StabMap: Stabilised mosaic single cell data integration using unshared features

library(StabMap)
library(magrittr)

library(scater)
library(scran)
library(SingleCellMultiModal)
library(gridExtra)
set.seed(2024)

Introduction

StabMap is a technique for performing mosaic single cell data integration. Mosaic data integration presents the challenge of integration of data where only some features or cells are shared across datasets. For example, these challenges arise when integrating single-cell datasets that measure different molecular profiles, such as chromatin accessibility or RNA expression assays. Integrative analysis of such data may provide a more in-depth profile of each cell, facilitating downstream analysis. To read more about StabMap please see our paper on Nature Biotechnology.

Vignette Goals

In this vignette we will elaborate on how mosaic single cell data integration is implemented in the StabMap package. We address a few key goals:

  • Mosaic Data integration for 2 datasets

  • Demonstrating cell imputation following integration

  • Indirect mosaic data integration for 3 datasets, including 2 non-overlapping datasets

Load data

In this tutorial we will work with a multi-assay single cell dataset, consisting of ATAC and gene expression data for 10,032 cells.

mae <- scMultiome(
  "pbmc_10x",
  mode = "*", dry.run = FALSE, format = "MTX", verbose = TRUE
)

Perform some exploration of this data.

mae
## A MultiAssayExperiment object of 2 listed
##  experiments with user-defined names and respective classes.
##  Containing an ExperimentList class object of length 2:
##  [1] atac: SingleCellExperiment with 108344 rows and 10032 columns
##  [2] rna: SingleCellExperiment with 36549 rows and 10032 columns
## Functionality:
##  experiments() - obtain the ExperimentList instance
##  colData() - the primary/phenotype DataFrame
##  sampleMap() - the sample coordination DataFrame
##  `$`, `[`, `[[` - extract colData columns, subset, or experiment
##  *Format() - convert into a long or wide DataFrame
##  assays() - convert ExperimentList to a SimpleList of matrices
##  exportClass() - save data to flat files
upsetSamples(mae)

head(colData(mae))
## DataFrame with 6 rows and 6 columns
##                  nCount_RNA nFeature_RNA nCount_ATAC nFeature_ATAC
##                   <integer>    <integer>   <integer>     <integer>
## AAACAGCCAAGGAATC       8380         3308       55582         13878
## AAACAGCCAATCCCTT       3771         1896       20495          7253
## AAACAGCCAATGCGCT       6876         2904       16674          6528
## AAACAGCCAGTAGGTG       7614         3061       39454         11633
## AAACAGCCAGTTTACG       3633         1691       20523          7245
## AAACAGCCATCCAGGT       7782         3028       22412          8602
##                                celltype broad_celltype
##                             <character>    <character>
## AAACAGCCAAGGAATC      naive CD4 T cells       Lymphoid
## AAACAGCCAATCCCTT     memory CD4 T cells       Lymphoid
## AAACAGCCAATGCGCT      naive CD4 T cells       Lymphoid
## AAACAGCCAGTAGGTG      naive CD4 T cells       Lymphoid
## AAACAGCCAGTTTACG     memory CD4 T cells       Lymphoid
## AAACAGCCATCCAGGT non-classical monocy..        Myeloid
dim(experiments(mae)[["rna"]])
## [1] 36549 10032
names(experiments(mae))
## [1] "atac" "rna"

Keep the first 2,000 cells only. Normalise and select variable features for the RNA modality.

sce.rna <- experiments(mae)[["rna"]]

# Normalisation
sce.rna <- logNormCounts(sce.rna)

# Feature selection
decomp <- modelGeneVar(sce.rna)
hvgs <- rownames(decomp)[decomp$mean > 0.01 & decomp$p.value <= 0.05]

length(hvgs)
## [1] 952
sce.rna <- sce.rna[hvgs, ]

Keep the first 2,000 cells only. Normalise and select variable features for the ATAC modality.

dim(experiments(mae)[["atac"]])
## [1] 108344  10032
sce.atac <- experiments(mae)[["atac"]]

