Package: StabMap (via r-universe)

October 31, 2024
Type Package

Title Stabilised mosaic single cell data integration using unshared
features

Version 1.1.0

Description StabMap performs single cell mosaic data integration by
first building a mosaic data topology, and for each reference
dataset, traverses the topology to project and predict data
onto a common embedding. Mosaic data should be provided in a
list format, with all relevant features included in the data
matrices within each list object. The output of stabMap is a
joint low-dimensional embedding taking into account all
available relevant features. Expression imputation can also be
performed using the StabMap embedding and any of the original
data matrices for given reference and query cell lists.

License GPL-2
Encoding UTF-8

URL https://sydneybiox.github.io/StabMap,
https://sydneybiox.github.io/StabMap/

BugReports https://github.com/sydneybiox/StabMap/issues
biocViews SingleCell, DimensionReduction, Software
Depends R (>=4.4.0),

Imports igraph, slam, BiocNeighbors, Matrix, MASS, abind,
SummarizedExperiment, methods, MatrixGenerics, BiocGenerics,
BiocSingular, BiocParallel

Suggests scran, scater, knitr, UpSetR, gridExtra,
SingleCellMultiModal, BiocStyle, magrittr, testthat (>= 3.0.0),
purtr, sparseMatrixStats

LazyData false
RoxygenNote 7.3.2
VignetteBuilder knitr

https://sydneybiox.github.io/StabMap
https://sydneybiox.github.io/StabMap/
https://github.com/sydneybiox/StabMap/issues

2 adaptiveKNN

Config/testthat/edition 3

Repository https://bioc.r-universe.dev

RemoteUrl https://github.com/bioc/StabMap

RemoteRef HEAD

RemoteSha 2005245e50e43140202d0abe2b4c2ef5386fd994

Contents
adaptiveKNN e e 2
classifyEmbedding 3
getAdaptiveK L. 5
imputeEmbedding L 6
mockMosaicData 8
mosaicDataTopology e 9
mosaicDataUpSet 9
reWeightEmbedding 10
stabMap e e e e e 11

Index 14

adaptivekNN Adaptive k-Nearest Neighbour Classification
Description

Adaptive k-Nearest Neighbour Classification for a k-nearest neighbour matrix, given class labels
and local k values for the training data

Usage

adaptiveKNN(knn, class, k_local)

Arguments
knn Is a k-nearest neighbour matrix, giving the indices of the training set that the
query is closest to. Rows are the query cells, columns are the NNs. Typically
output using BiocNeighbors::queryKNN(,.k = max(k_local)).
class Is the labels associated with the training set.
k_local Is an integer vector length of the training set, giving the local k to use if k_local
is given as a single integer, then that value is used as k for all observations.
Value

A character vector of of classifications for the test set.

classifyEmbedding 3

Examples

Generate example data
data <- matrix(rpois(10 * 20, 10), 10, 20) # 10 genes, 20 cells
data_2 <- matrix(rpois(1@ x 30, 10), 10, 30) # 10 genes, 30 cells

Generate error matrix for k_local
E <- matrix(runif(100), 20, 5)
colnames(E) <- paste@("K_", 1:5)

Define training class labels and adaptive k-values
class <- factor(rep(letters[1:2], each = 10))
k_local <- getAdaptiveK(E, labels = class)

knn <- BiocNeighbors: :queryKNN(

t(data), t(data_2),

k = max(as.numeric(gsub("K_", "", k_local)))
)$index

Adaptive KNN classification
test <- adaptiveKNN(

knn, class, as.numeric(gsub("K_", "", k_local))
)
classifyEmbedding Adaptive k-Nearest Neighbour Classification using the StabMap joint
embedding
Description

Performs adaptive k-nearest neighbour classification of discrete labels for a training set from a query
set, leveraging the StabMap joint embedding. The training labels are defined in ‘labels®, with all
other rows of the embedding treated as the testing set.

Usage

classifyEmbedding(
coords,
labels,
type = c("uniform_fixed"”, "adaptive_labels"”, "adaptive_local”, "uniform_optimised"),
k_values = 5,
error_measure = c("simple_error”, "balanced_error"),
adaptive_nFold = 2,
adaptive_nRep = 5,
adaptive_local_nhood = 100,
adaptive_local_smooth = 10,
verbose = TRUE

Arguments

coords

labels
type

k_values

error_measure

adaptive_nFold

adaptive_nRep

classityEmbedding

A cells (rows) x dimensions data matrix, on which euclidean distances are to be
calculated for KNN classification. Must have rownames. Typically, output from
‘stabMap()‘.

