Package 'SurfR'

Title: Surface Protein Prediction and Identification
Description: Identify Surface Protein coding genes from a list of candidates. Systematically download data from GEO and TCGA or use your own data. Perform DGE on bulk RNAseq data. Perform Meta-analysis. Descriptive enrichment analysis and plots.
Authors: Aurora Maurizio [aut, cre] , Anna Sofia Tascini [aut, ctb]
Maintainer: Aurora Maurizio <[email protected]>
License: GPL-3 + file LICENSE
Version: 1.3.1
Built: 2024-11-12 03:23:27 UTC
Source: https://github.com/bioc/SurfR

Help Index


Annotate_SPID

Description

Annotate Surface Protein Coding genes according to EnrichR libraries

Usage

Annotate_SPID(
  DGE,
  enrich.database = "WikiPathway_2021_Human",
  output_tsv = FALSE
)

Arguments

DGE

Data.frame containing annotated DEG list, as the output of DGE or Gene2SProtein functions.

enrich.database

String containing the EnrichR databases you would like to consult. Default: WikiPathway_2021_Human.

output_tsv

Logical. If TRUE, outputs a tsv file with the results. By default, FALSE.

Value

A dataframe with surface protein coding DEGs annotation.

Warning

Be sure that enrich.database exists.

See Also

DGE function for DGE, and Gene2SProtein function for Gene2SProtein analysis

Other functional-annotation functions: Enrichment_barplot(), Enrichment()

Examples

## Not run: 
# Deseq2 output sample
DGE = data.frame(GeneID = c("DLK1", "TOP2A"),
                 Mean_CPM_T = c(5.92, 9.91),
                 Mean_CPM_C = c(0.04, 0.03),
                 log2FoldChange = c(10.22, 8.42),
                 lfcSE = c(0.80, 0.48),
                 stat = c(12.68, 17.69),
                 pvalue = c(7.30135e-37, 4.37011e-70),
                 padj = c(1.49936e-35, 1.12976e-67))
library(enrichR)
annotated_DGE = Annotate_SPID(DGE, "WikiPathway_2021_Human")

# Output of Gene2SProtein function
GeneNames = c("CIITA", "EPCAM", "DLK1", "CD24")
SurfaceProteins_df = Gene2SProtein(GeneNames, input_type = "gene_name")
annotated_SP = Annotate_SPID(SurfaceProteins_df, "GO_Biological_Process_2021")
## End(Not run)

combine_fisher_invnorm

Description

Combine Meta-Analysis results with individual DE tables

Usage

combine_fisher_invnorm(
  ind_deg,
  invnorm,
  fishercomb,
  adjpval = 0.05,
  output_tsv = TRUE,
  output_filename = "combine_fisher_invnorm.tsv"
)

Arguments

ind_deg

List of indipendent DEG dataframes with p-values to be combined.

invnorm

inverse normal p-value combination technique dataframe (output of metaRNAseq)

fishercomb

Fisher p-value combination technique dataframe (output of metaRNAseq)

adjpval

threshold to represent as binary the Meta-Analysis output adjpval.

output_tsv

logical. If TRUE, it outputs table with results. Default: TRUE

output_filename

File name for the results file.

Value

A dataframe with DEindices and DEname of DEG at the chosen Benjamini Hochberg threshold, and TestStatistic, rawpval, adjpval, binaryadjpval vectors for differential expression in the meta-analysis.