# Normalise
sce.atac <- logNormCounts(sce.atac)

# Feature selection using highly variable peaks
# And adding matching peaks to genes
decomp <- modelGeneVar(sce.atac)
hvgs <- rownames(decomp)[decomp$mean > 0.25 &
  decomp$p.value <= 0.05]
length(hvgs)
## [1] 788
sce.atac <- sce.atac[hvgs, ]

Create a composite full data matrix by concatenating.

logcounts_all <- rbind(logcounts(sce.rna), logcounts(sce.atac))
dim(logcounts_all)
## [1]  1740 10032
assayType <- ifelse(rownames(logcounts_all) %in% rownames(sce.rna),
  "rna", "atac"
)
table(assayType)
## assayType
## atac  rna 
##  788  952

Mosaic data integration with StabMap

We will simulate a situation where half of the cells correspond to the Multiome (RNA + ATAC features) modality, and half of the cells correspond to the RNA modality. Our goal is to then integrate both datasets by generating a joint embedding of the cells using all data, and to impute the missing ATAC cell values from the RNA modality cells.

dataType <- setNames(
  sample(c("RNA", "Multiome"), ncol(logcounts_all),
    prob = c(0.5, 0.5), replace = TRUE
  ),
  colnames(logcounts_all)
)
table(dataType)
## dataType
## Multiome      RNA 
##     5025     5007
assay_list <- list(
  RNA = logcounts_all[assayType %in% c("rna"), dataType %in% c("RNA")],
  Multiome = logcounts_all[
    assayType %in% c("rna", "atac"), dataType %in% c("Multiome")
  ]
)

lapply(assay_list, dim)
## $RNA
## [1]  952 5007
## 
## $Multiome
## [1] 1740 5025
lapply(assay_list, class)
## $RNA
## [1] "dgCMatrix"
## attr(,"package")
## [1] "Matrix"
## 
## $Multiome
## [1] "dgCMatrix"
## attr(,"package")
## [1] "Matrix"

Examine the shared features between the two datasets using mosaicDataUpSet().

mosaicDataUpSet(assay_list, plot = FALSE)

From this we note that there are shared features between the RNA and Multiome datasets, but there are many features that are observed only in the Multiome dataset and not the RNA - as we had constructed.

We can understand the mosaicDataTopology() of these datasets, which generates an igraph object, which can be inspected and plotted. The mosaicDataTopology() is a weighted network where nodes represent each dataset, and edges connect nodes with at least one overlapping feature.

mdt <- mosaicDataTopology(assay_list)
mdt
## IGRAPH 5a8aa1b UN-- 2 1 -- 
## + attr: name (v/c), frame.color (v/c), color (v/c), label.color (v/c),
## | label.family (v/c)
## + edge from 5a8aa1b (vertex names):
## [1] RNA--Multiome
plot(mdt)

From this we note that the datasets RNA and Multiome share at least some features. StabMap requires that the mosaic data topology network be connected, that is, that there should be a path between every pair of nodes in the network.

We now aim to integrate the data from the RNA and Multiome modality by generating a common joint embedding for these data using stabMap(). The stabMap() integration approach aims to stabilize integration of single-cell data by exploting the non-overlapping features, so that cells with similar biological profiles will cluster. Stabilisation using non-overlapping features may be important when there are limited overlapping features or when the informative features are unknown.

What is stabMap doing?

stabMap generates a joint embedding using 3 steps:

  • Identify the mosaicDataTopology()

  • Embed the reference dataset into a lower dimensional space

  • Project cells from non-reference datasets onto the reference dataset embedding by using a model to traverse shortest paths in the mosaicDataTopology()

Since the Multiome data contains all features, we treat this as the reference dataset. Since we already examined the mosaic data topology, we set plot = FALSE.

