The SpatialExperiment
class is an R/Bioconductor S4
class for storing data from spatial -omics experiments. The class
extends the SingleCellExperiment
class for single-cell data
to support storage and retrieval of additional information from
spot-based and molecule-based platforms, including spatial coordinates,
images, and image metadata. A specialized constructor function is
included for data from the 10x Genomics Visium platform.
The following schematic illustrates the
SpatialExperiment
class structure.
As shown, an object consists of: (i) assays
containing
expression counts, (ii) rowData
containing information on
features, i.e. genes, (iii) colData
containing information
on spots or cells, including nonspatial and spatial metadata, (iv)
spatialCoords
containing spatial coordinates, and (v)
imgData
containing image data. For spot-based ST data
(e.g. 10x Genomics Visium), a single assay
named
counts
is used. For molecule-based ST data (e.g. seqFISH),
two assays
named counts
and
molecules
can be used.
Additional details on the class structure are provided in our preprint.
For demonstration of the general class structure, we load an example
SpatialExperiment
(abbreviated as SPE) object (variable
spe
):
## class: SpatialExperiment
## dim: 50 99
## metadata(0):
## assays(1): counts
## rownames(50): ENSMUSG00000051951 ENSMUSG00000089699 ...
## ENSMUSG00000005886 ENSMUSG00000101476
## rowData names(1): symbol
## colnames(99): AAACAACGAATAGTTC-1 AAACAAGTATCTCCCA-1 ...
## AAAGTCGACCCTCAGT-1 AAAGTGCCATCAATTA-1
## colData names(4): in_tissue array_row array_col sample_id
## reducedDimNames(0):
## mainExpName: NULL
## altExpNames(0):
## spatialCoords names(2) : pxl_col_in_fullres pxl_row_in_fullres
## imgData names(4): sample_id image_id data scaleFactor
spatialCoords
In addition to observation metadata stored inside the
colData
slot, the SpatialExperiment
class
stores spatial coordinates as:
spatialCoords
, a numeric matrix of spatial coordinates
(e.g. x
and y
)spatialCoords
are stored inside the
int_colData
, and are directly accessible via the
corresponding accessor:
## pxl_col_in_fullres pxl_row_in_fullres
## AAACAACGAATAGTTC-1 2312 1252
## AAACAAGTATCTCCCA-1 8230 7237
## AAACAATCTACTAGCA-1 4170 1611
## AAACACCAATAACTGC-1 2519 8315
## AAACAGAGCGACTCCT-1 7679 2927
## AAACAGCTTTCAGAAG-1 1831 6400
The corresponding column names can be also accessed with
spatialCoordsNames()
:
## [1] "pxl_col_in_fullres" "pxl_row_in_fullres"
imgData
All image related data are stored inside the
int_metadata
’s imgData
field as a
DataFrame
of the following structure:
sample_id
the image belongs toimage_id
in order to accommodate multiple
imagesdata
(a SpatialImage
object)scaleFactor
that adjusts pixel positions of the
original,The imgData()
accessor can be used to retrieve the image
data stored within the object:
## DataFrame with 2 rows and 4 columns
## sample_id image_id data scaleFactor
## <character> <character> <list> <numeric>
## 1 section1 lowres #### 0.0510334
## 2 section2 lowres #### 0.0510334
SpatialImage
classImages are stored inside the data
field of the
imgData
as a list of SpatialImage
s. Each image
may be of one of the following sub-classes:
LoadedSpatialImage
raster
object@image
contains a raster
object: a matrix
of RGB colors for each pixel in the imageStoredSpatialImage
@path
specifies a local file from which to retrieve the
imageRemoteSpatialImage
@url
specifies where to retrieve the image fromA SpatialImage
can be accessed using
getImg()
, or retrieved directly from the
imgData()
:
## 576 x 600 (width x height) StoredSpatialImage
## imgSource():
## /tmp/RtmpUJEgmO/Rinst17a4560e36e9/SpatialExperiment/extdata/10xVisium/section1/o
## uts/spatial/tissue_lowres_image.png
## [1] TRUE
Data available in an object of class SpatialImage
may be
accessed via the imgRaster()
and imgSource()
accessors:
Image entries may be added or removed from a
SpatialExperiment
’s imgData
DataFrame
using addImg()
and
rmvImg()
, respectively.