See Also

DGE function for DGE analysis, and https://cran.r-project.org/web/packages/metaRNASeq/vignettes/metaRNASeq.pdf for metaRNASeq package info

Other meta-analysis functions: metaRNAseq()

Examples

## Not run: 
# Deseq2 output samples
DGE1 <- data.frame(GeneID = c("DLK1", "EPCAM"),
                 Mean_CPM_T = c(5.92, 9.91),
                 Mean_CPM_C = c(0.04, 0.03),
                 log2FoldChange = c(10.22, 8.42),
                 lfcSE = c(0.80, 0.48),
                 stat = c(12.68, 17.69),
                 pvalue = c(7.30135e-37, 4.37011e-70),
                 padj = c(1.49936e-35, 1.12976e-67),
                 row.names = c("DLK1", "EPCAM"))
DGE2 <- data.frame(GeneID = c("DLK1", "EPCAM"),
                 Mean_CPM_T = c(3.92, 8.91),
                 Mean_CPM_C = c(0.04, 0.03),
                 log2FoldChange = c(7.22, 5.81),
                 lfcSE = c(0.80, 0.48),
                 stat = c(12.68, 17.69),
                 pvalue = c(7.30135e-37, 4.37011e-70),
                 padj = c(1.49936e-35, 1.12976e-67),
                 row.names = c("DLK1", "EPCAM"))
# input list
ind_deg <- list(DEG1_df = DGE1, DEG2_df = DGE2)
# perform invnorm meta-analysis
invnorm <- metaRNAseq(ind_deg, test_statistic = "invnorm", BHth = 0.05, nrep = c(2,2))
# perform fishercomb meta-analysis
fishercomb <- metaRNAseq(ind_deg, test_statistic = "fishercomb", BHth = 0.05)
# combine results
comb_pval_df <- combine_fisher_invnorm(ind_deg,
                                      invnorm, fishercomb,
                                      adjpval = 0.05,
                                      output_tsv = FALSE)
## End(Not run)

countData

Description

Simulated raw counts to use as input for DGE and plotPCA functions. metadata is available.

Usage

data(countData)

Format

dataframe

Details

A dataframe with 2500 rows and 4 columns (sample names).

Value

A dataframe.


DGE function

Description

Perform Differential Gene Expression Analysis of RNA-Seq Data

Usage

DGE(
  expression,
  metadata,
  Nreplica,
  design = "~condition",
  condition = "condition",
  TEST,
  CTRL,
  alpha = 0.05,
  FC_filt = 0,
  output_tsv = FALSE,
  output_filename = "DEGs.tsv"
)

Arguments

expression

Dataframe with counts

metadata

Dataframe with sample metadata

Nreplica

Double. Minimum number of replicates in each group

design

Design formula for DGE

condition

Column of the metadata ti use for DGE results

TEST

Character. sample name in metadata

CTRL

Character. sample name in metadata

alpha

Double. the significance cutoff used for optimizing the independent filtering (by default 0.1). If the adjusted p-value cutoff (FDR) will be a value other than 0.1, alpha should be set to that value.

FC_filt

Dataframe with counts

output_tsv

Logical. If TRUE, outputs a tsv file with the results. By default, FALSE.

output_filename

Name of the tsv output file. Default is DEGs.tsv.

Value

A dataframe with DEGs

Examples

## Not run: 
# Simulation of bulk RNA data
countData <- matrix(floor(runif(10000, min=0, max=101)),ncol=4)
colnames(countData) <- paste("sample", seq_len(ncol(countData)), sep = "")
rownames(countData) <- paste("gene", seq_along(seq_len(10000/4)), sep = "")
metadata <- data.frame(samplesID = paste("sample", seq_len(ncol(countData)), sep = ""),
                       condition = factor(c("A","A","B","B")))
row.names(metadata) <- metadata$samplesID
# Perform DGE
DGEresults <- DGE(expression = countData, metadata = metadata,
                 Nreplica = 2,
                 design = "~condition",condition = "condition",
                 TEST = "A", CTRL = "B")
## End(Not run)

DownloadArchS4 function

Description

Download count matrix from https://maayanlab.cloud/archs4/, given a vector of input GEO Sample accessions numbers (GSM).

Usage

DownloadArchS4(GSM, species, print_tsv = FALSE, filename = NULL)

Arguments

GSM

Vector with the GSM ids of the samples to consider.

species

Specify the specie of yuor GSM samples. Either human or mouse.

print_tsv

Logical. If TRUE, outputs a tsv file with the count matrix. By default, FALSE.

filename

Name of the tsv output file. Default is matrix.tsv.