A named character vector of labels for the training set.

A character of the type of adaptive KNN classification to be used. Must be one of

"adaptive_local", "adaptive_labels", "uniform_optimised", or "uniform_fixed".
Default is "uniform_fixed".

A numeric vector of potential k values. If type is "uniform_fixed", then the first
value of k_values is used. Default is 5.

Is the error type to use for selection of the best k. Must be one of "simple_error"
or "balanced_error". "simple_error" weights all cells equally. "balanced_error"
weights error by ‘labels® factors. Only affects error type for type == "uni-
form_optimised".

Is the number of folds for adaptive selection cross-validation.

Is the number of repetitions of adaptive selection cross-validation.

adaptive_local_nhood

Is the neighbourhood size for optimising locally.

adaptive_local_smooth

verbose

Value

Is the number of neighbours to use for smoothing locally.

Logical whether to print repetition and fold number for adaptive selection cross-
validation.

Is a dataframe with rows the same as coords, and same rownames. Columns are: input_labels is
the training labels that were provided in ‘labels‘ (NA is used as labels for the testing set), resub-
stituted_labels is predicted labels for all rows (including for the training data), predicted_labels is
predicted labels for the testing set but true labels as provided in ‘labels‘ for the training set, k is the
adaptive k value used for that each row of the training set.

Examples

set.seed(100)

Simulate coordinates
coords <- matrix(rnorm(1000), 100, 10)
rownames (coords) <- paste@("cell_", seq_len(nrow(coords)))

Define labels of the first 50 cells
labels <- rep(paste@("type_", letters[1:5]), 10)

names(labels) <-

rownames (coords)[seq_along(labels)]

Uniform fixed KNN classification
knn_out <- classifyEmbedding(

coords, labels,

type = "uniform_fixed", k_values = 5

)

getAdaptiveK 5

table(knn_out$predicted_labels)

Adaptive KNN classification using local error
knn_out <- classifyEmbedding(

coords, labels,

type = "adaptive_local”,

k_values = 2:3,

adaptive_nFold = 5,

adaptive_nRep = 10

)

table(knn_out$predicted_labels)

knn_out <- classifyEmbedding(
coords, labels,
type = "adaptive_labels”,
k_values = 2:3,
adaptive_nFold = 5,
adaptive_nRep = 10

)

table(knn_out$predicted_labels)

Adaptive KNN classification using uniform optimised with balanced error
knn_out <- classifyEmbedding(

coords, labels,

type = "uniform_optimised”,

k_values = 2:3,

adaptive_nFold = 3,

adaptive_nRep = 10,

error_measure = "balanced_error”

)
table(knn_out$predicted_labels)

getAdaptiveK Adaptive k selection for KNN classification

Description

Given an error matrix, identify the k that maximises the accuracy for cells belonging to a provided
labelling/grouping. If no labelling given, expect a cell-cell similarity network to identify the k that
maximises the accuracy for cells within that neighbourhood. If neither are given, simply treat all
cells as if they have the same labelling/grouping

Usage

getAdaptiveK(E, labels = NULL, local = NULL, outputPerCell = TRUE, ...)

6 imputeEmbedding

Arguments
E An error matrix with rows corresponding to cells and columns corresponding to
candidate k values, with values themselves corresponding to error values (either
binary for single classification, or continuous after multiple classification).
labels Group labels for cells.
local A neighbourhood index representation, as typically output using BiocNeigh-

bors::findKNN().

outputPerCell Logical whether to return adaptive k for each cell, not just for each label type
(used for when labels is given).

Includes return_colnames, whether to give the colnames of the best selected, or
just the index, which is default TRUE.

Value

Vector of adaptive k values.

Examples

E <- matrix(runif(100), 20, 5)
colnames(E) <- paste@("K_", 1:5)

generate cell labels
labels <- factor(rep(letters[1:2], each = 10))

generate nearest neighbourhood index representation
data <- matrix(rpois(10 * 20, 10), 10, 20) # 10 genes, 20 cells
local <- BiocNeighbors::findkKNN(t(data), k = 5, get.distance = FALSE)$index

best_k_labels <- getAdaptiveK(E,
labels = labels

)

best_k_local <- getAdaptiveK(E,
local = local

)

imputeEmbedding Impute values using StabMap joint embedding

Description

Performs naive imputation of values from the list of mosaic data and joint embedding from StabMap.

imputeEmbedding

Usage

imputeEmbedding(
assay_list,
embedding,
reference = Reduce(union, lapply(assay_list, colnames)),
query = Reduce(union, lapply(assay_list, colnames)),
neighbours = 5,
fun = mean

)
Arguments

assay_list List of mosaic data from which to perform imputation.

embedding Joint embedding from which to extract nearest neighbour relationships.

reference Character vector of cell names to treat as reference cells.

query Character vector of cell names to treat as query cells.

neighbours Number of nearest neighbours to consider (default 5).

fun function (default ‘mean‘) to aggregate nearest neighbours’ imputed values.
Value

List containing imputed values from each assay_list data matrix which contains reference cells.

