A large number of Bioconductor packages contain extensions of the
standard SummarizedExperiment
class from the SummarizedExperiment
package. This allows developers to take advantage of the power of the
SummarizedExperiment
representation for synchronising data
and metadata, while still accommodating specialized data structures for
particular scientific applications. This document is intended to provide
a developer-level “best practices” reference for the creation of these
derived classes.
To introduce various concepts, we will start off with a simple
derived class that does not add any new slots. This is occasionally
useful when additional constraints need to be placed on the derived
class. In this example, we will assume that we want our class to
minimally hold a "counts"
assay that contains non-negative
values1.
We name our new class CountSE
and define it using the
setClass
function from the methods package, as is
conventionally done for all S4 classes. We use Roxygen’s #'
tags to trigger the generation of import/export statements in the
NAMESPACE
of our package.
#' @export
#' @import methods
#' @importClassesFrom SummarizedExperiment SummarizedExperiment
.CountSE <- setClass("CountSE", contains="SummarizedExperiment")
We define a constructor that accepts a count matrix to create a
CountSE
object. We use ...
to pass further
arguments to the SummarizedExperiment
constructor, which
allows us to avoid re-specifying all its arguments.
We define a validity method that enforces the constraints that we
described earlier. This is done by defining a validity function using
setValidity2
from the S4Vectors
package2.
Returning a string indicates that there is a problem and triggers an
error in the R session.
setValidity2("CountSE", function(object) {
msg <- NULL
if (assayNames(object)[1] != "counts") {
msg <- c(msg, "'counts' must be first assay")
}
if (min(assay(object)) < 0) {
msg <- c(msg, "negative values in 'counts'")
}
if (is.null(msg)) {
TRUE
} else msg
})
## Class "CountSE" [in ".GlobalEnv"]
##
## Slots:
##
## Name: colData assays NAMES elementMetadata
## Class: DataFrame Assays_OR_NULL character_OR_NULL DataFrame
##
## Name: metadata
## Class: list
##
## Extends:
## Class "SummarizedExperiment", directly
## Class "RectangularData", by class "SummarizedExperiment", distance 2
## Class "Vector", by class "SummarizedExperiment", distance 2
## Class "Annotated", by class "SummarizedExperiment", distance 3
## Class "vector_OR_Vector", by class "SummarizedExperiment", distance 3
The constructor yields the expected output when counts are provided:
## class: CountSE
## dim: 20 5
## metadata(0):
## assays(1): counts
## rownames: NULL
## rowData names(0):
## colnames: NULL
## colData names(0):
… and an (expected) error otherwise:
## Error in validObject(.Object): invalid class "CountSE" object:
## negative values in 'counts'
A generic is a group of functions with the same name that operate on different classes. Upon calling the generic on an object, the S4 dispatch system will choose the most appropriate function to use based on the object class. This allows users and developers to write code that is agnostic to the type of input class.
Let’s say that it is of particular scientific interest to obtain the
counts with a flipped sign. We observe that there are no existing
generics that do this task, e.g., in BiocGenerics
or S4Vectors3. Instead,
we define a new generic negcounts
:
## [1] "negcounts"
We then define a specific method for our CountSE
class4:
#' @export
#' @importFrom SummarizedExperiment assay
setMethod("negcounts", "CountSE", function(x, withDimnames=TRUE) {
-assay(x, withDimnames=withDimnames)
})
If any other developers need to compute negative counts for their own
classes, they can simply use the negcounts
generic defined
in our package.
It is convention to put all class definitions (i.e., the
setClass
statement) in a file named
AllClasses.R
, all new generic definitions in a file named
AllGenerics.R
, and all method definitions in files that are
alphanumerically ordered below the first two. This is because R collates
files by alphanumeric order when building a package. It is critical that
the collation (and definition) of the classes and generics occurs
before that of the corresponding methods, otherwise
errors will occur. If alphanumeric ordering is inappropriate, developers
can manually specify the collation order using Collate:
in
the DESCRIPTION
file - see Writing
R Extensions for more details.
In practice, most derived classes will need to store application-specific data structures. For the rest of this document, we will be considering the derivation of a class with custom slots to hold such structures. First, we consider 1D data structures:
rowVec
: 1:1 mapping from each value to a row of the
SummarizedExperiment
.colVec
: 1:1 mapping from each value to a column of the
SummarizedExperiment
.Any 1D structure can be used if it supports length
,
c
, [
and [<-
. For simplicity,
we will use integer vectors for the *.vec
slots.
