Title: | Stabilised mosaic single cell data integration using unshared features |
---|---|
Description: | StabMap performs single cell mosaic data integration by first building a mosaic data topology, and for each reference dataset, traverses the topology to project and predict data onto a common embedding. Mosaic data should be provided in a list format, with all relevant features included in the data matrices within each list object. The output of stabMap is a joint low-dimensional embedding taking into account all available relevant features. Expression imputation can also be performed using the StabMap embedding and any of the original data matrices for given reference and query cell lists. |
Authors: | Shila Ghazanfar [aut, cre, ctb], Aiden Jin [ctb], Nicholas Robertson [ctb] |
Maintainer: | Shila Ghazanfar <[email protected]> |
License: | GPL-2 |
Version: | 1.1.0 |
Built: | 2024-11-14 06:03:44 UTC |
Source: | https://github.com/bioc/StabMap |
Adaptive k-Nearest Neighbour Classification for a k-nearest neighbour matrix, given class labels and local k values for the training data
adaptiveKNN(knn, class, k_local)
adaptiveKNN(knn, class, k_local)
knn |
Is a k-nearest neighbour matrix, giving the indices of the training set that the query is closest to. Rows are the query cells, columns are the NNs. Typically output using BiocNeighbors::queryKNN(,,k = max(k_local)). |
class |
Is the labels associated with the training set. |
k_local |
Is an integer vector length of the training set, giving the local k to use if k_local is given as a single integer, then that value is used as k for all observations. |
A character vector of of classifications for the test set.
# Generate example data data <- matrix(rpois(10 * 20, 10), 10, 20) # 10 genes, 20 cells data_2 <- matrix(rpois(10 * 30, 10), 10, 30) # 10 genes, 30 cells # Generate error matrix for k_local E <- matrix(runif(100), 20, 5) colnames(E) <- paste0("K_", 1:5) # Define training class labels and adaptive k-values class <- factor(rep(letters[1:2], each = 10)) k_local <- getAdaptiveK(E, labels = class) knn <- BiocNeighbors::queryKNN( t(data), t(data_2), k = max(as.numeric(gsub("K_", "", k_local))) )$index # Adaptive KNN classification test <- adaptiveKNN( knn, class, as.numeric(gsub("K_", "", k_local)) )
# Generate example data data <- matrix(rpois(10 * 20, 10), 10, 20) # 10 genes, 20 cells data_2 <- matrix(rpois(10 * 30, 10), 10, 30) # 10 genes, 30 cells # Generate error matrix for k_local E <- matrix(runif(100), 20, 5) colnames(E) <- paste0("K_", 1:5) # Define training class labels and adaptive k-values class <- factor(rep(letters[1:2], each = 10)) k_local <- getAdaptiveK(E, labels = class) knn <- BiocNeighbors::queryKNN( t(data), t(data_2), k = max(as.numeric(gsub("K_", "", k_local))) )$index # Adaptive KNN classification test <- adaptiveKNN( knn, class, as.numeric(gsub("K_", "", k_local)) )
Performs adaptive k-nearest neighbour classification of discrete labels for a training set from a query set, leveraging the StabMap joint embedding. The training labels are defined in 'labels', with all other rows of the embedding treated as the testing set.