Examples

set.seed(2021)
assay_list <- mockMosaicData()
lapply(assay_list, dim)

stabMap

out <- stabMap(assay_list,
ncomponentsReference = 20,
ncomponentsSubset = 20

)

impute values
imp <- imputeEmbedding(assay_list, out)

inspect the imputed values
lapply(imp, dim)
impC[1]1101:5, 1:5]

8 mockMosaicData

mockMosaicData mockMosaicData

Description

Mock up a mosaic data list using simulated data, for use in documentation examples.

Usage

mockMosaicData(
names = c("D1", "D2", "D3"),
ncells = c(50, 50, 50),
ngenes = list(1:150, 76:225, 151:300),

fun = "rnorm”,
)
Arguments
names character vector of mock datasets.
ncells integer vector of cells in each mock dataset.
ngenes list containing integer vectors of features measured in each mock dataset.
fun name of function to simulate data, default "rnorm".
further arguments passed to ‘fun‘.
Value

assay_list a list of data matrices with rownames (features) specified.

Examples

set.seed(2021)
assay_list <- mockMosaicData()
lapply(assay_list, dim)

simulate data from another distribution
assay_list <- mockMosaicData(fun = "rnbinom", size = 5, prob = 0.5)
lapply(assay_list, dim)

mosaicDataTopology 9

mosaicDataTopology mosaicDataTopology

Description

Generate mosaic data topology network as an igraph object.

Usage

mosaicDataTopology(assay_list)

Arguments

assay_list a list of data matrices with rownames (features) specified.

Value

igraph weighted network with nodes corresponding to assay_list elements, and edges present
if the matrices share at least one rowname. Edge weights correspond to the number of shared
rownames among data matrices.

Examples

set.seed(2021)

assay_list <- mockMosaicData()

mdt <- mosaicDataTopology(assay_list)
mdt

plot(mdt)

mosaicDataUpSet mosaicDataUpSet

Description

Plots feature overlaps of mosaic data as an UpSet plot.

Usage
mosaicDataUpSet(assay_list, plot = FALSE, ...)
Arguments
assay_list a list of data matrices with rownames (features) specified.
plot logical (default FALSE) whether the UpSet plot should be printed.

further arguments passed to ‘upset* from the ‘UpSetR‘ package.

10 reWeightEmbedding

Value

UpSet object displaying degree of overlap of rownames (features) among each of the data matrices
in assay_list. Set bars correspond to the number of cells/samples present in each data matrix.

Examples

set.seed(2021)

assay_list <- mockMosaicData()
lapply(assay_list, dim)
mosaicDataUpSet(assay_list)

additional arguments from UpSetR: :upset()
mosaicDataUpSet(assay_list, empty.intersections = TRUE)

reWeightEmbedding Re-weight StabMap embedding

Description

Re-weights embedding according to given weights for each reference dataset. This gives more or
less weighting to each contributing dataset and method (PCA or LDA),

Usage
reWeightEmbedding(embedding, weights = NULL, factor = 1e+06)

Arguments
embedding Joint embedding as output from stabMap.
weights (optional) named numeric vector giving relative weights for each reference dataset.
factor numeric multiplicative value to offset near-zero values.

Value

matrix of same dimensions as ‘embedding ‘.

