Package 'TDbasedUFE'

Title: Tensor Decomposition Based Unsupervised Feature Extraction
Description: This is a comprehensive package to perform Tensor decomposition based unsupervised feature extraction. It can perform unsupervised feature extraction. It uses tensor decomposition. It is applicable to gene expression, DNA methylation, and histone modification etc. It can perform multiomics analysis. It is also potentially applicable to single cell omics data sets.
Authors: Y-h. Taguchi [aut, cre]
Maintainer: Y-h. Taguchi <[email protected]>
License: GPL-3
Version: 1.7.0
Built: 2024-11-19 04:27:09 UTC
Source: https://github.com/bioc/TDbasedUFE

Help Index


Title Compute higher order singular value decomposition

Description

Title Compute higher order singular value decomposition

Usage

computeHosvd(Z, dims = c(10, dim(attr(Z, "value"))[-1]), scale = TRUE)

Arguments

Z

array that includes omics data

dims

dimensions to be computed by HOSVD

scale

If value is scaled

Value

List that includes output from HOSVD

Examples

Z <- PrepareSummarizedExperimentTensor(
sample=matrix(as.character(seq_len(6)),c(3,2)),
feature=as.character(seq_len(10)),
value=array(runif(10*3*2),c(10,3,2)))
HOSVD <- computeHosvd(Z)

Title Compute higher order singular value decomposition from the tensor generated from squared matrix

Description

Title Compute higher order singular value decomposition from the tensor generated from squared matrix

Usage

computeHosvdSqure(
  Z,
  dims = unlist(lapply(dim(attr(Z, "value")), function(x) {
     min(10, x)
 })),
  scale = TRUE
)

Arguments

Z

A tensor including sample names, feature values, associated with featureRange and sample properties

dims

dimensions to be computed by HOSVD

scale

If value is scaled

Value

List that includes output from HOSVD

Examples

omics1 <- matrix(runif(100),10)
dimnames(omics1) <- list(seq_len(10),seq_len(10))
omics2 <- matrix(runif(100),10)
dimnames(omics2) <- dimnames(omics1)
Multi <- list(omics1,omics2)
Z <- PrepareSummarizedExperimentTensorSquare(
            sample=matrix(colnames(omics1),1),
            feature=list(omics1=rownames(omics1),
            omics2=rownames(omics2)),
            value=convertSquare(Multi),
            sampleData=list(NA))
            HOSVD <- computeHosvdSqure(Z)

Generate squared tensor from multiomics data

Description

Generate squared tensor from multiomics data

Usage

convertSquare(Multi)

Arguments

Multi

A list that include multiomics data

Value

A tensor computed from multiomics data

Examples

omics1 <- matrix(runif(100),10)
dimnames(omics1) <- list(seq_len(10),seq_len(10))
omics2 <- matrix(runif(100),10)
dimnames(omics2) <- dimnames(omics1)
Multi <- list(omics1,omics2)
Z <- convertSquare(Multi)

Title Generate feature values formatted as a tensor format

Description

Title Generate feature values formatted as a tensor format

Usage

PrepareSummarizedExperimentTensor(
  sample,
  feature,
  value,
  featureRange = GRanges(NULL),
  sampleData = list(NULL)
)

Arguments

sample

Sample names

feature

Feature id names

value

Feature values

featureRange

Genomic coordinate attributed to feature id (if any)

sampleData

Sample property (labels etc)

Value

A tensor including sample names, feature id, feature values, associated with featureRange and sample properties

Examples

require(GenomicRanges)
Z <- PrepareSummarizedExperimentTensor(
sample=matrix(as.character(seq_len(6)),c(3,2)),
feature=as.character(seq_len(10)),
 value=array(runif(10*3*2),c(10,3,2)))

Title Generate feature values formatted as a tensor format from Squared matrix

Description

Title Generate feature values formatted as a tensor format from Squared matrix

Usage

PrepareSummarizedExperimentTensorSquare(
  sample = list(NULL),
  feature,
  value,
  featureRange = GRanges(NULL),
  sampleData = list(NULL)
)

Arguments

sample

Sample names

feature

Feature id names

value

Squared Feature values

featureRange

Genomic coordinate attributed to feature id (if any)

sampleData

Sample property (labels etc)

Value

A tensor including sample names, feature values, associated with featureRange and sample properties

Examples

omics1 <- matrix(runif(100),10)
dimnames(omics1) <- list(seq_len(10),seq_len(10))
omics2 <- matrix(runif(100),10)
dimnames(omics2) <- dimnames(omics1)
Multi <- list(omics1,omics2)
Z <- PrepareSummarizedExperimentTensorSquare(
   sample=matrix(colnames(omics1),1),
   feature=list(omics1=rownames(omics1),
   omics2=rownames(omics2)),
   value=convertSquare(Multi),
   sampleData=list(NA))

Title Select features

Description

Title Select features

Usage

selectFeature(HOSVD, input_all, de = 1e-04, p0 = 0.01, breaks = 100)

Arguments

HOSVD

output from HOSVD

input_all

Selected singular value IDs

de

Initial value for optimization of standard deviation

p0

Threshold P-value

breaks

The number of bins

Value

List that includes selected features and computed P-value

Examples

set.seed(2)
require(rTensor)
HOSVD <- hosvd(as.tensor(array(runif(10000*3*3),c(10000,3,3))),c(10,3,3))
input_all <- c(2,2)
index <- selectFeature(HOSVD,input_all,de=0.01,p0=0.01)