We also consider some 2D data structures:
rowToRowMat
: 1:1 mapping from each row to a row of the
SummarizedExperiment
.colToColMat
: 1:1 mapping from each column to a column
of the SummarizedExperiment
.rowToColMat
: 1:1 mapping from each row to a column of
the SummarizedExperiment
.colToRowMat
: 1:1 mapping from each column to a row of
the SummarizedExperiment
.Any 2D structure can be used if it supports nrow
,
ncol
, cbind
, rbind
,
[
and [<-
. For simplicity, we will use
(numeric) matrices for the *.mat
slots.
Definition of the class is achieved using setClass
,
using the slots=
argument to specify the new custom slots5.
#' @export
#' @import methods
#' @importClassesFrom SummarizedExperiment SummarizedExperiment
.ExampleClass <- setClass("ExampleClass",
slots= representation(
rowVec="integer",
colVec="integer",
rowToRowMat="matrix",
colToColMat="matrix",
rowToColMat="matrix",
colToRowMat="matrix"
),
contains="SummarizedExperiment"
)
The constructor should provide some arguments for setting the new
slots in the derived class definition. The default values should be set
such that calling the constructor without any arguments returns a valid
ExampleClass
object.
#' @export
#' @importFrom SummarizedExperiment SummarizedExperiment
ExampleClass <- function(
rowVec=integer(0),
colVec=integer(0),
rowToRowMat=matrix(0,0,0),
colToColMat=matrix(0,0,0),
rowToColMat=matrix(0,0,0),
colToRowMat=matrix(0,0,0),
...)
{
se <- SummarizedExperiment(...)
.ExampleClass(se, rowVec=rowVec, colVec=colVec,
rowToRowMat=rowToRowMat, colToColMat=colToColMat,
rowToColMat=rowToColMat, colToRowMat=colToRowMat)
}
We define some getter generics for the custom slots containing the 1D structures.
## [1] "rowVec"
## [1] "colVec"
We then define the class-specific methods for these generics. Note
the withDimnames=TRUE
argument, which enforces consistency
between the names of the extracted object and the original
SummarizedExperiment
. It is possible to turn this off for
greater efficiency, e.g., for internal usage where names are not
necessary.
We repeat this process for the 2D structures.
## [1] "rowToRowMat"
## [1] "colToColMat"
## [1] "rowToColMat"
## [1] "colToRowMat"
Again, we define class-specific methods for these generics.
#' @export
setMethod("rowToRowMat", "ExampleClass", function(x, withDimnames=TRUE) {
out <- x@rowToRowMat
if (withDimnames)
rownames(out) <- rownames(x)
out
})
#' @export
setMethod("colToColMat", "ExampleClass", function(x, withDimnames=TRUE) {
out <- x@colToColMat
if (withDimnames)
colnames(out) <- colnames(x)
out
})
#' @export
setMethod("rowToColMat", "ExampleClass", function(x, withDimnames=TRUE) {
out <- x@rowToColMat
if (withDimnames)
rownames(out) <- colnames(x)
out
})
#' @export
setMethod("colToRowMat", "ExampleClass", function(x, withDimnames=TRUE) {
out <- x@colToRowMat
if (withDimnames)
colnames(out) <- rownames(x)
out
})
SummarizedExperiment
slotsThe getter methods defined in SummarizedExperiment
can be directly used to retrieve data from slots in the base class.
These should generally not require any re-defining for a derived class.
However, if it is necessary, the methods should use
callNextMethod
internally. This will call the method for
the base SummarizedExperiment
class, the output of which
can be modified as required.
We use setValidity2
to define a validity function for
ExampleClass
. We use the previously defined getter
functions to retrieve the slot values rather than using @
.
This is generally a good idea to keep the interface separate from the
implementation6. We also set
withDimnames=FALSE
in our getter calls, as consistent
naming is not necessary for internal functions.