stab <- stabMap(assay_list,
  reference_list = c("Multiome"),
  plot = FALSE
)
## treating "Multiome" as reference
## generating embedding for path with reference "Multiome": "Multiome"
## generating embedding for path with reference "Multiome": "RNA" -> "Multiome"
dim(stab)
## [1] 10032    50
stab[1:5, 1:5]
##                  Multiome_PC1 Multiome_PC2 Multiome_PC3 Multiome_PC4
## AAACAGCCAATCCCTT    12.885344    -3.075968    -1.723863   -0.3561525
## AAACAGCCAGTTTACG    11.314093    -2.344855     2.608507    1.2228681
## AAACATGCAAGGTCCT    13.821325    -3.100703     4.755135   -0.6836924
## AAACATGCACCGGCTA     6.287519    -2.080285   -24.802926   -0.6373922
## AAACATGCAGCAAGTG    12.500354    -3.058831     5.358400   -2.6757611
##                  Multiome_PC5
## AAACAGCCAATCCCTT   -4.6468061
## AAACAGCCAGTTTACG   -8.5576292
## AAACATGCAAGGTCCT    6.0538837
## AAACATGCACCGGCTA    7.1583625
## AAACATGCAGCAAGTG   -0.1806992

We can reduce the dimension further using non-linear approaches such as UMAP.

stab_umap <- calculateUMAP(t(stab))
dim(stab_umap)
## [1] 10032     2
plot(stab_umap, pch = 16, cex = 0.3, col = factor(dataType[rownames(stab)]))

Here we see that the RNA and Multiome cells are fairly well-mixed.

Data imputation after StabMap

Given the joint embedding, we can predict the missing ATAC cell values using imputeEmbedding(). We use imputeEmbedding() for demonstration purposes as for our data both modalities have sufficient sample sizes (cells) and thus cellular imputation isn’t needed.

To imputeEmbedding() we provide the data list, and the joint embedding as output from stabMap(). We set the Multiome cells as reference and the RNA cells as query. This is useful for downstream visualisation or further interpretation.

imp <- imputeEmbedding(
  assay_list,
  stab,
  reference = colnames(assay_list[["Multiome"]]),
  query = colnames(assay_list[["RNA"]])
)

class(imp)
## [1] "list"
names(imp)
## [1] "Multiome"
lapply(imp, dim)
## $Multiome
## [1] 1740 5007
lapply(assay_list, dim)
## $RNA
## [1]  952 5007
## 
## $Multiome
## [1] 1740 5025
imp[["Multiome"]][1:5, 1:5]
## 5 x 5 sparse Matrix of class "dgCMatrix"
##        AAACAGCCAAGGAATC AAACAGCCAATGCGCT AAACAGCCAGTAGGTG AAACAGCCATCCAGGT
## CA6            1.299581         1.338925         1.075695                .
## CNR2           .                .                .                       .
## IFNLR1         .                .                .                       .
## RCAN3          1.414502         1.553737         1.656583                .
## ZNF683         .                .                .                       .
##        AAACATGCACTTGTTC
## CA6                   .
## CNR2                  .
## IFNLR1                .
## RCAN3                 .
## ZNF683                .

Annotating Query Datasets using the StabMap embedding

We can also leverage this joint embedding to annotate the query data. We will use a k-nearest neighbors (KNN) based algorithm to transfer cell type labels from the reference to the query dataset. For our demonstration we will treat the Multiome dataset as the reference and the RNA dataset as the query.

The column data of the single cell experiments objects contained in mae contain cell type annotations for each cell in the celltype column. We first extract cell type annotations for our reference dataset (Multiome).

annotation <- "celltype"
referenceLabels <- colData(
  experiments(mae)[["rna"]]
)[colnames(assay_list$Multiome), annotation]
names(referenceLabels) <- colnames(assay_list$Multiome)

table(referenceLabels)
## referenceLabels
##  CD56 (bright) NK cells     CD56 (dim) NK cells            MAIT T cells 
##                     189                     217                      49 
##     classical monocytes    effector CD8 T cells  intermediate monocytes 
##                     987                     205                     344 
##          memory B cells      memory CD4 T cells              myeloid DC 
##                     207                     792                     105 
##           naive B cells       naive CD4 T cells       naive CD8 T cells 
##                     152                     745                     783 
## non-classical monocytes         plasmacytoid DC 
##                     199                      51

To classify query cells based on a reference dataset we can use the classifyEmbedding() function. We provide the joint embedding generated by stabMap() and cell type labels for the reference dataset to the classifyEmbedding() function. classifyEmbedding() returns a dataframe with predicted labels in the predicted_labels column.

knn_out <- classifyEmbedding(
  stab,
  referenceLabels,
)

As we have simulated out datasets we have the true label annotations for the RNA (query) cells. We can evaluate how well our predicted annotations match the true annotations use a measure such as accuracy.