classifyEmbedding( coords, labels, type = c("uniform_fixed", "adaptive_labels", "adaptive_local", "uniform_optimised"), k_values = 5, error_measure = c("simple_error", "balanced_error"), adaptive_nFold = 2, adaptive_nRep = 5, adaptive_local_nhood = 100, adaptive_local_smooth = 10, verbose = TRUE )
classifyEmbedding( coords, labels, type = c("uniform_fixed", "adaptive_labels", "adaptive_local", "uniform_optimised"), k_values = 5, error_measure = c("simple_error", "balanced_error"), adaptive_nFold = 2, adaptive_nRep = 5, adaptive_local_nhood = 100, adaptive_local_smooth = 10, verbose = TRUE )
coords |
A cells (rows) x dimensions data matrix, on which euclidean distances are to be calculated for KNN classification. Must have rownames. Typically, output from 'stabMap()'. |
labels |
A named character vector of labels for the training set. |
type |
A character of the type of adaptive KNN classification to be used. Must be one of "adaptive_local", "adaptive_labels", "uniform_optimised", or "uniform_fixed". Default is "uniform_fixed". |
k_values |
A numeric vector of potential k values. If type is "uniform_fixed", then the first value of k_values is used. Default is 5. |
error_measure |
Is the error type to use for selection of the best k. Must be one of "simple_error" or "balanced_error". "simple_error" weights all cells equally. "balanced_error" weights error by 'labels' factors. Only affects error type for type == "uniform_optimised". |
adaptive_nFold |
Is the number of folds for adaptive selection cross-validation. |
adaptive_nRep |
Is the number of repetitions of adaptive selection cross-validation. |
adaptive_local_nhood |
Is the neighbourhood size for optimising locally. |
adaptive_local_smooth |
Is the number of neighbours to use for smoothing locally. |
verbose |
Logical whether to print repetition and fold number for adaptive selection cross-validation. |
Is a dataframe with rows the same as coords, and same rownames. Columns are: input_labels is the training labels that were provided in 'labels' (NA is used as labels for the testing set), resubstituted_labels is predicted labels for all rows (including for the training data), predicted_labels is predicted labels for the testing set but true labels as provided in 'labels' for the training set, k is the adaptive k value used for that each row of the training set.
set.seed(100) # Simulate coordinates coords <- matrix(rnorm(1000), 100, 10) rownames(coords) <- paste0("cell_", seq_len(nrow(coords))) # Define labels of the first 50 cells labels <- rep(paste0("type_", letters[1:5]), 10) names(labels) <- rownames(coords)[seq_along(labels)] # Uniform fixed KNN classification knn_out <- classifyEmbedding( coords, labels, type = "uniform_fixed", k_values = 5 ) table(knn_out$predicted_labels) # Adaptive KNN classification using local error knn_out <- classifyEmbedding( coords, labels, type = "adaptive_local", k_values = 2:3, adaptive_nFold = 5, adaptive_nRep = 10 ) table(knn_out$predicted_labels) knn_out <- classifyEmbedding( coords, labels, type = "adaptive_labels", k_values = 2:3, adaptive_nFold = 5, adaptive_nRep = 10 ) table(knn_out$predicted_labels) # Adaptive KNN classification using uniform optimised with balanced error knn_out <- classifyEmbedding( coords, labels, type = "uniform_optimised", k_values = 2:3, adaptive_nFold = 3, adaptive_nRep = 10, error_measure = "balanced_error" ) table(knn_out$predicted_labels)
set.seed(100) # Simulate coordinates coords <- matrix(rnorm(1000), 100, 10) rownames(coords) <- paste0("cell_", seq_len(nrow(coords))) # Define labels of the first 50 cells labels <- rep(paste0("type_", letters[1:5]), 10) names(labels) <- rownames(coords)[seq_along(labels)] # Uniform fixed KNN classification knn_out <- classifyEmbedding( coords, labels, type = "uniform_fixed", k_values = 5 ) table(knn_out$predicted_labels) # Adaptive KNN classification using local error knn_out <- classifyEmbedding( coords, labels, type = "adaptive_local", k_values = 2:3, adaptive_nFold = 5, adaptive_nRep = 10 ) table(knn_out$predicted_labels) knn_out <- classifyEmbedding( coords, labels, type = "adaptive_labels", k_values = 2:3, adaptive_nFold = 5, adaptive_nRep = 10 ) table(knn_out$predicted_labels) # Adaptive KNN classification using uniform optimised with balanced error knn_out <- classifyEmbedding( coords, labels, type = "uniform_optimised", k_values = 2:3, adaptive_nFold = 3, adaptive_nRep = 10, error_measure = "balanced_error" ) table(knn_out$predicted_labels)
Given an error matrix, identify the k that maximises the accuracy for cells belonging to a provided labelling/grouping. If no labelling given, expect a cell-cell similarity network to identify the k that maximises the accuracy for cells within that neighbourhood. If neither are given, simply treat all cells as if they have the same labelling/grouping
getAdaptiveK(E, labels = NULL, local = NULL, outputPerCell = TRUE, ...)
getAdaptiveK(E, labels = NULL, local = NULL, outputPerCell = TRUE, ...)