Value

A count matrix with gene on the row and GSM ID on the column.

Warning

If the defined GSM ids do not have any match in ArchS4 database, we suggest to contact ArchS4 curator to add them.

See Also

GEOmetadata function for downloading GEO metadata. https://www.ncbi.nlm.nih.gov/geo for info on GSM. https://maayanlab.cloud/archs4/ for info on ArchS4.

Other public-data functions: GEOmetadata(), TCGA_download()

Examples

## Not run: 
GSM <- c("GSM3447008", "GSM3447009")
GEO_count_matrix <- DownloadArchS4(GSM, species = "human",
                                  print_tsv = FALSE, filename = NULL)
## End(Not run)

enrichedList

Description

Input list for Enrichment_barplot function. enrichedList is the output of Enrichment function applied to ind_deg object when enrich.databases is equal to GO_Cellular_Component_2021, default parameters.

Usage

data(enrichedList)

Format

list

Details

enrichedList$fdr_up$GO_Cellular_Component_2021 contains upregulated gene enrichments, enrichedList$fdr_down$GO_Cellular_Component_2021 contains downregulated gene enrichments.

Value

A list of lists.


Enrichment function

Description

Perform enrichment Analysis of RNA-Seq Data

Usage

Enrichment(
  dfList,
  enrich.databases = c("GO_Biological_Process_2021", "GO_Cellular_Component_2021",
    "GO_Molecular_Function_2021", "KEGG_2021_Human", "MSigDB_Hallmark_2020",
    "WikiPathways_2016", "BioCarta_2016", "Jensen_TISSUES", "Jensen_COMPARTMENTS",
    "Jensen_DISEASES"),
  p_adj = 0.05,
  logFC = 1,
  save.results = FALSE
)

Arguments

dfList

Dataframes list

enrich.databases

Vector of EnrichR databases to consult

p_adj

Double. Adjusted pvalue threshold for the enrichment

logFC

Double. Fold change threshold for the enrichment

save.results

Logical. If TRUE saves input gene lists and enrichment results.

Value

A list of enrichment tables for upregulated and downregulated genes in the different enrichr databases

See Also

https://maayanlab.cloud/Enrichr/ for additional information about enrichR.

Other functional-annotation functions: Annotate_SPID(), Enrichment_barplot()

Examples

## Not run: 
df1 <- data.frame(GeneID  = c("MEST", "CDK1", "PCLAF", "BIRC5"),
                  baseMean = c(13490.22, 10490.23, 8888.33, 750.33),
                  log2FoldChange = c(5.78, 6.76, -7.78, -8.78),
                  padj = c(2.28e-143, 2.18e-115, 2.18e-45, 0.006),
                  row.names = c("MEST", "CDK1", "PCLAF", "BIRC5"))
df2 <- data.frame(GeneID  = c("MEST", "CDK1", "PCLAF", "BIRC5"),
                  baseMean = c(13490.22, 10490.23, 8888.33, 750.33),
                  log2FoldChange = c(5.78, 6.76, -7.78, -8.78),
                  padj = c(2.28e-143, 2.18e-115, 2.18e-45, 0.006),
                  row.names = c("MEST", "CDK1", "PCLAF", "BIRC5"))
dfList <- list(df1 = df1, df2 = df2)
test <- Enrichment(dfList, enrich.databases = c("GO_Cellular_Component_2021"),
                   save.results = FALSE)
## End(Not run)

Enrichment_barplot

Description

Barplot representing the top up-regulated or down-regulated significant pathways

Usage

Enrichment_barplot(
  Enrich,
  enrich.databases = c("GO_Biological_Process_2021", "GO_Cellular_Component_2021",
    "GO_Molecular_Function_2021"),
  p_adj = 0.05,
  num_term = 10,
  cond = "UP",
  plot = FALSE
)

Arguments

Enrich

A list of enrichment tables for up and down-regulated genes in the different enrichR databases. Output of Enrichment.R function for one DGE experiment.

enrich.databases

Vector of EnrichR databases to consider. These databases must be present in the Enrich list.

p_adj

Double. Minimum Adjusted pvalue threshold for the enrichment

num_term

Double. Number of up-regulated and dw-regulated terms to represent

cond

String. Title of the plot.

plot

Logical. If TRUE save plot as pdf.