Examples

set.seed(2021)
assay_list <- mockMosaicData()
lapply(assay_list, dim)

specify which datasets to use as reference coordinates
reference_list <- c("D1", "D3")

specify some sample labels to distinguish using linear discriminant
analysis (LDA)

stabMap 11

labels_list <- list(
D1 = rep(letters[1:5], length.out = ncol(assay_list[["D1"]1]))
)

stabMap

out <- stabMap(assay_list,
reference_list = reference_list,
labels_list = labels_list,
ncomponentsReference = 20,
ncomponentsSubset = 20

)

look at the scale of each component and discriminant
boxplot(out, las = 2, outline = FALSE)

re-weight embedding for less contribution from LDs and equal contribution
from PCs of both references
out_reweighted <- reWeightEmbedding(
out,
weights = c¢("D1_LD" = ©.5, "D1_PC" = 1, "D3_PC" = 1)
)

look at the new scale of each component and discriminant
boxplot(out_reweighted, las = 2, outline = FALSE)

stabMap Stabilised mosaic single cell data integration using unshared features

Description

stabMap performs mosaic data integration by first building a mosaic data topology, and for each
reference dataset, traverses the topology to project and predict data onto a common principal com-
ponent (PC) or linear discriminant (LD) embedding.

Usage

stabMap(
assay_list,
labels_list = NULL,
reference_list = NULL,
reference_features_list = lapply(assay_list, rownames),
reference_scores_list = NULL,
ncomponentsReference = 50,
ncomponentsSubset = 50,
suppressMessages = TRUE,
projectAll = FALSE,
restrictFeatures = FALSE,
maxFeatures = 1000,

12 stabMap

plot = TRUE,

scale.center = TRUE,
scale.scale = TRUE,
SE_assay_names = "logcounts”,
BPPARAM = SerialParam(),
verbose = TRUE

)

Arguments
assay_list A list of data matrices with rownames (features) specified.
labels_list (optional) named list containing cell labels

reference_list Named list containing logical values whether the data matrix should be consid-
ered as a reference dataset, alternatively a character vector containing the names
of the reference data matrices. If NULL, defaults to: sapply(names(assay_list),
function(x) TRUE, simplify = FALSE)

reference_features_list
List of features to consider as reference data (default is all available features).

reference_scores_list
Named list of reference scores (default NULL). If provided, matrix of cells (rows
with rownames given) and dimensions (columns with colnames given) are used
as the reference low-dimensional embedding to target, as opposed to performing
PCA or LDA on the input reference data.

ncomponentsReference
Number of principal components for embedding reference data, given either as
an integer or a named list for each reference dataset.

ncomponentsSubset
Number of principal components for embedding query data prior to projecting
to the reference, given either as an integer or a named list for each reference

dataset.
suppressMessages

Logical whether to suppress messages (default TRUE).
projectAll Logical whether to re-project reference data along with query (default FALSE).
restrictFeatures

logical whether to restrict to features used in dimensionality reduction of refer-
ence data (default FALSE). Overall it’s recommended that this be FALSE for
single-hop integrations and TRUE for multi-hop integrations.

maxFeatures Maximum number of features to consider for predicting principal component
scores (default 1000).
plot Logical whether to plot mosaic data UpSet plot and mosaic data topology net-

works (default TRUE).
scale.center Logical whether to re-center data to a mean of 0 (default FALSE).
scale.scale Logical whether to re-scale data to standard deviation of 1 (default FALSE).

SE_assay_names Either a string indicating the name of the assays for the SummarizedExperiment
objects in assay_list or a named list of assay names, where the names corrispond
to the names SE objects in assay_list (default "logcounts")

stabMap 13

BPPARAM a BiocParallelParam object specifying how parallelisation should be performed
verbose Logical whether console output is provided (default TRUE)
Value

matrix containing common embedding with rows corresponding to cells, and columns correspond-
ing to PCs or LDs for reference dataset(s).

Examples

set.seed(2021)
assay_list <- mockMosaicData()
lapply(assay_list, dim)

specify which datasets to use as reference coordinates
reference_list <- c("D1", "D3")

specify some sample labels to distinguish using linear discriminant
analysis (LDA)
labels_list <- list(
D1 = rep(letters[1:5], length.out = ncol(assay_list[["D1"1]))
)

examine the topology of this mosaic data integration
mosaicDataUpSet(assay_list)
plot(mosaicDataTopology(assay_list))

stabMap

out <- stabMap(assay_list,
reference_list = reference_list,
labels_list = labels_list,
ncomponentsReference = 20,
ncomponentsSubset = 20

)

head(out)

Index

adaptiveKkNN, 2
classifyEmbedding, 3
getAdaptivek, 5
imputeEmbedding, 6

mockMosaicData, 8
mosaicDataTopology, 9
mosaicDataUpSet, 9

reWeightEmbedding, 10

stabMap, 11

14

	adaptiveKNN
	classifyEmbedding
	getAdaptiveK
	imputeEmbedding
	mockMosaicData
	mosaicDataTopology
	mosaicDataUpSet
	reWeightEmbedding
	stabMap
	Index