E |
An error matrix with rows corresponding to cells and columns corresponding to candidate k values, with values themselves corresponding to error values (either binary for single classification, or continuous after multiple classification). |
labels |
Group labels for cells. |
local |
A neighbourhood index representation, as typically output using BiocNeighbors::findKNN(). |
outputPerCell |
Logical whether to return adaptive k for each cell, not just for each label type (used for when labels is given). |
... |
Includes return_colnames, whether to give the colnames of the best selected, or just the index, which is default TRUE. |
Vector of adaptive k values.
E <- matrix(runif(100), 20, 5) colnames(E) <- paste0("K_", 1:5) # generate cell labels labels <- factor(rep(letters[1:2], each = 10)) # generate nearest neighbourhood index representation data <- matrix(rpois(10 * 20, 10), 10, 20) # 10 genes, 20 cells local <- BiocNeighbors::findKNN(t(data), k = 5, get.distance = FALSE)$index best_k_labels <- getAdaptiveK(E, labels = labels ) best_k_local <- getAdaptiveK(E, local = local )
E <- matrix(runif(100), 20, 5) colnames(E) <- paste0("K_", 1:5) # generate cell labels labels <- factor(rep(letters[1:2], each = 10)) # generate nearest neighbourhood index representation data <- matrix(rpois(10 * 20, 10), 10, 20) # 10 genes, 20 cells local <- BiocNeighbors::findKNN(t(data), k = 5, get.distance = FALSE)$index best_k_labels <- getAdaptiveK(E, labels = labels ) best_k_local <- getAdaptiveK(E, local = local )
Performs naive imputation of values from the list of mosaic data and joint embedding from StabMap.
imputeEmbedding( assay_list, embedding, reference = Reduce(union, lapply(assay_list, colnames)), query = Reduce(union, lapply(assay_list, colnames)), neighbours = 5, fun = mean )
imputeEmbedding( assay_list, embedding, reference = Reduce(union, lapply(assay_list, colnames)), query = Reduce(union, lapply(assay_list, colnames)), neighbours = 5, fun = mean )
assay_list |
List of mosaic data from which to perform imputation. |
embedding |
Joint embedding from which to extract nearest neighbour relationships. |
reference |
Character vector of cell names to treat as reference cells. |
query |
Character vector of cell names to treat as query cells. |
neighbours |
Number of nearest neighbours to consider (default 5). |
fun |
function (default ‘mean') to aggregate nearest neighbours’ imputed values. |
List containing imputed values from each assay_list data matrix which contains reference cells.
set.seed(2021) assay_list <- mockMosaicData() lapply(assay_list, dim) # stabMap out <- stabMap(assay_list, ncomponentsReference = 20, ncomponentsSubset = 20 ) # impute values imp <- imputeEmbedding(assay_list, out) # inspect the imputed values lapply(imp, dim) imp[[1]][1:5, 1:5]
set.seed(2021) assay_list <- mockMosaicData() lapply(assay_list, dim) # stabMap out <- stabMap(assay_list, ncomponentsReference = 20, ncomponentsSubset = 20 ) # impute values imp <- imputeEmbedding(assay_list, out) # inspect the imputed values lapply(imp, dim) imp[[1]][1:5, 1:5]
Mock up a mosaic data list using simulated data, for use in documentation examples.
mockMosaicData( names = c("D1", "D2", "D3"), ncells = c(50, 50, 50), ngenes = list(1:150, 76:225, 151:300), fun = "rnorm", ... )
mockMosaicData( names = c("D1", "D2", "D3"), ncells = c(50, 50, 50), ngenes = list(1:150, 76:225, 151:300), fun = "rnorm", ... )
names |
character vector of mock datasets. |
ncells |
integer vector of cells in each mock dataset. |
ngenes |
list containing integer vectors of features measured in each mock dataset. |
fun |
name of function to simulate data, default "rnorm". |
... |
further arguments passed to 'fun'. |
assay_list a list of data matrices with rownames (features) specified.
set.seed(2021) assay_list <- mockMosaicData() lapply(assay_list, dim) # simulate data from another distribution assay_list <- mockMosaicData(fun = "rnbinom", size = 5, prob = 0.5) lapply(assay_list, dim)
set.seed(2021) assay_list <- mockMosaicData() lapply(assay_list, dim) # simulate data from another distribution assay_list <- mockMosaicData(fun = "rnbinom", size = 5, prob = 0.5) lapply(assay_list, dim)
Generate mosaic data topology network as an igraph object.