#' @importFrom BiocGenerics NCOL NROW
setValidity2("ExampleClass", function(object) {
NR <- NROW(object)
NC <- NCOL(object)
msg <- NULL
# 1D
if (length(rowVec(object, withDimnames=FALSE)) != NR) {
msg <- c(msg, "'rowVec' should have length equal to the number of rows")
}
if (length(colVec(object, withDimnames=FALSE)) != NC) {
msg <- c(
msg, "'colVec' should have length equal to the number of columns"
)
}
# 2D
if (NROW(rowToRowMat(object, withDimnames=FALSE)) != NR) {
msg <- c(
msg, "'nrow(rowToRowMat)' should be equal to the number of rows"
)
}
if (NCOL(colToColMat(object, withDimnames=FALSE)) != NC) {
msg <- c(
msg, "'ncol(colToColMat)' should be equal to the number of columns"
)
}
if (NROW(rowToColMat(object, withDimnames=FALSE)) != NC) {
msg <- c(
msg, "'nrow(rowToColMat)' should be equal to the number of columns"
)
}
if (NCOL(colToRowMat(object, withDimnames=FALSE)) != NR) {
msg <- c(
msg, "'ncol(colToRowMat)' should be equal to the number of rows"
)
}
if (length(msg)) {
msg
} else TRUE
})
## Class "ExampleClass" [in ".GlobalEnv"]
##
## Slots:
##
## Name: rowVec colVec rowToRowMat colToColMat
## Class: integer integer matrix matrix
##
## Name: rowToColMat colToRowMat colData assays
## Class: matrix matrix DataFrame Assays_OR_NULL
##
## Name: NAMES elementMetadata metadata
## Class: character_OR_NULL DataFrame list
##
## Extends:
## Class "SummarizedExperiment", directly
## Class "RectangularData", by class "SummarizedExperiment", distance 2
## Class "Vector", by class "SummarizedExperiment", distance 2
## Class "Annotated", by class "SummarizedExperiment", distance 3
## Class "vector_OR_Vector", by class "SummarizedExperiment", distance 3
We use the NCOL
and NROW
methods from BiocGenerics
as these support various Bioconductor objects, whereas the base methods
do not.
show
methodThe default show
method will only display information
about the SummarizedExperiment
slots. We can augment it to
display some relevant aspects of the custom slots. This is done by
calling the base show
method before printing additional
fields as necessary.
#' @export
#' @importMethodsFrom SummarizedExperiment show
setMethod("show", "ExampleClass", function(object) {
callNextMethod()
cat(
"rowToRowMat has ", ncol(rowToRowMat(object)), " columns\n",
"colToColMat has ", nrow(colToColMat(object)), " rows\n",
"rowToColMat has ", ncol(rowToRowMat(object)), " columns\n",
"colToRowMat has ", ncol(rowToRowMat(object)), " rows\n",
sep=""
)
})
We define some setter methods for the custom slots containing the 1D structures. Again, this usually requires the creation of new generics.
## [1] "rowVec<-"
## [1] "colVec<-"
We define the class-specific methods for these generics. Note that
use of validObject
to ensure that the assigned input is
still valid.
We repeat this process for the 2D structures.
## [1] "rowToRowMat<-"
## [1] "colToColMat<-"
## [1] "rowToColMat<-"
## [1] "colToRowMat<-"
Again, we define class-specific methods for these generics.
#' @export
setReplaceMethod("rowToRowMat", "ExampleClass", function(x, value) {
x@rowToRowMat <- value
validObject(x)
x
})
#' @export
setReplaceMethod("colToColMat", "ExampleClass", function(x, value) {
x@colToColMat <- value
validObject(x)
x
})
#' @export
setReplaceMethod("rowToColMat", "ExampleClass", function(x, value) {
x@rowToColMat <- value
validObject(x)
x
})
#' @export
setReplaceMethod("colToRowMat", "ExampleClass", function(x, value) {
x@colToRowMat <- value
validObject(x)
x
})
SummarizedExperiment
slotsAgain, we can use the setter methods defined in SummarizedExperiment
to modify slots in the base class. These should generally not require
any re-defining. However, if it is necessary, the methods should use
callNextMethod
internally:
Imagine that we want to write a function that returns a modified
ExampleClass
, e.g., where the signs of the
*.vec
fields are reversed. For example, we will pretend
that we want to write a normalize
function, using the
generic from BiocGenerics.
#' @export
#' @importFrom BiocGenerics normalize
setMethod("normalize", "ExampleClass", function(object) {
# do something exciting, i.e., flip the signs
new.row <- -rowVec(object, withDimnames=FALSE)
new.col <- -colVec(object, withDimnames=FALSE)
BiocGenerics:::replaceSlots(object, rowVec=new.row,
colVec=new.col, check=FALSE)
})
We use BiocGenerics:::replaceSlots
instead of the setter
methods that we defined above. This is because our setters perform
validity checks that are unnecessary if we know that the modification
cannot alter the validity of the object. The replaceSlots
function allows us to skip these validity checks
(check=FALSE
) for greater efficiency.
A key strength of the SummarizedExperiment
class is that
subsetting is synchronized across the various (meta)data fields. This
avoids book-keeping errors and guarantees consistency throughout an
interactive analysis session. We need to ensure that the values in our
custom slots are also subsetted.
