", intensityStr = "sumionarea_protein_", nonZeroCols = "qusm") # View attributes of imported data (experiment infos and import arguments): attr(datIn, "importSettings") %>% unlist attr(datIn, "configTable") # Compute fold changes: datFC <- tpp2dComputeFoldChanges(data = datIn) # View updated attributes. Now contain field 'fcStrNorm' indicating prefix # of the fold change columns after normalization. attr(datFC, "importSettings")["fcStr"]
Generates a list of dose response curve plots per protein and temperature point.
tpp2dCreateDRplots( data = NULL, type = "all", verbose = FALSE, paletteName = "Spectral" )
tpp2dCreateDRplots( data = NULL, type = "all", verbose = FALSE, paletteName = "Spectral" )
data |
the data that should be plotted. |
type |
string defining which curves to display (see details). |
verbose |
boolean variable stating whether a print description of problems/success for plotting of each protein should be printed. |
paletteName |
color palette (see details). |
data
is a data frame in wide table format returned by function
tpp2dCurveFit
. Its attributes contain information about the
experiment names, temperatures, isobaric labels, as well as instructions on
how to find the relevant columns in the wide table.
type
defines which curves to display per plot. Possible values are:
"all": Create one plot per protein. This plot simultaneously displays the curves for all available temperatures for this protein (the default).
"good": Create one plot per protein. This plot displays all dose response curves with a high goodness-of-fit. Choose this option to save runtime by focusing only on the reliable fits.
"single": Create one separate plot per protein and temperature. This plot displays all dose response curves with a high goodness-of-fit.
paletteName
specifies the color palette to be used by the brewer.pal
function from the RColorBrewer
package to assign a separate color to
each concentration.
A list of successfully generated plot objects of class
'ggplot'
data(panobinostat_2DTPP_smallExample) # Import data: datIn <- tpp2dImport(configTable = panobinostat_2DTPP_config, data = panobinostat_2DTPP_data, idVar = "representative", addCol = "clustername", intensityStr = "sumionarea_protein_", nonZeroCols = "qusm") # Compute fold changes: fcData2d <- tpp2dComputeFoldChanges(data = datIn) normData2d <- tpp2dNormalize(data = fcData2d) ccr2dResults <- tpp2dCurveFit(data = normData2d) allCurves <- tpp2dCreateDRplots(data = ccr2dResults, type = "all") allCurves[["HDAC1"]]
data(panobinostat_2DTPP_smallExample) # Import data: datIn <- tpp2dImport(configTable = panobinostat_2DTPP_config, data = panobinostat_2DTPP_data, idVar = "representative", addCol = "clustername", intensityStr = "sumionarea_protein_", nonZeroCols = "qusm") # Compute fold changes: fcData2d <- tpp2dComputeFoldChanges(data = datIn) normData2d <- tpp2dNormalize(data = fcData2d) ccr2dResults <- tpp2dCurveFit(data = normData2d) allCurves <- tpp2dCreateDRplots(data = ccr2dResults, type = "all") allCurves[["HDAC1"]]
Creates a markdown pdf file that summarizes the 2D-TPP analysis by reporting e.g. R version and package versions used
tpp2dCreateReport( data = NULL, configFile = NULL, resultPath = NULL, documentType = "html_document", configTable = NULL, normalize = TRUE, methods = c(""), idVar = "gene_name", fcStr = "rel_fc_", fcStrUpdated = "norm_rel_fc_", intensityStr = "signal_sum_", addCol = NULL, fcTolerance = NA, r2Cutoff = NA, fcCutoff = NA, slopeBounds = c(NA, NA), fTest = FALSE, trRef = "none" )
tpp2dCreateReport( data = NULL, configFile = NULL, resultPath = NULL, documentType = "html_document", configTable = NULL, normalize = TRUE, methods = c(""), idVar = "gene_name", fcStr = "rel_fc_", fcStrUpdated = "norm_rel_fc_", intensityStr = "signal_sum_", addCol = NULL, fcTolerance = NA, r2Cutoff = NA, fcCutoff = NA, slopeBounds = c(NA, NA), fTest = FALSE, trRef = "none" )
data |
output data frame from an 2D-TPP analysis |
configFile |
character string containing a valid system path to a file which summarizes the experimental details of the 2D-TPP experiment or respective data frame |
resultPath |
character string containing a system path to where the report should be written |
documentType |
character string indicating which document type the report should have default: "html_document", alternatives: "pdf_document" |
configTable |
data frame summarizing the experimental details of the 2D-TPP experiment |
normalize |
boolean flag indicating whether median normalization has been performed |
methods |
vector of characters which indicate which methods have been used |
idVar |
unique protein identifier prefix |
fcStr |
fold change identifier prefix |
fcStrUpdated |
character string matching the fold change columns after normalization has been performed |
intensityStr |
intensity values prefix |
addCol |
vector of strings indicating which additional data columns were imported |
fcTolerance |
tolerance for the fcCutoff parameter |
r2Cutoff |
Quality criterion on dose response curve fit. |
fcCutoff |
Cutoff for highest compound concentration fold change |
slopeBounds |
Bounds on the slope parameter for dose response curve fitting |
fTest |
boolean variable stating whether an fTest was performed |
trRef |
character string containing a valid system path to a previously generated TPP-TR reference object |
A pdf or html report which summarizes all parameters that were set
Performs a reference analysis of a TPP-TR experiment and generates boxplots for the distribution of fold changes at the different temperatures if desired.
tpp2dCreateTPPTRreference( trConfigTable = NULL, trDat = NULL, resultPath = NULL, outputName = NULL, createFCboxplots = FALSE, idVar = "gene_name", fcStr = "rel_fc_", qualColName = "qupm", normalize = TRUE )
tpp2dCreateTPPTRreference( trConfigTable = NULL, trDat = NULL, resultPath = NULL, outputName = NULL, createFCboxplots = FALSE, idVar = "gene_name", fcStr = "rel_fc_", qualColName = "qupm", normalize = TRUE )
trConfigTable |
config file for a reference TR dataset |
trDat |
list of dataframes, containing fold change measurements and
additional annotation columns to be imported. Can be used instead of
specifying the file path in the |
resultPath |
character string containing a valid system path to which folder output files will be written |
outputName |
character string which will be used as name of the output folder |
createFCboxplots |
boolean flag indicating whether quality control boxplots are to be plotted |
idVar |
character string indicating which column of the data table contains the unique protein ids |
fcStr |
character string indicating which columns contain fold changes |
qualColName |
character string indicating which column contain protein identification quality measures |
normalize |
boolean argument stating whether the data should be normalized or not |
A TPP-TR reference object for a certain cell line with different supporting files in a
desired output directory. The main object which is of interest for further analysis is the
trRefData.RData
file. This is the file to which a referencing system path has to be
indicated when a function as tpp2dSplineFitAndTest
require to input a TPP-TR reference object.
The RData file consists of list carrying four different items:
tppCfgTable: the TPP-TR configtable which was used for generating this object
sumResTable a list of two elements 1. detail: the exact result data from the TR analysis and 2. summary. a summary of the analyzed TR data comprising the median and standard deviation values of the measurements at the different temperatures (encoded by the isobaric labels)
temperatures a table listing the temperatures which were used in the TR experiment in the different replicates
lblsByTemp a table matching each temperature to an isobaric label
Performs analysis of a TPP-CCR experiment by invoking the routine for TPP-CCR curve fitting for each temperature of the sample.
tpp2dCurveFit( configFile = NULL, data, nCores = 1, naStrs = NULL, fcStr = NULL, idVar = NULL, nonZeroCols = NULL, r2Cutoff = 0.8, fcCutoff = 1.5, slopeBounds = c(1, 50), fcTolerance = 0.1 )
tpp2dCurveFit( configFile = NULL, data, nCores = 1, naStrs = NULL, fcStr = NULL, idVar = NULL, nonZeroCols = NULL, r2Cutoff = 0.8, fcCutoff = 1.5, slopeBounds = c(1, 50), fcTolerance = 0.1 )
configFile |
DEPCRECATED |
data |
data frame that contains the data of the 2D-TPP experiment for each temperature. |
nCores |
numeric value stating how many cores are to be used for computation |
naStrs |
DEPCRECATED |
fcStr |
DEPCRECATED |
idVar |
DEPCRECATED |
nonZeroCols |
DEPCRECATED |
r2Cutoff |
Quality criterion on dose response curve fit. |
fcCutoff |
Cutoff for highest compound concentration fold change. |
slopeBounds |
Bounds on the slope parameter for dose response curve fitting. |
fcTolerance |
tolerance for the fcCutoff parameter. See details. |
A data frames in which the fit results are stored row-wise for each protein.