mosaicDataTopology(assay_list)
mosaicDataTopology(assay_list)
assay_list |
a list of data matrices with rownames (features) specified. |
igraph weighted network with nodes corresponding to
assay_list
elements, and edges present if the matrices share at
least one rowname. Edge weights correspond to the number of shared
rownames among data matrices.
set.seed(2021) assay_list <- mockMosaicData() mdt <- mosaicDataTopology(assay_list) mdt plot(mdt)
set.seed(2021) assay_list <- mockMosaicData() mdt <- mosaicDataTopology(assay_list) mdt plot(mdt)
Plots feature overlaps of mosaic data as an UpSet plot.
mosaicDataUpSet(assay_list, plot = FALSE, ...)
mosaicDataUpSet(assay_list, plot = FALSE, ...)
assay_list |
a list of data matrices with rownames (features) specified. |
plot |
logical (default FALSE) whether the UpSet plot should be printed. |
... |
further arguments passed to 'upset' from the 'UpSetR' package. |
UpSet object displaying degree of overlap of rownames (features)
among each of the data matrices in assay_list
. Set bars correspond to
the number of cells/samples present in each data matrix.
set.seed(2021) assay_list <- mockMosaicData() lapply(assay_list, dim) mosaicDataUpSet(assay_list) # additional arguments from UpSetR::upset() mosaicDataUpSet(assay_list, empty.intersections = TRUE)
set.seed(2021) assay_list <- mockMosaicData() lapply(assay_list, dim) mosaicDataUpSet(assay_list) # additional arguments from UpSetR::upset() mosaicDataUpSet(assay_list, empty.intersections = TRUE)
Re-weights embedding according to given weights for each reference dataset. This gives more or less weighting to each contributing dataset and method (PCA or LDA),
reWeightEmbedding(embedding, weights = NULL, factor = 1e+06)
reWeightEmbedding(embedding, weights = NULL, factor = 1e+06)
embedding |
Joint embedding as output from stabMap. |
weights |
(optional) named numeric vector giving relative weights for each reference dataset. |
factor |
numeric multiplicative value to offset near-zero values. |
matrix of same dimensions as 'embedding'.
set.seed(2021) assay_list <- mockMosaicData() lapply(assay_list, dim) # specify which datasets to use as reference coordinates reference_list <- c("D1", "D3") # specify some sample labels to distinguish using linear discriminant # analysis (LDA) labels_list <- list( D1 = rep(letters[1:5], length.out = ncol(assay_list[["D1"]])) ) # stabMap out <- stabMap(assay_list, reference_list = reference_list, labels_list = labels_list, ncomponentsReference = 20, ncomponentsSubset = 20 ) # look at the scale of each component and discriminant boxplot(out, las = 2, outline = FALSE) # re-weight embedding for less contribution from LDs and equal contribution # from PCs of both references out_reweighted <- reWeightEmbedding( out, weights = c("D1_LD" = 0.5, "D1_PC" = 1, "D3_PC" = 1) ) # look at the new scale of each component and discriminant boxplot(out_reweighted, las = 2, outline = FALSE)
set.seed(2021) assay_list <- mockMosaicData() lapply(assay_list, dim) # specify which datasets to use as reference coordinates reference_list <- c("D1", "D3") # specify some sample labels to distinguish using linear discriminant # analysis (LDA) labels_list <- list( D1 = rep(letters[1:5], length.out = ncol(assay_list[["D1"]])) ) # stabMap out <- stabMap(assay_list, reference_list = reference_list, labels_list = labels_list, ncomponentsReference = 20, ncomponentsSubset = 20 ) # look at the scale of each component and discriminant boxplot(out, las = 2, outline = FALSE) # re-weight embedding for less contribution from LDs and equal contribution # from PCs of both references out_reweighted <- reWeightEmbedding( out, weights = c("D1_LD" = 0.5, "D1_PC" = 1, "D3_PC" = 1) ) # look at the new scale of each component and discriminant boxplot(out_reweighted, las = 2, outline = FALSE)
stabMap performs mosaic data integration by first building a mosaic data topology, and for each reference dataset, traverses the topology to project and predict data onto a common principal component (PC) or linear discriminant (LD) embedding.