#' @export
setMethod("[", "ExampleClass", function(x, i, j, drop=TRUE) {
rv <- rowVec(x, withDimnames=FALSE)
cv <- colVec(x, withDimnames=FALSE)
rrm <- rowToRowMat(x, withDimnames=FALSE)
ccm <- colToColMat(x, withDimnames=FALSE)
rcm <- rowToColMat(x, withDimnames=FALSE)
crm <- colToRowMat(x, withDimnames=FALSE)
if (!missing(i)) {
if (is.character(i)) {
fmt <- paste0("<", class(x), ">[i,] index out of bounds: %s")
i <- SummarizedExperiment:::.SummarizedExperiment.charbound(
i, rownames(x), fmt
)
}
i <- as.vector(i)
rv <- rv[i]
rrm <- rrm[i,,drop=FALSE]
crm <- crm[,i,drop=FALSE]
}
if (!missing(j)) {
if (is.character(j)) {
fmt <- paste0("<", class(x), ">[,j] index out of bounds: %s")
j <- SummarizedExperiment:::.SummarizedExperiment.charbound(
j, colnames(x), fmt
)
}
j <- as.vector(j)
cv <- cv[j]
ccm <- ccm[,j,drop=FALSE]
rcm <- rcm[j,,drop=FALSE]
}
out <- callNextMethod()
BiocGenerics:::replaceSlots(out, rowVec=rv, colVec=cv,
rowToRowMat=rrm, colToColMat=ccm,
rowToColMat=rcm, colToRowMat=crm, check=FALSE)
})
Note the special code for handling character indices, and the use of
callNextMethod
to subset the base
SummarizedExperiment
slots.
Subset assignment can be similarly performed, though the signature needs to be specified so that the replacement value is of the same class. This is generally necessary for sensible replacement of the custom slots.
#' @export
setReplaceMethod("[", c("ExampleClass", "ANY", "ANY", "ExampleClass"),
function(x, i, j, ..., value) {
rv <- rowVec(x, withDimnames=FALSE)
cv <- colVec(x, withDimnames=FALSE)
rrm <- rowToRowMat(x, withDimnames=FALSE)
ccm <- colToColMat(x, withDimnames=FALSE)
rcm <- rowToColMat(x, withDimnames=FALSE)
crm <- colToRowMat(x, withDimnames=FALSE)
if (!missing(i)) {
if (is.character(i)) {
fmt <- paste0("<", class(x), ">[i,] index out of bounds: %s")
i <- SummarizedExperiment:::.SummarizedExperiment.charbound(
i, rownames(x), fmt
)
}
i <- as.vector(i)
rv[i] <- rowVec(value, withDimnames=FALSE)
rrm[i,] <- rowToRowMat(value, withDimnames=FALSE)
crm[,i] <- colToRowMat(value, withDimnames=FALSE)
}
if (!missing(j)) {
if (is.character(j)) {
fmt <- paste0("<", class(x), ">[,j] index out of bounds: %s")
j <- SummarizedExperiment:::.SummarizedExperiment.charbound(
j, colnames(x), fmt
)
}
j <- as.vector(j)
cv[j] <- colVec(value, withDimnames=FALSE)
ccm[,j] <- colToColMat(value, withDimnames=FALSE)
rcm[j,] <- rowToColMat(value, withDimnames=FALSE)
}
out <- callNextMethod()
BiocGenerics:::replaceSlots(out, rowVec=rv, colVec=cv,
rowToRowMat=rrm, colToColMat=ccm,
rowToColMat=rcm, colToRowMat=crm, check=FALSE)
})
We need to define a rbind
method for our custom class.
This is done by combining the custom per-row slots across class
instances.
#' @export
setMethod("rbind", "ExampleClass", function(..., deparse.level=1) {
args <- list(...)
all.rv <- lapply(args, rowVec, withDimnames=FALSE)
all.rrm <- lapply(args, rowToRowMat, withDimnames=FALSE)
all.crm <- lapply(args, colToRowMat, withDimnames=FALSE)
all.rv <- do.call(c, all.rv)
all.rrm <- do.call(rbind, all.rrm)
all.crm <- do.call(cbind, all.crm)
# Checks for identical column state.
ref <- args[[1]]
ref.cv <- colVec(ref, withDimnames=FALSE)
ref.ccm <- colToColMat(ref, withDimnames=FALSE)
ref.rcm <- rowToColMat(ref, withDimnames=FALSE)
for (x in args[-1]) {
if (!identical(ref.cv, colVec(x, withDimnames=FALSE))
|| !identical(ref.ccm, colToColMat(x, withDimnames=FALSE))
|| !identical(ref.rcm, rowToColMat(x, withDimnames=FALSE)))
{
stop("per-column values are not compatible")
}
}
old.validity <- S4Vectors:::disableValidity()
S4Vectors:::disableValidity(TRUE)
on.exit(S4Vectors:::disableValidity(old.validity))
out <- callNextMethod()
BiocGenerics:::replaceSlots(out, rowVec=all.rv,
rowToRowMat=all.rrm, colToRowMat=all.crm,
check=FALSE)
})
We check the other per-column slots across all elements to ensure that they are the same. This protects the user against combining incompatible objects. However, depending on the application, this may not be necessary (or too costly) for all slots, in which case it can be limited to critical slots.