# Preparation: data(panobinostat_2DTPP_smallExample) # Import data: datIn <- tpp2dImport(configTable = panobinostat_2DTPP_config, data = panobinostat_2DTPP_data, idVar = "representative", addCol = "clustername", intensityStr = "sumionarea_protein_", nonZeroCols = "qusm") # Compute fold changes: datFC <- tpp2dComputeFoldChanges(data = datIn) # Perform median normalization: datNorm <- tpp2dNormalize(data = datFC) # View updated attributes. Now contain field 'fcStrNorm' indicating prefix # of the fold change columns after normalization. attr(datNorm, "importSettings")["fcStrNorm"] # Perform dose response curve fitting and pEC50 calculation: datFit <- tpp2dCurveFit(data = datNorm)
# Preparation: data(panobinostat_2DTPP_smallExample) # Import data: datIn <- tpp2dImport(configTable = panobinostat_2DTPP_config, data = panobinostat_2DTPP_data, idVar = "representative", addCol = "clustername", intensityStr = "sumionarea_protein_", nonZeroCols = "qusm") # Compute fold changes: datFC <- tpp2dComputeFoldChanges(data = datIn) # Perform median normalization: datNorm <- tpp2dNormalize(data = datFC) # View updated attributes. Now contain field 'fcStrNorm' indicating prefix # of the fold change columns after normalization. attr(datNorm, "importSettings")["fcStrNorm"] # Perform dose response curve fitting and pEC50 calculation: datFit <- tpp2dCurveFit(data = datNorm)
Produce Excel table of 2D-TPP experiment analysis results.
tpp2dExport( configTable = NULL, tab, resultPath = NULL, idVar = NULL, fcStr = NULL, intensityStr = NULL, outPath, addCol = NULL, normalizedData = NULL, trRef = NULL, addPlotColumns = TRUE )
tpp2dExport( configTable = NULL, tab, resultPath = NULL, idVar = NULL, fcStr = NULL, intensityStr = NULL, outPath, addCol = NULL, normalizedData = NULL, trRef = NULL, addPlotColumns = TRUE )
configTable |
DEPRECATED |
tab |
Table with results of the 2D-TPP analysis. |
resultPath |
DEPRECATED |
idVar |
DEPRECATED |
fcStr |
DEPRECATED |
intensityStr |
DEPRECATED |
outPath |
path for storing results table |
addCol |
additional names of columns which are to be attached to the result table |
normalizedData |
DEPRECATED |
trRef |
character string containing a valid system path to a TPP-TR reference RData file |
addPlotColumns |
boolean variable indicating whether paths to plot files should be generated and checked for validity. De-activate if no dose-response curve plots were produced during the analysis. |
Creates excel file of the TPP-CCR analysis of the 2D-TPP data.
data(panobinostat_2DTPP_smallExample) load(system.file("example_data/2D_example_data/shortData2d.RData", package="TPP")) # tpp2dExport(configTable = panobinostat_2DTPP_config, tab=shortData2d, # outPath=getwd(), # idVar="representative", fcStr="norm_rel_fc_protein_", # intensityStr="sumionarea_protein_", addCol=NULL) data(panobinostat_2DTPP_smallExample) # cfgRaw <- panobinostat_2DTPP_config # datRaw <- panobinostat_2DTPP_data # datIn <- tpp2dImport(cfgIn, datRaw, fcStr = NULL) # datFC <- tpp2dComputeFoldChanges(data = datIn) # datNorm <- tpp2dNormalize(data = datFC) # cfgCCR <- convert_2D_cfgTable_to_CCR_cfgTable(cfgIn) # datFitted <- tpp2dCurveFit(datNorm, nCores = 2) # tpp2dCreateReport(getwd(), cfgIn, resultTable = datFitted, idVar = "representative", # intensityStr = "sumionarea_protein_") # tpp2dExport(tab = datFitted, outPath = getwd(), addPlotColumns = FALSE)
data(panobinostat_2DTPP_smallExample) load(system.file("example_data/2D_example_data/shortData2d.RData", package="TPP")) # tpp2dExport(configTable = panobinostat_2DTPP_config, tab=shortData2d, # outPath=getwd(), # idVar="representative", fcStr="norm_rel_fc_protein_", # intensityStr="sumionarea_protein_", addCol=NULL) data(panobinostat_2DTPP_smallExample) # cfgRaw <- panobinostat_2DTPP_config # datRaw <- panobinostat_2DTPP_data # datIn <- tpp2dImport(cfgIn, datRaw, fcStr = NULL) # datFC <- tpp2dComputeFoldChanges(data = datIn) # datNorm <- tpp2dNormalize(data = datFC) # cfgCCR <- convert_2D_cfgTable_to_CCR_cfgTable(cfgIn) # datFitted <- tpp2dCurveFit(datNorm, nCores = 2) # tpp2dCreateReport(getwd(), cfgIn, resultTable = datFitted, idVar = "representative", # intensityStr = "sumionarea_protein_") # tpp2dExport(tab = datFitted, outPath = getwd(), addPlotColumns = FALSE)
Exports plots into plots/ directory in the resultPath
tpp2dExportPlots(plotList, resultPath, type = "none")
tpp2dExportPlots(plotList, resultPath, type = "none")
plotList |
list of ggplots returned from one of the plotting functions |
resultPath |
path for storing results |
type |
character string specifying which type of plot is to be exported |
Creates pdf files of the afore created plots by
plot_2D_data_on_temperature_range
or
tpp2dCreateDRplots
None
Imports data from 2D-TPP experiments by parsing a configTable and reading in corresponding data file or data frames containing raw data (sumionarea values) and creating a big data frame comprising all samples with respective fold changes
tpp2dImport( configTable = NULL, data = NULL, idVar = "gene_name", addCol = NULL, intensityStr = "signal_sum_", qualColName = "qupm", nonZeroCols = "qssm", fcStr = NULL )
tpp2dImport( configTable = NULL, data = NULL, idVar = "gene_name", addCol = NULL, intensityStr = "signal_sum_", qualColName = "qupm", nonZeroCols = "qssm", fcStr = NULL )
configTable |
dataframe, or character object with the path to a file,
that specifies important details of the 2D-TPP experiment. See Section
|
data |
single dataframe, containing raw measurements and if already available fold
changes and additional annotation columns to be imported. Can be used instead of
specifying the file path in the |
idVar |
character string indicating which data column provides the unique identifiers for each protein. |
addCol |
additional column names that specify columns in the input data that are to be attached to the data frame throughout the analysis |
intensityStr |
character string indicating which columns contain the actual
sumionarea values. Those column names containing the suffix |
qualColName |
character string indicating which column can be used for additional quality criteria when deciding between different non-unique protein identifiers. |
nonZeroCols |
character string indicating a column that will be used for filtering out zero values. |
fcStr |
character string indicating which columns contain the actual
fold change values. Those column names containing the suffix |
A dataframe comprising all experimental data
# Preparation: data(panobinostat_2DTPP_smallExample) # Import data: datIn <- tpp2dImport(configTable = panobinostat_2DTPP_config, data = panobinostat_2DTPP_data, idVar = "representative", addCol = "clustername", intensityStr = "sumionarea_protein_", nonZeroCols = "qusm") # View attributes of imported data (experiment infos and import arguments): attr(datIn, "importSettings") %>% unlist attr(datIn, "configTable")
# Preparation: data(panobinostat_2DTPP_smallExample) # Import data: datIn <- tpp2dImport(configTable = panobinostat_2DTPP_config, data = panobinostat_2DTPP_data, idVar = "representative", addCol = "clustername", intensityStr = "sumionarea_protein_", nonZeroCols = "qusm") # View attributes of imported data (experiment infos and import arguments): attr(datIn, "importSettings") %>% unlist attr(datIn, "configTable")
Merges 2D-TPP result data with TPP-TR reference data to generate a big table including both results
tpp2dMerge2dRef( resultTable_2D, referenceDataSummary, refIDVar = "Protein_ID", idVar = NULL, data = NULL, trRef = NULL )
tpp2dMerge2dRef( resultTable_2D, referenceDataSummary, refIDVar = "Protein_ID", idVar = NULL, data = NULL, trRef = NULL )
resultTable_2D |
dataframe containing the 2D-TPP results |
referenceDataSummary |
summarized reference data results. See details. |
refIDVar |
character string indicating name of the columns containing the unique protein identifiers in the reference data set |
idVar |
DEPRECATED |
data |
DEPRECATED |
trRef |
DEPRECATED |
referenceSummary
contains summary statistics like median
fold changes and is produced by the function
tpp2dCreateTPPTRreference
. It summarizes the results of a
TPP-TR analysis of a reference data set.
A reference data set is the a output of a TR experiment without drug
treatment on the same cell line as resultTable_2D.
A data frame with results merged from 2D-TPP and TPP-TR reference
data(panobinostat_2DTPP_smallExample) config_tpp2d <- panobinostat_2DTPP_config data_tpp2d <- panobinostat_2DTPP_data tpp2dResults <- analyze2DTPP(configTable = config_tpp2d, data = data_tpp2d, methods=c("doseResponse"), createReport="none", nCores=1, idVar = "representative", addCol = "clustername", intensityStr = "sumionarea_protein_", nonZeroCols = "qusm") trRef <- file.path(system.file("data", package="TPP"), "TPPTR_reference_results_HepG2.RData") annotatedTable <- tpp2dMerge2dRef(resultTable_2D = tpp2dResults, referenceDataSummary = trRef)
data(panobinostat_2DTPP_smallExample) config_tpp2d <- panobinostat_2DTPP_config data_tpp2d <- panobinostat_2DTPP_data tpp2dResults <- analyze2DTPP(configTable = config_tpp2d, data = data_tpp2d, methods=c("doseResponse"), createReport="none", nCores=1, idVar = "representative", addCol = "clustername", intensityStr = "sumionarea_protein_", nonZeroCols = "qusm") trRef <- file.path(system.file("data", package="TPP"), "TPPTR_reference_results_HepG2.RData") annotatedTable <- tpp2dMerge2dRef(resultTable_2D = tpp2dResults, referenceDataSummary = trRef)
Normalizes fold changes retrieved from 2D-TPP experiment by dividing by the median fold change
tpp2dNormalize(configTable = NULL, data, fcStr = NULL)
tpp2dNormalize(configTable = NULL, data, fcStr = NULL)
configTable |
DEPRECATED |
data |
data frame that contains the data for the 2D-TPP experiment |
fcStr |
DEPRECATED |
A dataframe identical to the input dataframe except that the columns containing the fold change values have been normalized by their median.