# Extract query labels
queryLabels <- colData(
  experiments(mae)[["rna"]]
)[colnames(assay_list$RNA), annotation]
names(queryLabels) <- colnames(assay_list$RNA)

acc <- mean(queryLabels == knn_out[names(queryLabels), "predicted_labels"])
acc
## [1] 0.9203116

Since both the reference and query cells are embedded in the same low dimensional space we can also visualise their cells together. Here we present a UMAP visualisation colour coded by their cell types.

# Extract reference and query cells from UMAP embedding
stab_umap_ref <- stab_umap[colnames(assay_list$Multiome), ]
stab_umap_query <- stab_umap[colnames(assay_list$RNA), ]

# Create UMAP for reference cells
df_umap_ref <- data.frame(
  x = stab_umap_ref[, 1],
  y = stab_umap_ref[, 2],
  cell_type = referenceLabels[rownames(stab_umap_ref)]
)

p_ref <- df_umap_ref %>%
  ggplot() +
  aes(x = x, y = y, colour = cell_type) +
  geom_point(size = 1) +
  ggtitle("Reference cell type annotation")

# Create UMAP for query cells
df_umap_query <- data.frame(
  x = stab_umap_query[, 1],
  y = stab_umap_query[, 2],
  cell_type = queryLabels[rownames(stab_umap_query)]
)

p_query <- df_umap_query %>%
  ggplot() +
  aes(x = x, y = y, colour = cell_type) +
  geom_point(size = 1) +
  ggtitle("Query predicted cell types")

grid.arrange(p_ref, p_query, ncol = 2)

Indirect mosaic data integration with StabMap

StabMap is a flexible framework for mosaic data integration, and can still integrate data even when there are pairs of datasets that share no features at all. So long as there is a path connecting the datasets along the mosaic data topology (and the underlying assumption that the shared features along these paths contain information), then we can extract meaningful joint embeddings. To demonstrate this, we will simulate three data sources.

dataTypeIndirect <- setNames(
  sample(c("RNA", "Multiome", "ATAC"), ncol(logcounts_all),
    prob = c(0.3, 0.3, 0.3), replace = TRUE
  ),
  colnames(logcounts_all)
)
table(dataTypeIndirect)
## dataTypeIndirect
##     ATAC Multiome      RNA 
##     3428     3355     3249
assay_list_indirect <- list(
  RNA = logcounts_all[assayType %in% c("rna"), dataTypeIndirect %in% c("RNA")],
  Multiome = logcounts_all[
    assayType %in% c("rna", "atac"), dataTypeIndirect %in% c("Multiome")
  ],
  ATAC = logcounts_all[
    assayType %in% c("atac"), dataTypeIndirect %in% c("ATAC")
  ]
)

lapply(assay_list_indirect, dim)
## $RNA
## [1]  952 3249
## 
## $Multiome
## [1] 1740 3355
## 
## $ATAC
## [1]  788 3428
lapply(assay_list_indirect, class)
## $RNA
## [1] "dgCMatrix"
## attr(,"package")
## [1] "Matrix"
## 
## $Multiome
## [1] "dgCMatrix"
## attr(,"package")
## [1] "Matrix"
## 
## $ATAC
## [1] "dgCMatrix"
## attr(,"package")
## [1] "Matrix"

Using mosaicDataUpSet(), we note that there are no shared features between the ATAC and RNA datasets. For their integration we might be able to match features by extracting genomic positions and making the “central dogma assumption”, that is, that the peaks associated with a genomic position overlapping a gene should correspond to positive gene expression for that gene. However, using stabMap() we need not make this assumption for the data integration to be performed.