We also use the disableValidity
method to avoid the
validity check in the base cbind
method. This is because
the object is technically invalid when the base slots are combined but
before it is updated with the new combined values for the custom slots.
The on.exit
call ensures that the original validity setting
is restored upon exit of the function.
We similarly define a cbind
method to handle the custom
slots.
#' @export
setMethod("cbind", "ExampleClass", function(..., deparse.level=1) {
args <- list(...)
all.cv <- lapply(args, colVec, withDimnames=FALSE)
all.ccm <- lapply(args, colToColMat, withDimnames=FALSE)
all.rcm <- lapply(args, rowToColMat, withDimnames=FALSE)
all.cv <- do.call(c, all.cv)
all.ccm <- do.call(cbind, all.ccm)
all.rcm <- do.call(rbind, all.rcm)
# Checks for identical column state.
ref <- args[[1]]
ref.rv <- rowVec(ref, withDimnames=FALSE)
ref.rrm <- rowToRowMat(ref, withDimnames=FALSE)
ref.crm <- colToRowMat(ref, withDimnames=FALSE)
for (x in args[-1]) {
if (!identical(ref.rv, rowVec(x, withDimnames=FALSE))
|| !identical(ref.rrm, rowToRowMat(x, withDimnames=FALSE))
|| !identical(ref.crm, colToRowMat(x, withDimnames=FALSE)))
{
stop("per-row values are not compatible")
}
}
old.validity <- S4Vectors:::disableValidity()
S4Vectors:::disableValidity(TRUE)
on.exit(S4Vectors:::disableValidity(old.validity))
out <- callNextMethod()
BiocGenerics:::replaceSlots(out, colVec=all.cv,
colToColMat=all.ccm, rowToColMat=all.rcm,
check=FALSE)
})
SummarizedExperiment
We define a method to coerce SummarizedExperiment
objects into our new ExampleClass
class.
#' @exportMethods coerce
setAs("SummarizedExperiment", "ExampleClass", function(from) {
new("ExampleClass", from,
rowVec=integer(nrow(from)),
colVec=integer(ncol(from)),
rowToRowMat=matrix(0,nrow(from),0),
colToColMat=matrix(0,0,ncol(from)),
rowToColMat=matrix(0,ncol(from),0),
colToRowMat=matrix(0,0,nrow(from)))
})
… which works as expected:
## class: CountSE
## dim: 20 5
## metadata(0):
## assays(1): ''
## rownames: NULL
## rowData names(0):
## colnames: NULL
## colData names(0):
This was not strictly necessary for our previous CountSE
class as no new slots were added. Of course, developers can still
explicitly write a conversion method perform additional work to achieve
a “sensible” conversion - for example, one might take the absolute
values of all entries of the first matrix to ensure that the
CountSE
is valid for all input
SummarizedExperiment
objects.
RangedSummarizedExperiment
Note that, if we were deriving from a
RangedSummarizedExperiment
(e.g., for some
ExampleClassRanged
), it would be necessary to define
explicit conversions from both RangedSummarizedExperiment
and SummarizedExperment
to
ExampleClassRanged
. In theory, we should only have to
define a conversion from RangedSummarizedExperiment
to
ExampleClassRanged
- then, any attempt to convert from a
SummarizedExperiment
to ExampleClassRanged
would:
SummarizedExperiment
to
RangedSummarizedExperiment
converter defined in SummarizedExperiment,
and thenRangedSummarizedExperiment
to
ExampleClassRanged
converter that we just defined.Unfortunately, in cases involving conversion to non-direct
subclasses, the S4 system automatically creates methods for any
conversions that are not explicitly defined. This means that the correct
“chain” of methods listed above is not used when converting from a
SummarizedExperiment
to a ExampleClassRanged
object. The automatically generated method is used instead, which may
not yield a valid object when the specifics of the conversion are
ignored. We avoid this scenario by explicitly defining converters for
both SummarizedExperiment
and
RangedSummarizedExperiment
to
ExampleClassRanged
.
We test our new methods using the expect_*
functions
from the testthat package.