# Preparation: data(panobinostat_2DTPP_smallExample) # Import data: datIn <- tpp2dImport(configTable = panobinostat_2DTPP_config, data = panobinostat_2DTPP_data, idVar = "representative", addCol = "clustername", intensityStr = "sumionarea_protein_", nonZeroCols = "qusm") # Compute fold changes: datFC <- tpp2dComputeFoldChanges(data = datIn) # Perform median normalization: datNorm <- tpp2dNormalize(data = datFC) # View updated attributes. Now contain field 'fcStrNorm' indicating prefix # of the fold change columns after normalization. attr(datNorm, "importSettings")["fcStrNorm"]
# Preparation: data(panobinostat_2DTPP_smallExample) # Import data: datIn <- tpp2dImport(configTable = panobinostat_2DTPP_config, data = panobinostat_2DTPP_data, idVar = "representative", addCol = "clustername", intensityStr = "sumionarea_protein_", nonZeroCols = "qusm") # Compute fold changes: datFC <- tpp2dComputeFoldChanges(data = datIn) # Perform median normalization: datNorm <- tpp2dNormalize(data = datFC) # View updated attributes. Now contain field 'fcStrNorm' indicating prefix # of the fold change columns after normalization. attr(datNorm, "importSettings")["fcStrNorm"]
Plots quality control histograms of pEC50 values of reference dataset and indicates the pEC50 values of the 2D-TPP experiment
tpp2dPlotQChist( configFile = NULL, resultTable = NULL, resultPath = NULL, trRef = NULL, fcStr = "rel_fc_", idVar = "gene_name", qualColName = "qupm" )
tpp2dPlotQChist( configFile = NULL, resultTable = NULL, resultPath = NULL, trRef = NULL, fcStr = "rel_fc_", idVar = "gene_name", qualColName = "qupm" )
configFile |
data frame or system path to table that specifies important details of the 2D-TPP experiment |
resultTable |
data.frame containing the results of a CCR analysis of 2D-TPP data |
resultPath |
character string containing a valid system path to which the the qc plots will be written |
trRef |
character string with a link to a TPP-TR reference object RData file |
fcStr |
character string indicating how columns that will contain the actual fold change values are called. |
idVar |
character string indicating name of the columns containing the unique protein identifiers |
qualColName |
character string indicating which column contain protein identification quality measures |
A pdf with various quality control plots for a specified 2D-TPP data set
Plots quality control plots which indicate at which temperatures the pEC50 values of the treatment curves lie in comparison to those of the reference data
tpp2dPlotQCpEC50( resultTable = NULL, resultPath = NULL, trRef = NULL, idVar = "gene_name" )
tpp2dPlotQCpEC50( resultTable = NULL, resultPath = NULL, trRef = NULL, idVar = "gene_name" )
resultTable |
data.frame containing the results of a CCR analysis of 2D-TPP data |
resultPath |
character string containing a valid system path to which the the qc plots will be written |
trRef |
character string with a link to a TPP-TR reference object RData file |
idVar |
character string indicating how the column that contains the unique protein identifiers is called |
A folder with plots for each identified protein that compare melting points in the reference data set with the 2D-TPP data set
Fit splines through TR reference dataset and extrapolates relative 2D-TPP datapoints, then compares spline fits of different treatments with non-treatment with an f-test
tpp2dSplineFitAndTest( data_2D = NULL, data, trRefDataPath = NULL, dataRef, refIDVar = "Protein_ID", refFcStr = "norm_rel_fc_", resultPath = NULL, doPlot = TRUE, verbose = FALSE, nCores = "max", ggplotTheme = NULL )
tpp2dSplineFitAndTest( data_2D = NULL, data, trRefDataPath = NULL, dataRef, refIDVar = "Protein_ID", refFcStr = "norm_rel_fc_", resultPath = NULL, doPlot = TRUE, verbose = FALSE, nCores = "max", ggplotTheme = NULL )
data_2D |
DEPRECATED |
data |
result data.frame from a 2D-TPP CCR analysis |
trRefDataPath |
DEPRECATED |
dataRef |
reference data from a TPP TR analysis on the same cell line as |
refIDVar |
character string indicating name of the columns containing the unique protein identifiers in the reference data set |
refFcStr |
character string indicating which columns contain the actual
fold change values in the reference data. The suffix |
resultPath |
location where to store dose-response curve plots and results table. |
doPlot |
boolean value indicating whether protein-wise plots should be produced Deactivating plotting decreases runtime. |
verbose |
print description of problems for each protein for which splines fits could not be performed |
nCores |
either a numerical value given the desired number of CPUs, or 'max' to automatically assign the maximum possible number (default). |
ggplotTheme |
DEPRECATED |
dataRef can either be a tidy data frame of TPP-TR reference data,
a list with TPP-TR reference data and additional information produced by
tpp2dCreateTPPTRreference
, or a character string with a link to
the data in one of the described formats.
None
data(panobinostat_2DTPP_smallExample) config_tpp2d <- panobinostat_2DTPP_config data_tpp2d <- panobinostat_2DTPP_data trRef <- file.path(system.file("data", package="TPP"), "TPPTR_reference_results_HepG2.RData") datIn <- tpp2dImport(configTable = config_tpp2d, data = data_tpp2d, idVar = "representative", addCol = "clustername", intensityStr = "sumionarea_protein_", nonZeroCols = "qusm") fcData2d <- tpp2dComputeFoldChanges(data = datIn) normData2d <- tpp2dNormalize(data = fcData2d) analysisResults <- tpp2dSplineFitAndTest(data = normData2d, dataRef = trRef, refIDVar = "Protein_ID", refFcStr = "norm_rel_fc_protein_", doPlot = FALSE, nCores = 1)
data(panobinostat_2DTPP_smallExample) config_tpp2d <- panobinostat_2DTPP_config data_tpp2d <- panobinostat_2DTPP_data trRef <- file.path(system.file("data", package="TPP"), "TPPTR_reference_results_HepG2.RData") datIn <- tpp2dImport(configTable = config_tpp2d, data = data_tpp2d, idVar = "representative", addCol = "clustername", intensityStr = "sumionarea_protein_", nonZeroCols = "qusm") fcData2d <- tpp2dComputeFoldChanges(data = datIn) normData2d <- tpp2dNormalize(data = fcData2d) analysisResults <- tpp2dSplineFitAndTest(data = normData2d, dataRef = trRef, refIDVar = "Protein_ID", refFcStr = "norm_rel_fc_protein_", doPlot = FALSE, nCores = 1)
Fit splines through TR reference dataset and extrapolates relative 2D-TPP datapoints, then compares spline fits of different treatments with non-treatment with an f-test
tpp2dSplinePlot( data_2D = NULL, trRef = NULL, fcStr = NULL, idVar = NULL, refIdVar = "Protein_ID", methods = c("doseResponse", "splineFit"), refFcStr = "norm_rel_fc_protein_", verbose = FALSE )
tpp2dSplinePlot( data_2D = NULL, trRef = NULL, fcStr = NULL, idVar = NULL, refIdVar = "Protein_ID", methods = c("doseResponse", "splineFit"), refFcStr = "norm_rel_fc_protein_", verbose = FALSE )
data_2D |
result data.frame from a 2D-TPP CCR analysis |
trRef |
character string of a valid system path to a TPP-TR reference RData object |
fcStr |
character string indicating how columns that will contain the actual
fold change values will be called. The suffix |
idVar |
character string indicating name of the columns containing the unique protein identifiers in the 2D data set |
refIdVar |
character string indicating name of the columns containing the unique protein identifiers in the reference data set |
methods |
vector of character strings that indicate which methods has been used for the previous analysis (default: c("doseResponse"), alternative: c("splineFit") or c("doseResponse", "splineFit")) |
refFcStr |
character string indicating how columns that will contain the fold change values in the reference data set |
verbose |
print description of problems for each protein for which splines fits could not be performed |
A list of ggplots which can be accessed via the unique protein ids in the idVar column
load(system.file("example_data/2D_example_data/shortData2d.RData", package="TPP")) trRef <- system.file("example_data/2D_example_data/referenceNormData.RData", package="TPP")
load(system.file("example_data/2D_example_data/shortData2d.RData", package="TPP")) trRef <- system.file("example_data/2D_example_data/referenceNormData.RData", package="TPP")
Definition of a TPP-TR reference object
tpp2dTRReferenceObject( tppRefData = NULL, tppRefPath = NULL, fcStr = "norm_rel_fc_", qualColName = "qupm" )
tpp2dTRReferenceObject( tppRefData = NULL, tppRefPath = NULL, fcStr = "norm_rel_fc_", qualColName = "qupm" )
tppRefData |
TPP-TR reference object that can be directly passed to the function |
tppRefPath |
character string containing a system path to a RData file containing an TPP-TR reference object |
fcStr |
character string indicating which columns contain the fold changes |
qualColName |
character string indicating which column contain protein identification quality measures |
A TPP-TR reference object
trRef <- system.file("example_data/2D_example_data/referenceNormData.RData", package="TPP") tpp2dTRReferenceObject(tppRefPath=trRef)
trRef <- system.file("example_data/2D_example_data/referenceNormData.RData", package="TPP") tpp2dTRReferenceObject(tppRefPath=trRef)
tppccrCurveFit
fits logistic dose response curves to fold
change measurements of a TPP-CCR experiment.
tppccrCurveFit( data = NULL, fcTable = NULL, cpdEffects = NULL, slopeBounds = c(1, 50), nCores = "max", verbose = FALSE )
tppccrCurveFit( data = NULL, fcTable = NULL, cpdEffects = NULL, slopeBounds = c(1, 50), nCores = "max", verbose = FALSE )
data |
list of expressionSet objects containing protein fold changes for dose response curve fitting. |
fcTable |
optional long table with fold changes for each experiment.