Besides a path or URL to source the image from and a numeric scale
factor, addImg()
requires specification of the
sample_id
the new image belongs to, and an
image_id
that is not yet in use for that sample:
url <- "https://i.redd.it/3pw5uah7xo041.jpg"
spe <- addImg(spe,
sample_id = "section1",
image_id = "pomeranian",
imageSource = url,
scaleFactor = NA_real_,
load = TRUE)
img <- imgRaster(spe,
sample_id = "section1",
image_id = "pomeranian")
plot(img)
The rmvImg()
function is more flexible in the
specification of the sample_id
and image_id
arguments. Specifically:
TRUE
is equivalent to all, e.g.sample_id = "<sample>"
,
image_id = TRUE
NULL
defaults to the first entry available, e.g.sample_id = "<sample>"
,
image_id = NULL
For example, sample_id = TRUE
,
image_id = TRUE
will specify all images;
sample_id = NULL
, image_id = NULL
corresponds
to the first image entry in the imgData
;
sample_id = TRUE
, image_id = NULL
equals the
first image for all samples; and sample_id = NULL
,
image_id = TRUE
matches all images for the first
sample.
Here, we remove section1
’s pomeranian
image
added in the previous code chunk; the image is now completely gone from
the imgData
:
## DataFrame with 2 rows and 4 columns
## sample_id image_id data scaleFactor
## <character> <character> <list> <numeric>
## 1 section1 lowres #### 0.0510334
## 2 section2 lowres #### 0.0510334
The SpatialExperiment
constructor provides several
arguments to give maximum flexibility to the user.
In particular, these include:
spatialCoords
, a numeric matrix
containing
spatial coordinatesspatialCoordsNames
, a character vector specifying
whichcolData
fields correspond to spatial coordinatesspatialCoords
can be supplied via colData
by specifying the column names that correspond to spatial coordinates
with spatialCoordsNames
:
n <- length(z <- letters)
y <- matrix(nrow = n, ncol = n)
cd <- DataFrame(x = seq(n), y = seq(n), z)
spe1 <- SpatialExperiment(
assay = y,
colData = cd,
spatialCoordsNames = c("x", "y"))
Alternatively, spatialCoords
may be supplied separately
as a matrix
, e.g.:
xy <- as.matrix(cd[, c("x", "y")])
spe2 <- SpatialExperiment(
assay = y,
colData = cd["z"],
spatialCoords = xy)
Importantly, both of the above SpatialExperiment()
function calls lead to construction of the exact same object:
## [1] TRUE
Finally, spatialCoords(Names)
are optional, i.e., we can
construct a SPE using only a subset of the above arguments:
## [1] TRUE
In general, spatialCoordsNames
takes precedence over
spatialCoords
, i.e., if both are supplied, the latter will
be ignored. In other words, spatialCoords
are
preferentially extracted from the DataFrame
provided via
colData
. E.g., in the following function call,
spatialCoords
will be ignored, and xy-coordinates are
instead extracted from the input colData
according to the
specified spatialCoordsNames
. In this case, a message is
also provided:
n <- 10; m <- 20
y <- matrix(nrow = n, ncol = m)
cd <- DataFrame(x = seq(m), y = seq(m))
xy <- matrix(nrow = m, ncol = 2)
colnames(xy) <- c("x", "y")
SpatialExperiment(
assay = y,
colData = cd,
spatialCoordsNames = c("x", "y"),
spatialCoords = xy)
## Both 'spatialCoords' and 'spatialCoordsNames' have been supplied;
## using 'spatialCoords'. Set either to NULL to suppress this message.
When working with spot-based ST data, such as 10x Genomics
Visium or other platforms providing images, it is possible to store
the image information in the dedicated imgData
structure.
Also, the SpatialExperiment
class stores a
sample_id
value in the colData
structure,
which is possible to set with the sample_id
argument
(default is “sample_01”).
Here we show how to load the default Space Ranger data files
from a 10x Genomics Visium experiment, and build a
SpatialExperiment
object.