Each function will test an expression and will raise an error if the
output is not as expected. This can be used to construct unit tests for
the tests/
subdirectory of the package. Unit testing
ensures that the methods behave as expected, especially after any
refactoring that may be performed in the future.
For testing, we will construct an instance of
ExampleClass
that has 10 rows and 7 columns:
RV <- 1:10
CV <- sample(50, 7)
RRM <- matrix(runif(30), nrow=10)
CCM <- matrix(rnorm(14), ncol=7)
RCM <- matrix(runif(21), nrow=7)
CRM <- matrix(rnorm(20), ncol=10)
thing <- ExampleClass(rowVec=RV, colVec=CV,
rowToRowMat=RRM, colToColMat=CCM,
rowToColMat=RCM, colToRowMat=CRM,
assays=list(counts=matrix(rnorm(70), nrow=10)),
colData=DataFrame(whee=LETTERS[1:7]),
rowData=DataFrame(yay=letters[1:10])
)
We will also add some row and column names, which will come in handy later.
rownames(thing) <- paste0("FEATURE_", seq_len(nrow(thing)))
colnames(thing) <- paste0("SAMPLE_", seq_len(ncol(thing)))
thing
## class: ExampleClass
## dim: 10 7
## metadata(0):
## assays(1): counts
## rownames(10): FEATURE_1 FEATURE_2 ... FEATURE_9 FEATURE_10
## rowData names(2): yay extra
## colnames(7): SAMPLE_1 SAMPLE_2 ... SAMPLE_6 SAMPLE_7
## colData names(1): whee
## rowToRowMat has 3 columns
## colToColMat has 2 rows
## rowToColMat has 3 columns
## colToRowMat has 3 rows
We test that the thing
object we constructed is
valid:
Another useful set of unit tests involves checking that the default constructors (internal and exported) yield valid objects:
expect_true(validObject(.ExampleClass())) # internal
expect_true(validObject(ExampleClass())) # exported
We can also verify that the validity method fails on invalid objects:
expect_error(ExampleClass(rowVec=1), "rowVec")
expect_error(ExampleClass(colVec=1), "colVec")
expect_error(ExampleClass(rowToRowMat=rbind(1)), "rowToRowMat")
expect_error(ExampleClass(colToColMat=rbind(1)), "colToColMat")
expect_error(ExampleClass(rowToColMat=rbind(1)), "rowToColMat")
expect_error(ExampleClass(colToRowMat=rbind(1)), "colToRowMat")
Finally, we check that the coercion method yields a valid object.
Testing the 1D getter methods:
expect_identical(names(rowVec(thing)), rownames(thing))
expect_identical(rowVec(thing, withDimnames=FALSE), RV)
expect_identical(names(colVec(thing)), colnames(thing))
expect_identical(colVec(thing, withDimnames=FALSE), CV)
Testing the 2D getter methods:
expect_identical(rowToRowMat(thing, withDimnames=FALSE), RRM)
expect_identical(rownames(rowToRowMat(thing)), rownames(thing))
expect_identical(colToColMat(thing, withDimnames=FALSE), CCM)
expect_identical(colnames(colToColMat(thing)), colnames(thing))
expect_identical(rowToColMat(thing, withDimnames=FALSE), RCM)
expect_identical(rownames(rowToColMat(thing)), colnames(thing))
expect_identical(colToRowMat(thing, withDimnames=FALSE), CRM)
expect_identical(colnames(colToRowMat(thing)), rownames(thing))
Testing the custom rowData
method:
Testing the 1D setter methods:
rowVec(thing) <- 0:9
expect_equivalent(rowVec(thing), 0:9)
colVec(thing) <- 7:1
expect_equivalent(colVec(thing), 7:1)
Testing the 2D setter methods:
old <- rowToRowMat(thing)
rowToRowMat(thing) <- -old
expect_equivalent(rowToRowMat(thing), -old)
old <- colToColMat(thing)
colToColMat(thing) <- 2 * old
expect_equivalent(colToColMat(thing), 2 * old)
old <- rowToColMat(thing)
rowToColMat(thing) <- old + 1
expect_equivalent(rowToColMat(thing), old + 1)
old <- colToRowMat(thing)
colToRowMat(thing) <- old / 10
expect_equivalent(colToRowMat(thing), old / 10)
Testing our custom rowData<-
method:
We ensure that we can successfully trigger errors on the validity method:
expect_error(rowVec(thing) <- 0, "rowVec")
expect_error(colVec(thing) <- 0, "colVec")
expect_error(rowToRowMat(thing) <- rbind(0), "rowToRowMat")
expect_error(colToColMat(thing) <- rbind(0), "colToColMat")
expect_error(rowToColMat(thing) <- rbind(0), "rowToColMat")
expect_error(colToRowMat(thing) <- rbind(0), "colToRowMat")
We test our new normalize
method:
Subsetting by row:
subbyrow <- thing[1:5,]
expect_identical(rowVec(subbyrow), rowVec(thing)[1:5])
expect_identical(rowToRowMat(subbyrow), rowToRowMat(thing)[1:5,])
expect_identical(colToRowMat(subbyrow), colToRowMat(thing)[,1:5])