mosaicDataUpSet(assay_list_indirect, plot = FALSE)

We can understand the mosaicDataTopology() of these datasets, which generates an igraph object, which can be inspected and plotted.

mdt_indirect <- mosaicDataTopology(assay_list_indirect)
mdt_indirect
## IGRAPH 0a5caba UN-- 3 2 -- 
## + attr: name (v/c), frame.color (v/c), color (v/c), label.color (v/c),
## | label.family (v/c)
## + edges from 0a5caba (vertex names):
## [1] RNA     --Multiome Multiome--ATAC
plot(mdt_indirect)

StabMap only requires that the mosaic data topology network be connected, that is, that there should be a path between every pair of nodes in the network. While ATAC and RNA have no overlapping features, since there is a path between RNA and ATAC (via Multiome), we can proceed.

We now generate a common joint embedding for these data using stabMap(). Since the Multiome data contains all features, we again treat this as the reference dataset. Since we already examined the mosaic data topology, we set plot = FALSE.

stab_indirect <- stabMap(assay_list_indirect,
  reference_list = c("Multiome"),
  plot = FALSE
)
## treating "Multiome" as reference
## generating embedding for path with reference "Multiome": "Multiome"
## generating embedding for path with reference "Multiome": "RNA" -> "Multiome"
## generating embedding for path with reference "Multiome": "ATAC" -> "Multiome"
dim(stab_indirect)
## [1] 10032    50
stab_indirect[1:5, 1:5]
##                  Multiome_PC1 Multiome_PC2 Multiome_PC3 Multiome_PC4
## AAACAGCCAAGGAATC    -16.51582    -3.279365     7.152313 -0.567712443
## AAACAGCCAATCCCTT    -12.81491    -2.834585    -1.430482 -0.194437009
## AAACAGCCAATGCGCT    -12.82778    -1.411441     6.301149 -0.884834392
## AAACAGCCAGTAGGTG    -17.42144    -3.279140     4.925968  0.007653547
## AAACATGCAAGGTCCT    -13.70480    -2.844677     4.874172 -0.975532677
##                  Multiome_PC5
## AAACAGCCAAGGAATC     4.347495
## AAACAGCCAATCCCTT    -4.652206
## AAACAGCCAATGCGCT     2.547419
## AAACAGCCAGTAGGTG     4.219489
## AAACATGCAAGGTCCT     6.247341

We can reduce the dimension further using non-linear approaches such as UMAP.

stab_indirect_umap <- calculateUMAP(t(stab_indirect))
dim(stab_indirect_umap)
## [1] 10032     2
plot(stab_indirect_umap,
  pch = 16, cex = 0.3,
  col = factor(dataTypeIndirect[rownames(stab_indirect)])
)

Here we see that the RNA, ATAC and Multiome cells are fairly well-mixed.

Colouring the cells by their original cell type, we can also see that the mosaic data integration is meaningful.

cellType <- setNames(mae$celltype, colnames(mae[[1]]))

plot(stab_indirect_umap,
  pch = 16, cex = 0.3,
  col = factor(cellType[rownames(stab_indirect)])
)