Value

bar plot of significant pathways.

See Also

Other functional-annotation functions: Annotate_SPID(), Enrichment()

Other plot functions: SVenn(), Splot(), plotPCA()

Examples

## Not run: 
dbs <- c("GO_Biological_Process_2021")
dfList <- list()
dfList[["fdr_up"]]$GO_Biological_Process_2021 <- data.frame(
  Term = c("peripheral nervous system neuron differentiation (GO:0048934)",
           "apoptotic chromosome condensation (GO:0030263)",
           "negative regulation of CD4-positive, alpha-beta T cell differentiation (GO:0043371)"),
  Overlap = c("1/5", "1/5", "1/5"),
  P.value = c(0.0007498315, 0.0007498315, 0.0007498315),         
  Adjusted.P.value = c(0.00893491, 0.00893491, 0.00893491),         
  Old.P.value = c(0, 0, 0),         
  Old.Adjusted.P.value = c(0, 0, 0),         
  Odds.Ratio = c(2499.125, 2499.125, 2499.125),         
  Combined.Score = c(17982.86, 17982.86, 17982.86),         
  Genes = c("RUNX1", "TOP2A", "RUNX1")         
dfList[["fdr_down"]]$GO_Biological_Process_2021 <- data.frame(
  Term = c("skin morphogenesis (GO:0043589)",            
           "skin development (GO:0043588)",
           "collagen fibril organization (GO:0030199)"),          
  Overlap = c("2/7", "2/80", "2/89"),                   
  P.value = c(3.149296e-07, 4.727687e-05, 5.856991e-05),                                       
  Adjusted.P.value = c(1.291211e-05, 8.004554e-04, 8.004554e-04),                                                 
  Old.P.value = c(0, 0, 0),                                                           
  Old.Adjusted.P.value = c(0, 0, 0),                                                                     
  Odds.Ratio = c(7996.8000, 510.7436, 457.7011),
  Combined.Score = c(119719.427, 5086.745, 4460.430),                                                                                         
  Genes = c("COL1A1;COL1A2", "COL1A1;COL1A2", "COL1A1;COL1A2")
Enrichment_barplot(dfList, 
                   enrich.databases = dbs
                   p_adj = 0.01, num_term = 3, cond = "UP")

## End(Not run)

Download data from enrichr in the form of a named list - function from hypeR

Description

Download data from enrichr in the form of a named list - function from hypeR

Usage

enrichr_download(genesets, db = c("Enrichr"))

Arguments

genesets

A name corresponding to available genesets

db

A species

Value

A list of genesets

Examples

ATLAS <- enrichr_download("Human_Gene_Atlas")

Gene2SProtein function

Description

Detect Surface Proteins from a vector of genes. The surface proteins are identified according to the in silico human surfaceome database, available at https://wlab.ethz.ch/surfaceome.

Usage

Gene2SProtein(
  genes,
  input_type = "gene_name",
  output_tsv = FALSE,
  output_filename = "surfaceProteins.tsv",
  Surfy_version = "log"
)

Arguments

genes

A vector of genes.

input_type

The gene identification type: gene_name, ensembl, entrez or uniProt_name. By default: gene_name.

output_tsv

Logical. If TRUE, outputs a tsv file with the results. By default, FALSE.

output_filename

Name of the tsv output file. Default is surfaceProteins.tsv.

Surfy_version

The version of surfy dataframe you wish to use. Choose between log or newest. By default use the most recent log version. If a log dataframe does not exist the newest is downloaded from https://wlab.ethz.ch/surfaceome.