Can be provided instead of the input argument |
cpdEffects |
optional long table of compound effects per protein and
experiment. Can be provided instead of the input argument |
slopeBounds |
bounds on the slope parameter for dose response curve fitting. |
nCores |
either a numerical value given the desired number of CPUs, or 'max' to automatically assign the maximum possible number (default). |
verbose |
print name of each fitted protein to the command line as a means of progress report. |
data
is a list of expressionSet objects created by
tppccrImport
. If desired, it can be already preprocessed by
tppccrNormalize
or tppccrTransform
. It contains
the isobaric labels and administered drug concentrations in the
phenoData
and user-defined protein properties in the
featureData
. Protein IDs are stored in the featureNames
.
Measurements and compound effects for curve fitting can be provided
by the arguments fcTable
and cpdEffects
, instead of being
stored in expressionSets in data
.
If specified, fcTable
needs to be a long
table with column names "id" (the protein names), "concentration" (the fold
changes), "labelName" (the isobaric label to each measurement), and
"experiment" (e.g. "Vehicle_1" or "Panobinostat_1").
If specified, cpdEffects
needs to be a long
table with column names "id" (the protein names), "cpdEff" (character
vector of compound effects, may contain NAs), and
"experiment" (e.g. "Vehicle_1" or "Panobinostat_1").
A list of expressionSet objects storing fold changes, the fitted
curve parameters, as well as row and column metadata. In each expressionSet
S
, the fold changes can be accessed by Biobase::exprs(S)
. Protein
expNames can be accessed by featureNames(S)
. Isobaric labels and the
corresponding concentrations are returned by S$label
and
S$concentration
. The fitted curve parameters are stored in
codefeatureData(S).
tppccrImport
, tppccrNormalize
,
tppccrTransform
data(hdacCCR_smallExample) tppccrData <- tppccrImport(configTable=hdacCCR_config, data=hdacCCR_data) tppccrNorm <- tppccrNormalize(data=tppccrData) tppccrTransformed <- tppccrTransform(data=tppccrNorm) tppccrFitted <- tppccrCurveFit(data=tppccrTransformed, nCores=1)
data(hdacCCR_smallExample) tppccrData <- tppccrImport(configTable=hdacCCR_config, data=hdacCCR_data) tppccrNorm <- tppccrNormalize(data=tppccrData) tppccrTransformed <- tppccrTransform(data=tppccrNorm) tppccrFitted <- tppccrCurveFit(data=tppccrTransformed, nCores=1)
TPP
package.tppccrImport
imports a table of protein fold changes and
stores them in an ExpressionSet for use in the TPP
package.
tppccrImport( configTable, data = NULL, idVar = "gene_name", fcStr = "rel_fc_", naStrs = c("NA", "n/d", "NaN", "<NA>"), qualColName = "qupm", nonZeroCols = "qssm" )
tppccrImport( configTable, data = NULL, idVar = "gene_name", fcStr = "rel_fc_", naStrs = c("NA", "n/d", "NaN", "<NA>"), qualColName = "qupm", nonZeroCols = "qssm" )
configTable |
either a dataframe or the path to a spreadsheet. In both cases it specifies necessary information of the TPP-CCR experiment. |
data |
dataframe containing fold change measurements and
additional annotation columns to be imported. Can be used instead of
specifying the file path in |
idVar |
character string indicating which data column provides the unique identifiers for each protein. |
fcStr |
character string indicating which columns contain the actual
fold change values. Those column names containing the suffix
|
naStrs |
character vector indicating missing values in the data table.
When reading data from file, this value will be passed on to the argument
|
qualColName |
character string indicating which column can be used for additional quality criteria when deciding between different non-unique protein identifiers. |
nonZeroCols |
character string indicating a column that will be used for filtering out zero values. |
The imported dataset has to contain measurements obtained by a TPP-CCR experiment. Fold changes need to be pre-computed using the lowest concentration as reference.
The dataset can be specified by filename in the configTable
argument, or given directly in the data
argument
The default settings are adjusted to analyze data of the python package
isobarQuant
. You can also customize them for your own dataset.
The configTable
argument is a dataframe, or the path to a
spreadsheet (tab-delimited text-file without quoted strings, or xlsx format).
Information about each experiment is stored row-wise.
It contains the following columns:
Path
: location of the datafile. Alternatively, data can be directly handed
over by the data
argument.
Experiment
: unique experiment name.
Label columns: each isobaric label names a column that contains the concentration administered for the label in the individual experiments.
During data import, proteins with NAs in the data column specified by idVar
receive
unique generic IDs so that they can be processed by the package.
ExpressionSet object storing the measured fold changes, as well as
row and column metadata. In each ExpressionSet S
, the fold changes can
be accessed by Biobase::exprs(S)
. Protein expNames can be accessed by
featureNames(S)
. Isobaric labels and the corresponding concentrations are
returned by S$label
and S$concentration
.
data(hdacCCR_smallExample) tppccrData <- tppccrImport(configTable=hdacCCR_config, data = hdacCCR_data)
data(hdacCCR_smallExample) tppccrData <- tppccrImport(configTable=hdacCCR_config, data = hdacCCR_data)
Normalize each fold change column by its median.
tppccrNormalize(data)
tppccrNormalize(data)
data |
list of expressionSets with measurements to be normalized |
List of expressionSet objects storing the normalized fold changes, as well as
row and column metadata. In each expressionSet S
, the fold changes
can be accessed by Biobase::exprs(S)
. Protein names can be accessed by
featureNames(S)
. Isobaric labels and the corresponding concentrations are
returned by S$label
and S$concentration
.
data(hdacCCR_smallExample) tppccrData <- tppccrImport(configTable=hdacCCR_config, data = hdacCCR_data) tppccrNorm <- tppccrNormalize(data=tppccrData) head(Biobase::exprs(tppccrNorm[[1]]))
data(hdacCCR_smallExample) tppccrData <- tppccrImport(configTable=hdacCCR_config, data = hdacCCR_data) tppccrNorm <- tppccrNormalize(data=tppccrData) head(Biobase::exprs(tppccrNorm[[1]]))
Normalize fold changes of TPP-CCR experiment to a reference column (usually that with the lowest concentration) to ensure that the transformation by tppccrTransform yields values between 0 and 1.
tppccrNormalizeToReference(data, refCol = NULL)
tppccrNormalizeToReference(data, refCol = NULL)
data |
expressionSet object containing the data to be normalized |
refCol |
column number to use as a reference. Will contain only 1s after the normalization. |
List of expressionSet objects storing the normalized fold changes,
as well as row and column metadata. In each expressionSet S
, the fold
changes can be accessed by Biobase::exprs(S)
. Protein expNames can be accessed
by featureNames(S)
. Isobaric labels and the corresponding
concentrations are returned by S$label
and S$concentration
.
data(hdacCCR_smallExample) tppccrData <- tppccrImport(configTable=hdacCCR_config, data = hdacCCR_data) tppccrNorm <- tppccrNormalize(data=tppccrData) # Normalize to lowest concentration (in the first column): tppccrNormToRef <- tppccrNormalizeToReference(data=tppccrNorm, refCol=1) # Obtain results per replicate: refTransf_replicate1 <- tppccrNormToRef$Panobinostat_1 head(Biobase::exprs(refTransf_replicate1)) # Perform transformation: tppccrTransformed <- tppccrTransform(data=tppccrNormToRef) # Obtain transformed measurements per replicate: transf_replicate1 <- tppccrTransformed$Panobinostat_1 transf_replicate2 <- tppccrTransformed$Panobinostat_2 # Inspect transformed data in replicate 1: effects_replicate1 <- Biobase::featureData(transf_replicate1)$compound_effect newData_repl1 <- data.frame(Biobase::exprs(transf_replicate1), Type=effects_replicate1)[!is.na(effects_replicate1),]
data(hdacCCR_smallExample) tppccrData <- tppccrImport(configTable=hdacCCR_config, data = hdacCCR_data) tppccrNorm <- tppccrNormalize(data=tppccrData) # Normalize to lowest concentration (in the first column): tppccrNormToRef <- tppccrNormalizeToReference(data=tppccrNorm, refCol=1) # Obtain results per replicate: refTransf_replicate1 <- tppccrNormToRef$Panobinostat_1 head(Biobase::exprs(refTransf_replicate1)) # Perform transformation: tppccrTransformed <- tppccrTransform(data=tppccrNormToRef) # Obtain transformed measurements per replicate: transf_replicate1 <- tppccrTransformed$Panobinostat_1 transf_replicate2 <- tppccrTransformed$Panobinostat_2 # Inspect transformed data in replicate 1: effects_replicate1 <- Biobase::featureData(transf_replicate1)$compound_effect newData_repl1 <- data.frame(Biobase::exprs(transf_replicate1), Type=effects_replicate1)[!is.na(effects_replicate1),]
tppccrPlotCurves
plots the logistic dose response curves,
as well as the underlying fold
change measurements for each TPP-CCR experiment in a study.
tppccrPlotCurves( data = NULL, fcTable = NULL, curvePars = NULL, resultPath = NULL, ggplotTheme = tppDefaultTheme(), nCores = "max", verbose = FALSE )
tppccrPlotCurves( data = NULL, fcTable = NULL, curvePars = NULL, resultPath = NULL, ggplotTheme = tppDefaultTheme(), nCores = "max", verbose = FALSE )
data |
list of expressionSet objects containing protein fold changes, as well as fitted curve parameters. |
fcTable |
optional long table with fold changes for each experiment.