stabMap( assay_list, labels_list = NULL, reference_list = NULL, reference_features_list = lapply(assay_list, rownames), reference_scores_list = NULL, ncomponentsReference = 50, ncomponentsSubset = 50, suppressMessages = TRUE, projectAll = FALSE, restrictFeatures = FALSE, maxFeatures = 1000, plot = TRUE, scale.center = TRUE, scale.scale = TRUE, SE_assay_names = "logcounts", BPPARAM = SerialParam(), verbose = TRUE )
stabMap( assay_list, labels_list = NULL, reference_list = NULL, reference_features_list = lapply(assay_list, rownames), reference_scores_list = NULL, ncomponentsReference = 50, ncomponentsSubset = 50, suppressMessages = TRUE, projectAll = FALSE, restrictFeatures = FALSE, maxFeatures = 1000, plot = TRUE, scale.center = TRUE, scale.scale = TRUE, SE_assay_names = "logcounts", BPPARAM = SerialParam(), verbose = TRUE )
assay_list |
A list of data matrices with rownames (features) specified. |
labels_list |
(optional) named list containing cell labels |
reference_list |
Named list containing logical values whether the data matrix should be considered as a reference dataset, alternatively a character vector containing the names of the reference data matrices. If NULL, defaults to: sapply(names(assay_list), function(x) TRUE, simplify = FALSE) |
reference_features_list |
List of features to consider as reference data (default is all available features). |
reference_scores_list |
Named list of reference scores (default NULL). If provided, matrix of cells (rows with rownames given) and dimensions (columns with colnames given) are used as the reference low-dimensional embedding to target, as opposed to performing PCA or LDA on the input reference data. |
ncomponentsReference |
Number of principal components for embedding reference data, given either as an integer or a named list for each reference dataset. |
ncomponentsSubset |
Number of principal components for embedding query data prior to projecting to the reference, given either as an integer or a named list for each reference dataset. |
suppressMessages |
Logical whether to suppress messages (default TRUE). |
projectAll |
Logical whether to re-project reference data along with query (default FALSE). |
restrictFeatures |
logical whether to restrict to features used in dimensionality reduction of reference data (default FALSE). Overall it's recommended that this be FALSE for single-hop integrations and TRUE for multi-hop integrations. |
maxFeatures |
Maximum number of features to consider for predicting principal component scores (default 1000). |
plot |
Logical whether to plot mosaic data UpSet plot and mosaic data topology networks (default TRUE). |
scale.center |
Logical whether to re-center data to a mean of 0 (default FALSE). |
scale.scale |
Logical whether to re-scale data to standard deviation of 1 (default FALSE). |
SE_assay_names |
Either a string indicating the name of the assays for the SummarizedExperiment objects in assay_list or a named list of assay names, where the names corrispond to the names SE objects in assay_list (default "logcounts") |
BPPARAM |
a BiocParallelParam object specifying how parallelisation should be performed |
verbose |
Logical whether console output is provided (default TRUE) |
matrix containing common embedding with rows corresponding to cells, and columns corresponding to PCs or LDs for reference dataset(s).
set.seed(2021) assay_list <- mockMosaicData() lapply(assay_list, dim) # specify which datasets to use as reference coordinates reference_list <- c("D1", "D3") # specify some sample labels to distinguish using linear discriminant # analysis (LDA) labels_list <- list( D1 = rep(letters[1:5], length.out = ncol(assay_list[["D1"]])) ) # examine the topology of this mosaic data integration mosaicDataUpSet(assay_list) plot(mosaicDataTopology(assay_list)) # stabMap out <- stabMap(assay_list, reference_list = reference_list, labels_list = labels_list, ncomponentsReference = 20, ncomponentsSubset = 20 ) head(out)
set.seed(2021) assay_list <- mockMosaicData() lapply(assay_list, dim) # specify which datasets to use as reference coordinates reference_list <- c("D1", "D3") # specify some sample labels to distinguish using linear discriminant # analysis (LDA) labels_list <- list( D1 = rep(letters[1:5], length.out = ncol(assay_list[["D1"]])) ) # examine the topology of this mosaic data integration mosaicDataUpSet(assay_list) plot(mosaicDataTopology(assay_list)) # stabMap out <- stabMap(assay_list, reference_list = reference_list, labels_list = labels_list, ncomponentsReference = 20, ncomponentsSubset = 20 ) head(out)