Value

A data frame with filtered surface proteins from the genes array. The dataframe contains also addition information obtained from surfy.

Warning

The surfy database is interrogated using the gene identification type of your preference between gene_name, ensembl, entrez or uniProt_name. Note that you might loose some matches due to different gene version IDs.

See Also

DGE for DGE analysis, https://wlab.ethz.ch/surfaceome for info on Surfy

Examples

## Not run: 
 # from gene name IDs to Surface proteins
 GeneNames <- c("CIITA", "EPCAM", "DLK1", "CD24", "CDCP1", "LYVE1", "ABCD1", "VAMP1")
 SurfaceProteins_df <- Gene2SProtein(GeneNames, input_type = "gene_name")

 # from ensembl IDs to Surface proteins
 Ensembl <- c("ENSG00000178343", "ENSG00000176895", "ENSG00000162419", "ENSG00000170776",
             "ENSG00000092529", "ENSG00000135926", "ENSG00000152595", "ENSG00000121577",
             "ENSG00000186094", "ENSG00000126773", "ENSG00000198918", "ENSG00000167378",
             "ENSG00000095574", "ENSG00000140678", "ENSG00000262484", "ENSG00000133739",
             "ENSG00000172469", "ENSG00000112992", "ENSG00000148343", "ENSG00000138593")
 SurfaceProteins_df <- Gene2SProtein(Ensembl, input_type = "ensembl",
                                   output_tsv = FALSE, Surfy_version = "new")
## End(Not run)

GEOmetadata function

Description

Download metadata from https://www.ncbi.nlm.nih.gov/geo, given an input GEO accession series.

Usage

GEOmetadata(GSE, GPL = "")

Arguments

GSE

The GSE series ID.

GPL

The GPL series numbers. Required only if the chosen GSE series ID include data from multiple sequencing platforms.

Value

A dataframe with all the available characteristics in GEO metadata genes array.

Warning

If the GEO accession series has more than 1 sequencing platforms you need to specify the GPL series numbers.

See Also

https://www.ncbi.nlm.nih.gov/geo for info on GEO repository

Other public-data functions: DownloadArchS4(), TCGA_download()

Examples

# only one sequencing platform
## Not run: 
mGSE133671 <- GEOmetadata(GSE = "GSE133671")
# multiple sequencing platforms
mGSE59483 <- GEOmetadata("GSE59483", GPL = c("GPL11154", "GPL15520"))
## End(Not run)

ind_deg

Description

Input list for metaRNAseq function made of 2 different small Deseq2 output samples dataframes for testing purposes: DEG1_df and DEG2_df.

Usage

data(ind_deg)

Format

dataframe list

Details

Each dataframe has 2 rows and 9 columns.

Value

A list of dataframes.


metadata

Description

Metadata associated with countData for testing purposes (functions DGE, plotPCA).

Usage

data(metadata)

Format

dataframe.

Details

A dataframe with 4 rows (sample names) and 3 columns (samplesID, condition A and B, therapy T1 and T2).

Value

A dataframe.


metaRNAseq function

Description

Perform Meta-Analysis of RNA-Seq Data

Usage

metaRNAseq(
  ind_deg,
  test_statistic = "fishercomb",
  BHth = 0.05,
  adjpval.t = 0.05,
  nrep = NULL,
  plot = FALSE
)

Arguments

ind_deg

List of indipendent named DEG dataframes with p-values to be combined.

test_statistic

p-value combination technique (inverse normal or Fisher): fishercomb, invnorm. By default: fishercomb.

BHth

Benjamini Hochberg threshold.

adjpval.t

threshold to represent as binary the Meta-Analysis output adjpval.

nrep

Vector of numbers of replicates used in each study to calculate the previous one-sided p-values.

plot

Logical. If TRUE plot histogram of pvalues. By default, the False Discovery Rate is controlled at 0.05.