Session Info
sessionInfo()
## R version 4.4.2 (2024-10-31)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.1 LTS
## 
## Matrix products: default
## BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 
## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so;  LAPACK version 3.12.0
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=C              
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## time zone: Etc/UTC
## tzcode source: system (glibc)
## 
## attached base packages:
## [1] stats4    stats     graphics  grDevices utils     datasets  methods  
## [8] base     
## 
## other attached packages:
##  [1] HDF5Array_1.35.2            rhdf5_2.51.2               
##  [3] DelayedArray_0.33.3         SparseArray_1.7.2          
##  [5] S4Arrays_1.7.1              abind_1.4-8                
##  [7] Matrix_1.7-1                gridExtra_2.3              
##  [9] SingleCellMultiModal_1.18.0 MultiAssayExperiment_1.33.4
## [11] scran_1.35.0                scater_1.35.0              
## [13] ggplot2_3.5.1               scuttle_1.17.0             
## [15] SingleCellExperiment_1.29.1 SummarizedExperiment_1.37.0
## [17] Biobase_2.67.0              GenomicRanges_1.59.1       
## [19] GenomeInfoDb_1.43.2         IRanges_2.41.2             
## [21] S4Vectors_0.45.2            BiocGenerics_0.53.3        
## [23] generics_0.1.3              MatrixGenerics_1.19.1      
## [25] matrixStats_1.5.0           magrittr_2.0.3             
## [27] StabMap_1.1.0               BiocStyle_2.35.0           
## 
## loaded via a namespace (and not attached):
##   [1] sys_3.4.3                jsonlite_1.8.9           ggbeeswarm_0.7.2        
##   [4] magick_2.8.5             farver_2.1.2             rmarkdown_2.29          
##   [7] vctrs_0.6.5              memoise_2.0.1            htmltools_0.5.8.1       
##  [10] BiocBaseUtils_1.9.0      AnnotationHub_3.15.0     curl_6.1.0              
##  [13] BiocNeighbors_2.1.2      Rhdf5lib_1.29.0          sass_0.4.9              
##  [16] bslib_0.8.0              plyr_1.8.9               cachem_1.1.0            
##  [19] buildtools_1.0.0         igraph_2.1.3             mime_0.12               
##  [22] lifecycle_1.0.4          pkgconfig_2.0.3          rsvd_1.0.5              
##  [25] R6_2.5.1                 fastmap_1.2.0            GenomeInfoDbData_1.2.13 
##  [28] digest_0.6.37            colorspace_2.1-1         AnnotationDbi_1.69.0    
##  [31] dqrng_0.4.1              irlba_2.3.5.1            ExperimentHub_2.15.0    
##  [34] RSQLite_2.3.9            beachmat_2.23.5          filelock_1.0.3          
##  [37] labeling_0.4.3           httr_1.4.7               compiler_4.4.2          
##  [40] bit64_4.5.2              withr_3.0.2              BiocParallel_1.41.0     
##  [43] viridis_0.6.5            DBI_1.2.3                UpSetR_1.4.0            
##  [46] rappdirs_0.3.3           rjson_0.2.23             bluster_1.17.0          
##  [49] tools_4.4.2              vipor_0.4.7              beeswarm_0.4.0          
##  [52] glue_1.8.0               rhdf5filters_1.19.0      grid_4.4.2              
##  [55] cluster_2.1.8            gtable_0.3.6             BiocSingular_1.23.0     
##  [58] ScaledMatrix_1.15.0      metapod_1.15.0           XVector_0.47.2          
##  [61] RcppAnnoy_0.0.22         ggrepel_0.9.6            BiocVersion_3.21.1      
##  [64] pillar_1.10.1            limma_3.63.3             dplyr_1.1.4             
##  [67] BiocFileCache_2.15.0     lattice_0.22-6           bit_4.5.0.1             
##  [70] tidyselect_1.2.1         locfit_1.5-9.10          maketools_1.3.1         
##  [73] Biostrings_2.75.3        knitr_1.49               edgeR_4.5.1             
##  [76] xfun_0.50                statmod_1.5.0            UCSC.utils_1.3.0        
##  [79] yaml_2.3.10              evaluate_1.0.3           codetools_0.2-20        
##  [82] tibble_3.2.1             BiocManager_1.30.25      cli_3.6.3               
##  [85] uwot_0.2.2               munsell_0.5.1            jquerylib_0.1.4         
##  [88] Rcpp_1.0.14              dbplyr_2.5.0             png_0.1-8               
##  [91] parallel_4.4.2           blob_1.2.4               sparseMatrixStats_1.19.0
##  [94] SpatialExperiment_1.17.0 viridisLite_0.4.2        slam_0.1-55             
##  [97] scales_1.3.0             purrr_1.0.2              crayon_1.5.3            
## [100] rlang_1.1.4              KEGGREST_1.47.0