# columns unaffected...
expect_identical(colVec(subbyrow), colVec(thing))
expect_identical(colToColMat(subbyrow), colToColMat(thing))
expect_identical(rowToColMat(subbyrow), rowToColMat(thing))
Subsetting by column:
subbycol <- thing[,1:2]
expect_identical(colVec(subbycol), colVec(thing)[1:2])
expect_identical(colToColMat(subbycol), colToColMat(thing)[,1:2])
expect_identical(rowToColMat(subbycol), rowToColMat(thing)[1:2,])
# rows unaffected...
expect_identical(rowVec(subbycol), rowVec(thing))
expect_identical(rowToRowMat(subbycol), rowToRowMat(thing))
expect_identical(colToRowMat(subbycol), colToRowMat(thing))
Checking that subsetting to create an empty object is possible:
norow <- thing[0,]
expect_true(validObject(norow))
expect_identical(nrow(norow), 0L)
nocol <- thing[,0]
expect_true(validObject(nocol))
expect_identical(ncol(nocol), 0L)
Subset assignment:
modified <- thing
modified[1:5,1:2] <- thing[5:1,2:1]
rperm <- c(5:1, 6:nrow(thing))
expect_identical(rowVec(modified), rowVec(thing)[rperm])
expect_identical(rowToRowMat(modified), rowToRowMat(thing)[rperm,])
expect_identical(colToRowMat(modified), colToRowMat(thing)[,rperm])
cperm <- c(2:1, 3:ncol(thing))
expect_identical(colVec(modified), colVec(thing)[cperm])
expect_identical(colToColMat(modified), colToColMat(thing)[,cperm])
expect_identical(rowToColMat(modified), rowToColMat(thing)[cperm,])
Checking that we obtain the same object after trivial assignment operations:
modified <- thing
modified[0,] <- thing[0,]
expect_equal(modified, thing)
modified[1,] <- thing[1,]
expect_equal(modified, thing)
modified[,0] <- thing[,0]
expect_equal(modified, thing)
modified[,1] <- thing[,1]
expect_equal(modified, thing)
We double-check that we can get an error upon invalid assignment:
Combining by row:
combined <- rbind(thing, thing)
rtwice <- rep(seq_len(nrow(thing)), 2)
expect_identical(rowVec(combined), rowVec(thing)[rtwice])
expect_identical(rowToRowMat(combined), rowToRowMat(thing)[rtwice,])
expect_identical(colToRowMat(combined), colToRowMat(thing)[,rtwice])
# Columns are unaffected:
expect_identical(colVec(combined), colVec(thing))
expect_identical(colToColMat(combined), colToColMat(thing))
expect_identical(rowToColMat(combined), rowToColMat(thing))
And combining by column. We use test_equivalent
here for
simplicity, as column names are altered to preserve uniqueness.
combined <- cbind(thing, thing)
ctwice <- rep(seq_len(ncol(thing)), 2)
expect_equivalent(colVec(combined), colVec(thing)[ctwice])
expect_equivalent(colToColMat(combined), colToColMat(thing)[,ctwice])
expect_equivalent(rowToColMat(combined), rowToColMat(thing)[ctwice,])
# Rows are unaffected:
expect_equivalent(rowVec(combined), rowVec(thing))
expect_equivalent(rowToRowMat(combined), rowToRowMat(thing))
expect_equivalent(colToRowMat(combined), colToRowMat(thing))
Checking that we get the same object if we combine a single object or an empty object:
expect_equal(thing, rbind(thing))
expect_equal(thing, rbind(thing, thing[0,]))
expect_equal(thing, cbind(thing))
expect_equal(thing, cbind(thing, thing[,0]))
And checking that the compatibility errors are properly thrown:
We suggest creating at least two separate documentation
(i.e. *.Rd
) files. The first file would document the class
and the constructor:
\name{ExampleClass class}
\alias{ExampleClass-class}
\alias{ExampleClass}
\title{The ExampleClass class}
\description{An overview of the ExampleClass class and constructor.}
\usage{
ExampleClass(rowVec=integer(0), colVec=integer(0),
# etc., etc., I won't write it all out here.
)
}
\arguments{
\item{rowVec}{An integer vector mapping to the rows, representing
something important.}
\item{colVec}{An integer vector mapping to the columns, representing
something else that's important.}
% And so on...