Value

A list with DEindices of DEG at the chosen Benjamini Hochberg threshold, and TestStatistic, rawpval, adjpval, binaryadjpval vectors for differential expression in the meta-analysis.

See Also

DGE for DGE analysis, and https://cran.r-project.org/web/packages/metaRNASeq/vignettes/metaRNASeq.pdf for metaRNASeq package info.

Other meta-analysis functions: combine_fisher_invnorm()

Examples

## Not run: 
# Deseq2 output samples
DGE1 <- data.frame(GeneID = c("DLK1", "EPCAM"),
                 Mean_CPM_T = c(5.92, 9.91),
                 Mean_CPM_C = c(0.04, 0.03),
                 log2FoldChange = c(10.22, 8.42),
                 lfcSE = c(0.80, 0.48),
                 stat = c(12.68, 17.69),
                 pvalue = c(7.30135e-37, 4.37011e-70),
                 padj = c(1.49936e-35, 1.12976e-67),
                 row.names = c("DLK1", "EPCAM"))
DGE2 <- data.frame(GeneID = c("DLK1", "EPCAM"),
                 Mean_CPM_T = c(3.92, 8.91),
                 Mean_CPM_C = c(0.04, 0.03),
                 log2FoldChange = c(7.22, 5.81),
                 lfcSE = c(0.80, 0.48),
                 stat = c(12.68, 17.69),
                 pvalue = c(7.30135e-37, 4.37011e-70),
                 padj = c(1.49936e-35, 1.12976e-67),
                 row.names = c("DLK1", "EPCAM"))
# input list
ind_deg <- list(DEG1_df = DGE1, DEG2_df = DGE2)
# perform meta-analysis
comb_pval_df <- metaRNAseq(ind_deg, test_statistic = "invnorm", BHth = 0.05, nrep = c(2,2))
## End(Not run)

plotPCA function

Description

Plot PCA highlighting one or two data features

Usage

plotPCA(
  matrix,
  metadata,
  nTOP = 500,
  dims = c(1, 2),
  centering = TRUE,
  scaling = TRUE,
  color.by = NULL,
  shape.by = NULL,
  pt.size = 6,
  cols.use = NULL,
  shape.use = NULL,
  main = "PCA",
  label = FALSE,
  new.label = NULL
)

Arguments

matrix

Filtered count matrix in CPM or RPKM with gene on the row and sample ID on the column.

metadata

Sample metadata, row.names must be samples names.

nTOP

number of top genes to use for principal components, selected by highest row variance

dims

Dimensions to plot, must be a two-length numeric vector specifying x- and y-dimensions

centering

Logical. If TRUE center PCs

scaling

Logical. If TRUE scales PCs

color.by

Name of one or more metadata columns to color point by.

shape.by

Name of one or more metadata columns to shape point by. If NULL, all points are circles \(default\).

pt.size

Size of the points in the plot.

cols.use

Vector of colors, each color corresponds to an identity class. By default, ggplot assigns colors.

shape.use

Vector of shape, each shape corresponds to an identity class.

main

Plot title. Default = PCA.

label

Logical. If TRUE adds samples label. Default = FALSE.

new.label

If NULL, use the sample names as in metadata row.names. Otherwise you can specify new labels.

Value

PCA plot objec created by ggplot2, which can be assigned and further customized.

See Also

Other plot functions: Enrichment_barplot(), SVenn(), Splot()

Examples

## Not run: 
# Simulation of bulk RNA data
countData <- matrix(floor(runif(10000, min=0, max=101)),ncol=4)
colnames(countData) <- paste("sample", seq_len(ncol(countData)), sep = "")
rownames(countData) <- paste("gene", seq_along(seq_len(10000/4)), sep = "")
metadata <- data.frame(samplesID = paste("sample", seq_len(ncol(countData)), sep = ""),
                     condition = factor(c("A","A","B","B")),
                     therapy = factor(c("T1","T2","T1","T2")))
row.names(metadata) <- metadata$samplesID
library(edgeR)
SurfR::plotPCA(matrix = cpm(countData),
        metadata = metadata,
        nTOP = 100,
        dims = c(1,2),
        color.by = "condition", shape.by = "therapy",
        label = FALSE, main = "PCA")
## End(Not run)