Can be provided instead of the input argument |
curvePars |
optional long table of curve parameters per protein and
experiment. Can be provided instead of the input argument |
resultPath |
location where to store dose-response curve plots. |
ggplotTheme |
ggplot theme for dose response curve plots. |
nCores |
either a numerical value given the desired number of CPUs, or 'max' to automatically assign the maximum possible number (default). |
verbose |
print name of each plotted protein to the command line as a means of progress report. |
data
is a list of expressionSet objects created by
tppccrCurveFit
. It contains
the isobaric labels and administered drug concentrations in the
phenoData
and user-defined protein properties (including dose response
curve parameters) in the featureData
. Protein IDs are stored in the
featureNames
.
Measurements and compound effects for curve fitting can be provided
by the arguments fcTable
and cpdEffects
, instead of being
stored in expressionSets in data
.
If specified, fcTable
needs to be a long
table with column names "id" (the protein names), "concentration" (the fold
changes), "labelName" (the isobaric label to each measurement), and
"experiment" (e.g. "Vehicle_1" or "Panobinostat_1").
If specified, curvePars
needs to be a long
table with column names "id" (the protein names), "param" (curve parameter
per protein and experiment, see TPP:::drCurveParamNames(names=TRUE,
info=FALSE) for possibilities), and
"experiment" (e.g. "Vehicle_1" or "Panobinostat_1").
The dose response curve plots will be stored in a subfolder with name
DoseResponse_Curves
at the location specified by resultPath
.
A list of expressionSet objects storing fold changes,
as well as row and column metadata. In each expressionSet S
, the fold
changes
can be accessed by Biobase::exprs(S)
. Protein expNames can be accessed by
featureNames(S)
. Isobaric labels and the corresponding
concentrations are
returned by S$label
and S$concentration
. Paths to the
produced plots are stored in codefeatureData(S)$plot.
tppccrCurveFit
,tppDefaultTheme
data(hdacCCR_smallExample) tppccrData <- tppccrImport(configTable=hdacCCR_config, data=hdacCCR_data) tppccrNorm <- tppccrNormalize(data=tppccrData) tppccrTransformed <- tppccrTransform(data=tppccrNorm) tppccrFitted <- tppccrCurveFit(data=tppccrTransformed, nCores=1) hdacSubset <- sapply(tppccrFitted, function(d)d[grepl("HDAC", rownames(d)),]) tppccrPlotted <- tppccrPlotCurves(hdacSubset, resultPath=getwd(), nCores = 1)
data(hdacCCR_smallExample) tppccrData <- tppccrImport(configTable=hdacCCR_config, data=hdacCCR_data) tppccrNorm <- tppccrNormalize(data=tppccrData) tppccrTransformed <- tppccrTransform(data=tppccrNorm) tppccrFitted <- tppccrCurveFit(data=tppccrTransformed, nCores=1) hdacSubset <- sapply(tppccrFitted, function(d)d[grepl("HDAC", rownames(d)),]) tppccrPlotted <- tppccrPlotCurves(hdacSubset, resultPath=getwd(), nCores = 1)
tppccrResultTable
summarizes the
outcomes of a TPP-CCR study in a results table and includes quality information
about the estimated dose response curves.
tppccrResultTable(data, r2Cutoff = 0.8)
tppccrResultTable(data, r2Cutoff = 0.8)
data |
list of expressionSet objects containing protein fold changes, as well as fitted curve parameters. |
r2Cutoff |
quality criterion on dose response curve fit. @details If |
A data frame in which the results are stored row-wise for each protein, together with the original annotation from the input files.
tppccrCurveFit
,tppccrPlotCurves
data(hdacCCR_smallExample) tppccrData <- tppccrImport(configTable=hdacCCR_config, data=hdacCCR_data) tppccrNorm <- tppccrNormalize(data=tppccrData) tppccrTransformed <- tppccrTransform(data=tppccrNorm) tppccrFitted <- tppccrCurveFit(data=tppccrTransformed, nCores=1) tppccrResults <- tppccrResultTable(data=tppccrFitted) subset(tppccrResults, passed_filter_Panobinostat_1 & passed_filter_Panobinostat_2)
data(hdacCCR_smallExample) tppccrData <- tppccrImport(configTable=hdacCCR_config, data=hdacCCR_data) tppccrNorm <- tppccrNormalize(data=tppccrData) tppccrTransformed <- tppccrTransform(data=tppccrNorm) tppccrFitted <- tppccrCurveFit(data=tppccrTransformed, nCores=1) tppccrResults <- tppccrResultTable(data=tppccrFitted) subset(tppccrResults, passed_filter_Panobinostat_1 & passed_filter_Panobinostat_2)
Transform fold changes of TPP-CCR experiment to prepare them for dose response curve fitting.
tppccrTransform(data, fcCutoff = 1.5, fcTolerance = 0.1)
tppccrTransform(data, fcCutoff = 1.5, fcTolerance = 0.1)
data |
expressionSet object containing the data to be transformed. |
fcCutoff |
cutoff for highest compound concentration fold change. |
fcTolerance |
tolerance for the fcCutoff parameter. See details. |
Only proteins with fold changes bigger than
[fcCutoff * (1 - fcTolerance)
or smaller than
1/(fcCutoff * (1 - fcTolerance))]
will be used for curve fitting.
Additionally, the proteins fulfilling the fcCutoff criterion without
tolerance will be marked in the output column meets_FC_requirement
.
List of expressionSet objects storing the transformed fold changes,
as well as row and column metadata. In each expressionSet S
, the fold changes
can be accessed by Biobase::exprs(S)
. Protein expNames can be accessed by
featureNames(S)
. Isobaric labels and the corresponding concentrations are
returned by S$label
and S$concentration
.
data(hdacCCR_smallExample) tppccrData <- tppccrImport(configTable=hdacCCR_config, data = hdacCCR_data) tppccrNorm <- tppccrNormalize(data=tppccrData) # Perform transformation: tppccrTransformed <- tppccrTransform(data=tppccrNorm) # Obtain transformed measurements per replicate: transf_replicate1 <- tppccrTransformed$Panobinostat_1 transf_replicate2 <- tppccrTransformed$Panobinostat_2 # Inspect transformed data in replicate 1: effects_replicate1 <- Biobase::featureData(transf_replicate1)$compound_effect newData_repl1 <- data.frame(Biobase::exprs(transf_replicate1), Type=effects_replicate1)[!is.na(effects_replicate1),]
data(hdacCCR_smallExample) tppccrData <- tppccrImport(configTable=hdacCCR_config, data = hdacCCR_data) tppccrNorm <- tppccrNormalize(data=tppccrData) # Perform transformation: tppccrTransformed <- tppccrTransform(data=tppccrNorm) # Obtain transformed measurements per replicate: transf_replicate1 <- tppccrTransformed$Panobinostat_1 transf_replicate2 <- tppccrTransformed$Panobinostat_2 # Inspect transformed data in replicate 1: effects_replicate1 <- Biobase::featureData(transf_replicate1)$compound_effect newData_repl1 <- data.frame(Biobase::exprs(transf_replicate1), Type=effects_replicate1)[!is.na(effects_replicate1),]
Default theme to be passed to the gplots produced by the TPP package.
tppDefaultTheme()
tppDefaultTheme()
Internally, the theme is used as an argument for the function
ggplot2::theme_set
in order specify the appearance of the melting curve plots.
The specified plot properties include bold font and increased font size for axis labels and title, as well as a 90 degree angle for y axis labels.
ggplot theme with default settings for melting plot appearance.