}
\details{
% Some context on why this class and its slots are necessary.
The ExampleClass provides an example of how to derive from the
SummarizedExperiment class. Its slots have no scientific meaning and
are purely for demonstration purposes.
}
The second file would document all of the individual methods:
\name{ExampleClass methods}
% New generics:
\alias{rowVec}
\alias{rowVec,ExampleClass-method}
\alias{rowVec<-}
\alias{rowVec<-,ExampleClass-method}
%% And so on...
% Already have a generic:
\alias{[,ExampleClass-method}
\alias{[,ExampleClass,ANY-method}
\alias{[,ExampleClass,ANY,ANY-method}
\alias{rbind,ExampleClass-method}
%% And so on...
\title{ExampleClass methods}
\description{Methods for the ExampleClass class.}
\usage{
\S4method{rowVec}{ExampleClass}(x, withDimnames=FALSE)
\S4method{rowVec}{ExampleClass}(x) <- value
\S4method{[}{ExampleClass}(x, i, j, drop=TRUE)
\S4method{rbind}{ExampleClass}(..., , i, j, drop=TRUE)
%% And so on...
}
\arguments{
\item{x}{An ExampleClass object.}
\item{withDimnames}{A logical scalar indicating whether dimension names
from \code{x} should be returned.}
\item{value}{
For \code{rowVec}, an integer vector of length equal to the number of
rows.
For \code{colVec}, an integer vector of length equal to the number of
columns.
}
%% And so on...
}
\section{Accessors}{
% Add some details about accessor behaviour here.
}
\section{Subsetting}{
% Add some details about subsetting behaviour here.
}
\section{Combining}{
% Add some details about combining behaviour here.
}
## R version 4.4.2 (2024-10-31)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.1 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so; LAPACK version 3.12.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: Etc/UTC
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] testthat_3.2.1.1 SummarizedExperiment_1.37.0
## [3] Biobase_2.67.0 GenomicRanges_1.59.1
## [5] GenomeInfoDb_1.43.1 IRanges_2.41.1
## [7] S4Vectors_0.45.2 BiocGenerics_0.53.3
## [9] generics_0.1.3 MatrixGenerics_1.19.0
## [11] matrixStats_1.4.1 BiocStyle_2.35.0
##
## loaded via a namespace (and not attached):
## [1] sass_0.4.9 SparseArray_1.7.2 lattice_0.22-6
## [4] digest_0.6.37 magrittr_2.0.3 evaluate_1.0.1
## [7] grid_4.4.2 pkgload_1.4.0 fastmap_1.2.0
## [10] rprojroot_2.0.4 jsonlite_1.8.9 Matrix_1.7-1
## [13] brio_1.1.5 BiocManager_1.30.25 httr_1.4.7
## [16] UCSC.utils_1.3.0 jquerylib_0.1.4 abind_1.4-8
## [19] cli_3.6.3 rlang_1.1.4 crayon_1.5.3
## [22] XVector_0.47.0 withr_3.0.2 cachem_1.1.0
## [25] DelayedArray_0.33.2 yaml_2.3.10 S4Arrays_1.7.1
## [28] tools_4.4.2 GenomeInfoDbData_1.2.13 buildtools_1.0.0
## [31] R6_2.5.1 lifecycle_1.0.4 zlibbioc_1.52.0
## [34] waldo_0.6.1 desc_1.4.3 bslib_0.8.0
## [37] xfun_0.49 sys_3.4.3 knitr_1.49
## [40] htmltools_0.5.8.1 rmarkdown_2.29 maketools_1.3.1
## [43] compiler_4.4.2
For simplicity’s sake, we won’t worry about enforcing integer type, as fractional values are possible, e.g., when dealing with expected counts.↩︎
This allows us to turn off the validity checks in internal functions where intermediate objects may not be valid within the scope of the function.↩︎
If you have an idea for a generally applicable generic that is not yet available, please contact the Bioconductor core team.↩︎
The ...
in the generic function definition
means that custom arguments like withDimnames=
can be
provided for specific methods, if necessary.↩︎
It does no harm to repeat the Roxygen tags, which explicitly specifies the imports required for each class and function.↩︎
This protects against changes to the slot names, and simplifies development when the storage mode differs from the conceptual meaning of the data, e.g., for efficiency purposes.↩︎