Title Select features (for tensor generated from squared matrix)

Description

Title Select features (for tensor generated from squared matrix)

Usage

selectFeatureSquare(
  HOSVD,
  input_all,
  Multi,
  de = rep(1e-04, dim(HOSVD$U[[3]])[2]),
  p0 = 0.01,
  breaks = 100,
  interact = TRUE
)

Arguments

HOSVD

output from HOSVD applied to tensor generated from squared matrix

input_all

Selected singular value vector IDs

Multi

Multiomics data

de

Initial value for optimization of standard deviation

p0

Threshold P-value

breaks

The number of bins

interact

if interact mode or not

Value

List that includes selected features and computed P-value

Examples

omics1 <- matrix(runif(100000),ncol=10)
dimnames(omics1) <- list(seq_len(10000),seq_len(10))
omics2 <- matrix(runif(100000),ncol=10)
dimnames(omics2) <- dimnames(omics1)
Multi <- list(omics1,omics2)
Z <- PrepareSummarizedExperimentTensorSquare(
sample=matrix(colnames(omics1),1),
feature=list(omics1=rownames(omics1),
omics2=rownames(omics2)),
value=convertSquare(Multi),
sampleData=list(NA))
HOSVD <- computeHosvdSqure(Z)
cond <- list(0,rep(seq_len(2),each=5),c("A","B"))
input_all <- selectSingularValueVectorLarge(HOSVD,cond,input_all=c(1,1))
index <- selectFeatureSquare(HOSVD,input_all,Multi,de=c(0.1,0.1),
interact=FALSE)

Title Select singular value vectors from HOSVD (boxplot version)

Description

Title Select singular value vectors from HOSVD (boxplot version)

Usage

selectSingularValueVectorLarge(HOSVD, cond, input_all = NULL)

Arguments

HOSVD

output from HOSVD

cond

Labels to select singular value vector number

input_all

if list is not null, no interactive mode is activated but provided values are used.

Value

Selected singular value vector IDs

Examples

Z <- PrepareSummarizedExperimentTensor(
sample=matrix(as.character(seq_len(6)),c(3,2)),
feature=as.character(seq_len(10)),
 value=array(runif(10*3*2),c(10,3,2)))
HOSVD <- computeHosvd(Z)
 cond <- list(0,c("A","B","C"),c("A","B"))
 input_all <- selectSingularValueVectorLarge(HOSVD,cond,input_all=c(1,1))

Title Select singular value vectors from HOSVD

Description

Title Select singular value vectors from HOSVD

Usage

selectSingularValueVectorSmall(HOSVD, input_all = NULL)

Arguments

HOSVD

output from HOSVD

input_all

if ist is no null, no interactive mode is activated but provided values are used.

Value

Selected singular value vector IDs

Examples

Z <- PrepareSummarizedExperimentTensor(
sample=matrix(as.character(seq_len(6)),c(3,2)),
feature=as.character(seq_len(10)),
 value=array(runif(10*3*2),c(10,3,2)))
 HOSVD <- computeHosvd(Z)
input_all <- selectSingularValueVectorSmall(HOSVD,input_all=c(1,1))

Title Show selected features as Table

Description

Title Show selected features as Table

Usage

tableFeatures(Z, index)

Arguments

Z

Tensor of features

index

List that includes selected features and P-values

Value

Table list of selected features

Examples

set.seed(2)
require(rTensor)
HOSVD <- hosvd(as.tensor(array(runif(10000*3*3),c(10000,3,3))),c(10,3,3))
input_all <- c(2,2)
index <- selectFeature(HOSVD,input_all,de=0.01,p0=0.01)
index$index[seq_len(100)] <- TRUE
Z <- PrepareSummarizedExperimentTensor(
sample=matrix(as.character(seq_len(9)),c(3,3)),
        feature=as.character(seq_len(10000)),
        value=array(runif(10000*3*3),c(10,3,3)))
head(tableFeatures(Z,index))

Title Show selected features as Table (for Squared one)

Description

Title Show selected features as Table (for Squared one)

Usage

tableFeaturesSquare(Z, index, id)

Arguments

Z

Tensor of features

index

List that includes selected features and P-values

id

feature to be shown

Value

Table list of selected features

Examples

omics1 <- matrix(runif(100000),ncol=10)
dimnames(omics1) <- list(seq_len(10000),seq_len(10))
omics2 <- matrix(runif(100000),ncol=10)
dimnames(omics2) <- dimnames(omics1)
Multi <- list(omics1,omics2)
Z <- PrepareSummarizedExperimentTensorSquare(
sample=matrix(colnames(omics1),1),
feature=list(omics1=rownames(omics1),
omics2=rownames(omics2)),
value=convertSquare(Multi),
sampleData=list(NA))
HOSVD <- computeHosvdSqure(Z)
cond <- list(0,rep(seq_len(2),each=5),c("A","B"))
input_all <- selectSingularValueVectorLarge(HOSVD,cond,input_all=c(1,1))
index <- selectFeatureSquare(HOSVD,input_all,Multi,de=c(0.1,0.1),
interact=FALSE)
index[[1]]$index[1:100]<-TRUE
index[[1]]$p.value[1:100] <- 1e-3
tableFeaturesSquare(Z,index,1)