Splot function

Description

Plot a barplot with features of Surface Protein

Usage

Splot(
  SurfaceProteins_df,
  group.by = "Membranome.Almen.main-class",
  cols.use = NULL,
  main = "Almen main class"
)

Arguments

SurfaceProteins_df

Output dataframe of Gene2SProtein function.

group.by

Name of columns to plot. Default = Membranome.Almen.main-class.

cols.use

Vector of colors, each color corresponds to an identity class. By default, ggplot assigns colors.

main

Plot title. Default = Almen main class.

Value

plot objec created by ggplot2, which can be assigned and further customized.

See Also

Other plot functions: Enrichment_barplot(), SVenn(), plotPCA()

Examples

## Not run: 
GeneNames <- c("CIITA", "EPCAM", "DLK1", "CD24", "CDCP1", "LYVE1", "ABCD1", "VAMP1")
SurfaceProteins_df <- Gene2SProtein(GeneNames, input_type = "gene_name")
Splot(SurfaceProteins_df)
## End(Not run)

SVenn

Description

Venn diagram of common surface proteins overexpressed among up to 7 different studies

Usage

SVenn(
  S_list,
  cols.use = NULL,
  opacity = 0.5,
  output_intersectionFile = TRUE,
  filename = "intersection.xlsx"
)

Arguments

S_list

A list of a maximum of 7 surface protein sets detected in different studies.

cols.use

Vector of colors, each color corresponds to a study. By default, ggplot assigns colors.

opacity

Degree of opacity for the colors specified with cols.use (less opacity, more transparency).

output_intersectionFile

logical. If TRUE (default) write an xlsx output of protein in the intersections.

filename

Name of the output file with the intersections.

Value

venn plot of common genes.

See Also

Gene2SProtein for detection of Surface proteins from a list of genes.

Other plot functions: Enrichment_barplot(), Splot(), plotPCA()

Examples

## Not run: 
S_list <- list(SP1 <- c("EPCAM", "CD24",  "DLK1",  "CDCP1", "LYVE1"),
              SP2 <- c("DLK1", "EPCAM", "EGFR", "UPK1A", "UPK2"))
SP <- SVenn(S_list, cols.use = c("pink", "yellow"), output_intersectionFile = FALSE)
## End(Not run)

TCGA_download function

Description

Downloads count matrix data from TCGA

Usage

TCGA_download(
  project,
  whichcounts = "unstranded",
  save.matrix = FALSE,
  save.metadata = FALSE,
  barcodes = NULL
)

Arguments

project

Character. A valid project from TCGAbiolinks:::getGDCprojects()$project_id

whichcounts

Character. Counts data to use. Choose from: unstranded, stranded_first,stranded_second. By default, unstranded.

save.matrix

Logical. If TRUE, outputs a tsv file with the Matrix. By default, FALSE.

save.metadata

Logical. If TRUE, outputs a tsv file with the metadata. By default, FALSE.

barcodes

Character. A vector with names of the barcodes you want to download. If NULL (default) it downloads all the available barcodes in the project.

Value

A list containing the Matrix and the metadata.

See Also

Other public-data functions: DownloadArchS4(), GEOmetadata()

Examples

## Not run: 
GBM_list_s1 <- TCGA_download(project="TCGA-GBM",
                             whichcounts = "unstranded",
                             save.matrix = FALSE, save.metadata = FALSE,
                             barcodes = c("TCGA-06-0878-01A-01R-1849-01"))
remove downloaded data from TCGA
unlink('GDCdata', recursive = TRUE, force = TRUE)
file.remove("MANIFEST.txt")

## End(Not run)