# Import data: data(hdacTR_smallExample) tpptrData <- tpptrImport(configTable=hdacTR_config, data=hdacTR_data) # Obtain template with default settings: normRequirements <- tpptrDefaultNormReqs() print(normRequirements) # Relax filter on the 10th fold change column for # normalization set production: normRequirements$fcRequirements[3,3] <- 0.25 # Perform normalization: tpptrNorm <- tpptrNormalize(data=tpptrData, normReqs=)
# Import data: data(hdacTR_smallExample) tpptrData <- tpptrImport(configTable=hdacTR_config, data=hdacTR_data) # Obtain template with default settings: normRequirements <- tpptrDefaultNormReqs() print(normRequirements) # Relax filter on the 10th fold change column for # normalization set production: normRequirements$fcRequirements[3,3] <- 0.25 # Perform normalization: tpptrNorm <- tpptrNormalize(data=tpptrData, normReqs=)
Produce Excel table of TPP-TR or TPP-CCR experiment out of the
data frame returned by tpptrAnalyzeMeltingCurves
tppExport(tab, file, expNames = NULL, expColors = NULL)
tppExport(tab, file, expNames = NULL, expColors = NULL)
tab |
Table with results of the TPP analysis. |
file |
path for storing results table |
expNames |
character vector of experiment names of the same length as expColors. |
expColors |
character vector of background colors to group the result columns belonging to different experiments. |
No value returned.
data(hdacTR_resultsTable_smallExample) tppExport(resultTable, "tpptr_example_results.xlsx")
data(hdacTR_resultsTable_smallExample) tppExport(resultTable, "tpptr_example_results.xlsx")
Plot pairwise relationships between the proteins in different TPP experiments.
tppQCPlotsCorrelateExperiments( tppData, annotStr = "", path = NULL, ggplotTheme = tppDefaultTheme() )
tppQCPlotsCorrelateExperiments( tppData, annotStr = "", path = NULL, ggplotTheme = tppDefaultTheme() )
tppData |
List of expressionSets with data to be plotted. |
annotStr |
String with additional information to be added to the plot. |
path |
Location where to store resulting plot. |
ggplotTheme |
ggplot theme for the created plots. |
List of plots for each experiment.
data(hdacTR_smallExample) tpptrData <- tpptrImport(configTable=hdacTR_config, data=hdacTR_data) # Quality control (QC) plots BEFORE normalization: tppQCPlotsCorrelateExperiments(tppData=tpptrData, annotStr="Non-normalized Fold Changes") # Quality control (QC) plots AFTER normalization: tpptrNorm <- tpptrNormalize(data=tpptrData, normReqs=tpptrDefaultNormReqs()) tpptrDataNormalized <- tpptrNorm$normData tppQCPlotsCorrelateExperiments(tppData=tpptrDataNormalized, annotStr="Normalized Fold Changes")
data(hdacTR_smallExample) tpptrData <- tpptrImport(configTable=hdacTR_config, data=hdacTR_data) # Quality control (QC) plots BEFORE normalization: tppQCPlotsCorrelateExperiments(tppData=tpptrData, annotStr="Non-normalized Fold Changes") # Quality control (QC) plots AFTER normalization: tpptrNorm <- tpptrNormalize(data=tpptrData, normReqs=tpptrDefaultNormReqs()) tpptrDataNormalized <- tpptrNorm$normData tppQCPlotsCorrelateExperiments(tppData=tpptrDataNormalized, annotStr="Normalized Fold Changes")
Reference dataset obtained by TPP-TR experiments without drug treatment on HepG2 cell lines.
tppRefData
is a list of data frames that contains
TPP-TR measurements for a large number of proteins in wide format.
The experiments were performed in two replicates. It can be used as a
reference for normalization of 2D-TPP data. See the vignette for the 2D
workflow for details.
Reference dataset obtained by TPP-TR experiments without drug treatment on HepG2 cell lines.
Contains the data object tppRefData
.
Compute p-values for the pairwise comparisons of melting curve shifts between different conditions.
tpptrAnalyzeMeltingCurves( data, pValMethod = "robustZ", pValFilter = list(minR2 = 0.8, maxPlateau = 0.3), pValParams = list(binWidth = 300) )
tpptrAnalyzeMeltingCurves( data, pValMethod = "robustZ", pValFilter = list(minR2 = 0.8, maxPlateau = 0.3), pValParams = list(binWidth = 300) )
data |
list of ExpressionSets containing fold changes and metadata. Their featureData fields contain the fitted melting curve parameters. |
pValMethod |
Method for p-value computation. Currently restricted to 'robustZ' (see Cox & Mann (2008)). |
pValFilter |
optional list of filtering criteria to be applied before p-value computation. |
pValParams |
optional list of parameters for p-value computation. |
The pValParams
argument is a list that can contain optional parameters
for the chosen p-value computation pValMethod
. The following options are
available:
pValMethod = "robustZ"
:
pValParams=list(binWidth=[your_binWidth])
.
A data frame in which the fit results are stored row-wise for each protein.
Cox, J., & Mann, M. (2008). MaxQuant enables high peptide identification rates, individualized ppb-range mass accuracies and proteome-wide protein quantification. Nature biotechnology, 26(12), 1367-1372.
data(hdacTR_smallExample) tpptrData <- tpptrImport(hdacTR_config, hdacTR_data) tpptrNorm <- tpptrNormalize(data=tpptrData, normReqs=tpptrDefaultNormReqs()) normalizedData <- tpptrNorm$normData ## Not run: # Fit melting curves to each protein # (can take some time depending on device used): fittedData <- tpptrCurveFit(normalizedData, nCores=1) resultTable <- tpptrAnalyzeMeltingCurves(fittedData) subset(resultTable, fulfills_all_4_requirements)$Protein_ID ## End(Not run)
data(hdacTR_smallExample) tpptrData <- tpptrImport(hdacTR_config, hdacTR_data) tpptrNorm <- tpptrNormalize(data=tpptrData, normReqs=tpptrDefaultNormReqs()) normalizedData <- tpptrNorm$normData ## Not run: # Fit melting curves to each protein # (can take some time depending on device used): fittedData <- tpptrCurveFit(normalizedData, nCores=1) resultTable <- tpptrAnalyzeMeltingCurves(fittedData) subset(resultTable, fulfills_all_4_requirements)$Protein_ID ## End(Not run)
Fit melting curves to all proteins in a dataset.
tpptrCurveFit( data, dataCI = NULL, resultPath = NULL, ggplotTheme = tppDefaultTheme(), doPlot = TRUE, startPars = c(Pl = 0, a = 550, b = 10), maxAttempts = 500, nCores = "max", verbose = FALSE )
tpptrCurveFit( data, dataCI = NULL, resultPath = NULL, ggplotTheme = tppDefaultTheme(), doPlot = TRUE, startPars = c(Pl = 0, a = 550, b = 10), maxAttempts = 500, nCores = "max", verbose = FALSE )
data |
list of |
dataCI |
list of |
resultPath |
location where to store the melting curve plots. |
ggplotTheme |
ggplot theme for melting curve plots. |
doPlot |
boolean value indicating whether melting curves should be plotted, or whether just the curve parameters should be returned. |
startPars |
start values for the melting curve parameters. Will be
passed to function |
maxAttempts |
maximal number of curve fitting attempts if model does not converge. |
nCores |
either a numerical value given the desired number of CPUs, or 'max' to automatically assign the maximum possible number (default). |
verbose |
plot name of each fitted protein to the command lin as a means of progress report. |
If the melting curve fitting procedure does not converge, it will be
repeatedly started from perturbed starting parameters (maximum iterations
defined by argument maxAttempts
)
If doPlot = TRUE
, melting curves are be plotted in individual files
per protein. Each file is named by its unique identifier. Filenames are
truncated to 255 characters (requirement by most operation systems).
Truncated filenames are indicated by the suffix "_truncated[d]", where [d]
is a unique number to avoid redundancies.
The melting curve plots will be stored in a subfolder with name
Melting_Curves
at the location specified by resultPath
.
A list of ExpressionSets storing the data together with the melting
curve parameters for each experiment.
Each ExpressionSet contains the measured fold changes, as well as row and
column metadata. In each ExpressionSet S
, the fold changes can be
accessed by Biobase::exprs(S)
. Protein expNames can be accessed by
featureNames(S)
. Isobaric labels and the corresponding temperatures are
returned by S$label
and S$temperature
.
data(hdacTR_smallExample) tpptrData <- tpptrImport(configTable=hdacTR_config, data=hdacTR_data) tpptrNorm <- tpptrNormalize(data=tpptrData, normReqs=tpptrDefaultNormReqs()) normalizedData <- tpptrNorm$normData hdacSubsets <- lapply(normalizedData, function(d) d[grepl("HDAC", Biobase::featureNames(d))]) tpptrFittedHDACs <- tpptrCurveFit(hdacSubsets, nCores=1) # Show estimated parameters for vehicle and treatment experiments: Biobase::pData(Biobase::featureData(tpptrFittedHDACs[["Vehicle_1"]])) Biobase::pData(Biobase::featureData(tpptrFittedHDACs[["Panobinostat_1"]]))
data(hdacTR_smallExample) tpptrData <- tpptrImport(configTable=hdacTR_config, data=hdacTR_data) tpptrNorm <- tpptrNormalize(data=tpptrData, normReqs=tpptrDefaultNormReqs()) normalizedData <- tpptrNorm$normData hdacSubsets <- lapply(normalizedData, function(d) d[grepl("HDAC", Biobase::featureNames(d))]) tpptrFittedHDACs <- tpptrCurveFit(hdacSubsets, nCores=1) # Show estimated parameters for vehicle and treatment experiments: Biobase::pData(Biobase::featureData(tpptrFittedHDACs[["Vehicle_1"]])) Biobase::pData(Biobase::featureData(tpptrFittedHDACs[["Panobinostat_1"]]))
Filter criteria as described in the publication.
tpptrDefaultNormReqs()
tpptrDefaultNormReqs()
List with two entries: 'fcRequirements' describes filtering requirements on fold change columns, 'otherRequirements' contains criteria on additional metadata columns.
data(hdacTR_smallExample) tpptrData <- tpptrImport(configTable=hdacTR_config, data=hdacTR_data) tpptrNorm <- tpptrNormalize(data=tpptrData, normReqs=tpptrDefaultNormReqs())
data(hdacTR_smallExample) tpptrData <- tpptrImport(configTable=hdacTR_config, data=hdacTR_data) tpptrNorm <- tpptrNormalize(data=tpptrData, normReqs=tpptrDefaultNormReqs())
Fit natural splines to all proteins in a dataset.
tpptrFitSplines( data, factorsH1, factorsH0 = character(0), splineDF = 3:7, computeAUC = NULL, returnModels = TRUE, nCores = "max" )
tpptrFitSplines( data, factorsH1, factorsH0 = character(0), splineDF = 3:7, computeAUC = NULL, returnModels = TRUE, nCores = "max" )
data |
the data to be fitted |
factorsH1 |
which factors should be included in the alternative model? |
factorsH0 |
which factors should be included in the null model? |
splineDF |
degrees of freedom for natural spline fitting. |
computeAUC |
DEPRECATED |
returnModels |
should the linear models be returned in a column of the result table? Activation increases memory requirements. |
nCores |
either a numerical value given the desired number of CPUs, or 'max' to automatically assign the maximum possible number (default). Argument |
A table containing the fitted models per protein
data(hdacTR_smallExample) tpptrData <- tpptrImport(configTable = hdacTR_config, data = hdacTR_data) normResults <- tpptrNormalize(data = tpptrData, normReqs = tpptrDefaultNormReqs()) normData_eSets <- normResults$normData normData_longTable <- tpptrTidyUpESets(normData_eSets) hdacSubset <- subset(normData_longTable, grepl("HDAC", uniqueID)) hdacSplineFits <- tpptrFitSplines(data = hdacSubset, factorsH1 = c("condition"), nCores = 1)
data(hdacTR_smallExample) tpptrData <- tpptrImport(configTable = hdacTR_config, data = hdacTR_data) normResults <- tpptrNormalize(data = tpptrData, normReqs = tpptrDefaultNormReqs()) normData_eSets <- normResults$normData normData_longTable <- tpptrTidyUpESets(normData_eSets) hdacSubset <- subset(normData_longTable, grepl("HDAC", uniqueID)) hdacSplineFits <- tpptrFitSplines(data = hdacSubset, factorsH1 = c("condition"), nCores = 1)
Analyze fitted natural spline models and look for differential behaviour between conditions by a moderated F-test.
tpptrFTest(fittedModels, doPlot = FALSE, resultPath = NULL)
tpptrFTest(fittedModels, doPlot = FALSE, resultPath = NULL)
fittedModels |
a table of fitted spline models (produced by |
doPlot |
boolean value indicating whether QC plots should be produced. Currently, QC plots comprise distributions of the F statistics, and the p-values before/ after Benjamini Hochberg adjustment. |
resultPath |
location where to store QC plots, if |
If doPlot
is TRUE
, but no resultPath
is
specified, the plots will be prompted to the active device.
The moderated F-statistic is calculated by the following equation: ...
A long table containing the hypothesis test results per protein.
data(hdacTR_smallExample) tpptrData <- tpptrImport(configTable = hdacTR_config, data = hdacTR_data) normResults <- tpptrNormalize(data = tpptrData, normReqs = tpptrDefaultNormReqs()) normData_eSets <- normResults$normData fitData <- tpptrTidyUpESets(normData_eSets) fits <- tpptrFitSplines(data = fitData, factorsH1 = "condition", nCores = 1, splineDF = 4:5) testResults <- tpptrFTest(fittedModels = fits)
data(hdacTR_smallExample) tpptrData <- tpptrImport(configTable = hdacTR_config, data = hdacTR_data) normResults <- tpptrNormalize(data = tpptrData, normReqs = tpptrDefaultNormReqs()) normData_eSets <- normResults$normData fitData <- tpptrTidyUpESets(normData_eSets) fits <- tpptrFitSplines(data = fitData, factorsH1 = "condition", nCores = 1, splineDF = 4:5) testResults <- tpptrFTest(fittedModels = fits)
TPP
package.tpptrImport
imports several tables of protein fold
changes and stores them in a list of ExpressionSets for use in the
TPP
package.
tpptrImport( configTable, data = NULL, idVar = "gene_name", fcStr = "rel_fc_", naStrs = c("NA", "n/d", "NaN"), qualColName = "qupm", outputFormat = "eSetList" )
tpptrImport( configTable, data = NULL, idVar = "gene_name", fcStr = "rel_fc_", naStrs = c("NA", "n/d", "NaN"), qualColName = "qupm", outputFormat = "eSetList" )
configTable |
either a dataframe or the path to a spreadsheet. In both cases it specifies necessary information of the TPP-CCR experiment. |
data |
single dataframe, or list of dataframes, containing fold change
measurements and additional annotation columns to be imported. Can be used
instead of specifying the file path in |
idVar |
character string indicating which data column provides the unique identifiers for each protein. |
fcStr |
character string indicating which columns contain the actual
fold change values. Those column names containing the suffix |
naStrs |
character vector indicating missing values in the data table.
When reading data from file, this value will be passed on to the argument
|
qualColName |
character string indicating which column can be used for additional quality criteria when deciding between different non-unique protein identifiers. |
outputFormat |
output format. Either "eSetList" to obtain output in the same way as previously (will be deprecated soon), or "tidy" to obtain a |
The imported datasets have to contain measurements obtained by TPP-TR experiments. Fold changes need to be pre-computed using the lowest temperature as reference.
An arbitrary number of datasets can be specified by filename in the
Path
-column of the configTable
argument, or given directly as
a list of dataframes in the data
argument. They can differ, for
example, by biological replicate or by experimental condition (for example,
treatment versus vehicle). Their names are defined uniquely by the
Experiment
column in configTable
. Experimental conditions can
be specified by an optional column in configTable
.
The default settings are adjusted to analyze data of the python package
isobarQuant
. You can also customize them for your own dataset.
The configTable
argument is a dataframe, or the path to a
spreadsheet (tab-delimited text-file without quoted strings, or xlsx format).
Information about each experiment is stored row-wise.
It contains the following columns:
Path
:location of each datafile. Alternatively,
data can be directly handed over by the data
argument.
Experiment
: unique experiment names.
Condition
: experimental conditions of each dataset.
Label columns: each isobaric label names a column that contains the temperatures administered for the label in the individual experiments.
Proteins with NAs in the data column specified by idVar
receive
unique generic IDs so that they can be processed by the package.
A list of ExpressionSets storing the imported data for experiment.
Each ExpressionSet contains the measured fold changes, as well as row and
column metadata. In each ExpressionSet S
, the fold changes can be
accessed by Biobase::exprs(S)
. Protein expNames can be accessed by
featureNames(S)
. Isobaric labels and the corresponding temperatures are
returned by S$label
and S$temperature
data(hdacTR_smallExample) tpptrData <- tpptrImport(hdacTR_config, hdacTR_data)
data(hdacTR_smallExample) tpptrData <- tpptrImport(hdacTR_config, hdacTR_data)
Normalizes fold changes determined by TPP-TR experiments over different experimental groups.
tpptrNormalize( data, normReqs = tpptrDefaultNormReqs(), qcPlotTheme = tppDefaultTheme(), qcPlotPath = NULL, startPars = c(Pl = 0, a = 550, b = 10), maxAttempts = 1, fixedReference = NULL )
tpptrNormalize( data, normReqs = tpptrDefaultNormReqs(), qcPlotTheme = tppDefaultTheme(), qcPlotPath = NULL, startPars = c(Pl = 0, a = 550, b = 10), maxAttempts = 1, fixedReference = NULL )
data |
List of |
normReqs |
List of filtering criteria for construction of the normalization set. |
qcPlotTheme |
ggplot theme for the created plots |
qcPlotPath |
location where plots of the curves fitted to the normalization set medians should be stored. |
startPars |
start values for the melting curve parameters. Will be
passed to function |
maxAttempts |
maximal number of curve attempts to fit melting curve to fold change medians when computing normalization factors. |
fixedReference |
name of a fixed reference experiment for normalization. If NULL (default), the experiment with the best R2 when fitting a melting curve through the median fold changes is chosen as the reference. |
Performs normalization of all fold changes in a given list of ExpressionSets. The normalization procedure is described in detail in Savitski et al. (2014). Whether normalization needs to be performed and what method is best suited depends on the experiment. Here we provide a reasonable solution for the data at hand.
We distinguish between filtering conditions on fold changes and on
additional annotation columns. Correspondingly, normReqs
contains
two fields, fcFilters
and otherFilters
. Each entry contains a
data frame with three columns specifying the column to be filtered, as well
as upper and lower bounds. An example is given by
tpptrDefaultNormReqs
.
A list of ExpressionSets storing the normalized data for each
experiment. Each ExpressionSet contains the measured fold changes, as well
as row and column metadata. In each ExpressionSet S
, the fold
changes can be accessed by Biobase::exprs(S)
. Protein expNames can be
accessed by featureNames(S)
. Isobaric labels and the corresponding temperatures are
returned by S$label
and S$temperature
Savitski, M. M., Reinhard, F. B., Franken, H., Werner, T., Savitski, M. F., Eberhard, D., ... & Drewes, G. (2014). Tracking cancer drugs in living cells by thermal profiling of the proteome. Science, 346(6205), 1255784.
Franken, H, Mathieson, T, Childs, D. Sweetman, G. Werner, T. Huber, W. & Savitski, M. M. (2015), Thermal proteome profiling for unbiased identification of drug targets and detection of downstream effectors. Nature protocols 10(10), 1567-1593.
data(hdacTR_smallExample) tpptrData <- tpptrImport(hdacTR_config, hdacTR_data) tpptrNorm <- tpptrNormalize(data=tpptrData, normReqs=tpptrDefaultNormReqs()) names(tpptrNorm)
data(hdacTR_smallExample) tpptrData <- tpptrImport(hdacTR_config, hdacTR_data) tpptrNorm <- tpptrNormalize(data=tpptrData, normReqs=tpptrDefaultNormReqs()) names(tpptrNorm)
Plot spline fits per protein
tpptrPlotSplines( data, factorsH1 = NULL, factorsH0 = NULL, fittedModels, testResults, resultPath = NULL, individual = TRUE, overview = FALSE, returnPlots = FALSE, control = list(nCores = "max", maxRank = 500, highlightBelow = 0.05), maxRank = NULL, highlightBelow = NULL, plotIndividual = NULL, plotAlphabetical = NULL )
tpptrPlotSplines( data, factorsH1 = NULL, factorsH0 = NULL, fittedModels, testResults, resultPath = NULL, individual = TRUE, overview = FALSE, returnPlots = FALSE, control = list(nCores = "max", maxRank = 500, highlightBelow = 0.05), maxRank = NULL, highlightBelow = NULL, plotIndividual = NULL, plotAlphabetical = NULL )
data |
long table of proteins measurements that were used for spline fitting. |
factorsH1 |
DEPRECATED |
factorsH0 |
DEPRECATED |
fittedModels |
long table of fitted models.
Output of |
testResults |
long table of p-values per protein.
Output of |
resultPath |
an optional character vector with the name of the path where the plots should be saved. |
individual |
logical. Export each plot to individual files? |
overview |
logical. Generate summary pdfs? |
returnPlots |
logical. Should the ggplot objects be returned as well? |
control |
a list of general settings. |
maxRank |
DEPRECATED |
highlightBelow |
DEPRECATED |
plotIndividual |
DEPRECATED |
plotAlphabetical |
DEPRECATED Contains the following fields:
|
Plots of the natural spline fits will be stored in a subfolder with
name Spline_Fits
at the location specified by resultPath
.
Exporting each plot to individual files (individual = TRUE) can
cost runtime and the resulting files can be tedious to browse.
If you just want to browse the results, use overview = TRUE
instead.
If overview = TRUE
, two summary PDFs are created that enable quick
browsing through all results. They contain the plots in alphacetical order
(splineFit_alphabetical.pdf
), or ranked by p-values
(splineFit_top_xx.pdf
, where xx is the maximum rank defined by
overviewSettings$maxRank
).
None
ns, AICc,
tpptrFitSplines, tpptrFTest
data(hdacTR_smallExample) tpptrData <- tpptrImport(configTable = hdacTR_config, data = hdacTR_data) tidyData <- tpptrTidyUpESets(tpptrData) splineFits <- tpptrFitSplines(data = tidyData, nCores = 1, splineDF = 4:5, factorsH1 = "condition", returnModels = TRUE) testResults <- tpptrFTest(fittedModels = splineFits, doPlot = FALSE) tpptrPlotSplines(data = tidyData, fittedModels = splineFits, individual = FALSE, testResults = testResults, resultPath = getwd())
data(hdacTR_smallExample) tpptrData <- tpptrImport(configTable = hdacTR_config, data = hdacTR_data) tidyData <- tpptrTidyUpESets(tpptrData) splineFits <- tpptrFitSplines(data = tidyData, nCores = 1, splineDF = 4:5, factorsH1 = "condition", returnModels = TRUE) testResults <- tpptrFTest(fittedModels = splineFits, doPlot = FALSE) tpptrPlotSplines(data = tidyData, fittedModels = splineFits, individual = FALSE, testResults = testResults, resultPath = getwd())
A wrapper function around the functions tpptrFitSplines
,
tpptrFTest
, tpptrPlotSplines
, which fits natural splines to
all proteins in a dataset and detect differential behavior between
conditions by a moderated F-test. The results are formatted as a wide table
with one row per protein. This table contains all the original data, the
test results, and (optionally) additional annotation columns for each
protein.
tpptrSplineFitAndTest( data, factorsH1, factorsH0 = character(), resultPath = NULL, doPlot = TRUE, nCores = "max", splineDF = 3:7, additionalCols = NULL, verbose = NULL, ggplotTheme = NULL )
tpptrSplineFitAndTest( data, factorsH1, factorsH0 = character(), resultPath = NULL, doPlot = TRUE, nCores = "max", splineDF = 3:7, additionalCols = NULL, verbose = NULL, ggplotTheme = NULL )
data |
the data to be fitted. |
factorsH1 |
which factors should be included in the alternative model? |
factorsH0 |
which factors should be included in the null model? |
resultPath |
location where to store the spline plots per protein. |
doPlot |
boolean value indicating whether melting curves should be plotted, or whether just the curve parameters should be returned. |
nCores |
either a numerical value given the desired number of CPUs, or 'max' to automatically assign the maximum possible number (default). |
splineDF |
degrees of freedom for natural spline fitting. |
additionalCols |
additional annotation per protein to append to the result table. |
verbose |
DEPRECATED |
ggplotTheme |
DEPRECATED. |
Plots of the natural spline fits will be stored in a subfolder with
name Spline_Fits
at the location specified by resultPath
.
Argument data
can either be long table, or a list of expressionSets
as returned by tpptrImport
. If a long table, it needs to
contain the following columns: 'uniqueID' (identifier), 'x' (independent
variable for fitting, usually the temperature) and 'y' (dependent variable
for fitting, usually the relative concentration).
Argument splineDF
specifies the degrees of freedom for natural
spline fitting. As a single numeric value, it is directly passed on to the
splineDF
argument of splines::ns
. Experience shows that
splineDF = 4
yields good results for TPP data sets with 10
temperature points. It is also possible to provide a numeric vector. In
this case, splines are fitted for each entry and the optimal value is
chosen per protein using Akaike's Information criterion.
A data frame in wide format with one row per protein. It contains the smoothing spline parameters and F-test results obtained by comparing the null and alternative models.
data(hdacTR_smallExample) tpptrData <- tpptrImport(configTable = hdacTR_config, data = hdacTR_data) fitData <- tpptrTidyUpESets(tpptrData) hdacSplineFits <- tpptrSplineFitAndTest(data = fitData, factorsH1 = "condition", nCores = 1, splineDF = 4:5, doPlot = FALSE) # Show estimated splines for HDAC1: filter(hdacSplineFits, Protein_ID == "HDAC1") # -> Which proteins showed significant condition effects? hdacSplineFits %>% filter(p_adj_NPARC <= 0.01) %>% select(Protein_ID, p_adj_NPARC) # Quality control: test for replicate-specific effects: testResults <- tpptrSplineFitAndTest(data = fitData, factorsH1 = "replicate", nCores = 1, splineDF = 4, doPlot = FALSE) # -> Which proteins showed significant replicate effects? testResults %>% filter(p_adj_NPARC <= 0.01) %>% select(Protein_ID, p_adj_NPARC)
data(hdacTR_smallExample) tpptrData <- tpptrImport(configTable = hdacTR_config, data = hdacTR_data) fitData <- tpptrTidyUpESets(tpptrData) hdacSplineFits <- tpptrSplineFitAndTest(data = fitData, factorsH1 = "condition", nCores = 1, splineDF = 4:5, doPlot = FALSE) # Show estimated splines for HDAC1: filter(hdacSplineFits, Protein_ID == "HDAC1") # -> Which proteins showed significant condition effects? hdacSplineFits %>% filter(p_adj_NPARC <= 0.01) %>% select(Protein_ID, p_adj_NPARC) # Quality control: test for replicate-specific effects: testResults <- tpptrSplineFitAndTest(data = fitData, factorsH1 = "replicate", nCores = 1, splineDF = 4, doPlot = FALSE) # -> Which proteins showed significant replicate effects? testResults %>% filter(p_adj_NPARC <= 0.01) %>% select(Protein_ID, p_adj_NPARC)
Convert list of expressionSets (intermediate output of several TPP-TR functions) to tidy tables.
tpptrTidyUpESets(tppESetList, returnType = "exprs")
tpptrTidyUpESets(tppESetList, returnType = "exprs")
tppESetList |
A list of expressionSets, returned by most TPP-TR functions. |
returnType |
A string with two possible values: "exprs", "featureData". |
expressionSet lists are for example produced by
tpptrImport
, tpptrNormalize
,
tpptrCurveFit
.
Either the fold changes per protein across all experiments
(if returnType = "exprs"
), or the
additional annotation per protein and experiment (if returnType = "featureData"
). For example, the
peptide counts per identified protein can be found here.
data(hdacTR_smallExample) tpptrData <- tpptrImport(configTable = hdacTR_config, data = hdacTR_data) concentrations <- tpptrTidyUpESets(tpptrData) additionalInfos <- tpptrTidyUpESets(tpptrData, returnType = "featureData") summary(concentrations)
data(hdacTR_smallExample) tpptrData <- tpptrImport(configTable = hdacTR_config, data = hdacTR_data) concentrations <- tpptrTidyUpESets(tpptrData) additionalInfos <- tpptrTidyUpESets(tpptrData, returnType = "featureData") summary(concentrations)