In particular, the readImgData()
function is used to
build an imgData
DataFrame
to be passed to the
SpatialExperiment
constructor. The sample_id
used to build the imgData
object must be the same one used
to build the SpatialExperiment
object, otherwise an error
is returned.
dir <- system.file(
file.path("extdata", "10xVisium", "section1", "outs"),
package = "SpatialExperiment")
# read in counts
fnm <- file.path(dir, "raw_feature_bc_matrix")
sce <- DropletUtils::read10xCounts(fnm)
# read in image data
img <- readImgData(
path = file.path(dir, "spatial"),
sample_id = "foo")
# read in spatial coordinates
fnm <- file.path(dir, "spatial", "tissue_positions_list.csv")
xyz <- read.csv(fnm, header = FALSE,
col.names = c(
"barcode", "in_tissue", "array_row", "array_col",
"pxl_row_in_fullres", "pxl_col_in_fullres"))
# construct observation & feature metadata
rd <- S4Vectors::DataFrame(
symbol = rowData(sce)$Symbol)
# construct 'SpatialExperiment'
(spe <- SpatialExperiment(
assays = list(counts = assay(sce)),
rowData = rd,
colData = DataFrame(xyz),
spatialCoordsNames = c("pxl_col_in_fullres", "pxl_row_in_fullres"),
imgData = img,
sample_id = "foo"))
## class: SpatialExperiment
## dim: 50 50
## metadata(0):
## assays(1): counts
## rownames(50): ENSMUSG00000051951 ENSMUSG00000089699 ...
## ENSMUSG00000005886 ENSMUSG00000101476
## rowData names(1): symbol
## colnames: NULL
## colData names(5): barcode in_tissue array_row array_col sample_id
## reducedDimNames(0):
## mainExpName: NULL
## altExpNames(0):
## spatialCoords names(2) : pxl_col_in_fullres pxl_row_in_fullres
## imgData names(4): sample_id image_id data scaleFactor
Alternatively, the read10xVisium()
function facilitates
the import of 10x Genomics Visium data to handle one or more
samples organized in folders reflecting the default Space
Ranger folder tree organization, as illustrated below (where
“raw/filtered” refers to either “raw” or “filtered” to match the
data
argument). Note that the base directory “outs/” from
Space Ranger can either be included manually in the paths provided in
the samples
argument, or can be ignored; if ignored, it
will be added automatically. The .h5
files are used if
type = "HDF5"
. (Note that tissue_positions.csv
was renamed in Space Ranger v2.0.0.)
sample
. | — outs
· · | — raw/filtered_feature_bc_matrix.h5
· · | — raw/filtered_feature_bc_matrix
· · · | — barcodes.tsv.gz
· · · | — features.tsv.gz
· · · | — matrix.mtx.gz
· · | — spatial
· · · | — scalefactors_json.json
· · · | — tissue_lowres_image.png
· · · | — tissue_positions.csv
Using read10xVisium()
, the above code to construct the
same SPE is reduced to:
dir <- system.file(
file.path("extdata", "10xVisium"),
package = "SpatialExperiment")
sample_ids <- c("section1", "section2")
samples <- file.path(dir, sample_ids, "outs")
(spe10x <- read10xVisium(samples, sample_ids,
type = "sparse", data = "raw",
images = "lowres", load = FALSE))
## class: SpatialExperiment
## dim: 50 99
## metadata(0):
## assays(1): counts
## rownames(50): ENSMUSG00000051951 ENSMUSG00000089699 ...
## ENSMUSG00000005886 ENSMUSG00000101476
## rowData names(1): symbol
## colnames(99): AAACAACGAATAGTTC-1 AAACAAGTATCTCCCA-1 ...
## AAAGTCGACCCTCAGT-1 AAAGTGCCATCAATTA-1
## colData names(4): in_tissue array_row array_col sample_id
## reducedDimNames(0):
## mainExpName: NULL
## altExpNames(0):
## spatialCoords names(2) : pxl_col_in_fullres pxl_row_in_fullres
## imgData names(4): sample_id image_id data scaleFactor
Or alternatively, omitting the base directory outs/
from
Space Ranger:
samples2 <- file.path(dir, sample_ids)
(spe10x2 <- read10xVisium(samples2, sample_ids,
type = "sparse", data = "raw",
images = "lowres", load = FALSE))
## class: SpatialExperiment
## dim: 50 99
## metadata(0):
## assays(1): counts
## rownames(50): ENSMUSG00000051951 ENSMUSG00000089699 ...
## ENSMUSG00000005886 ENSMUSG00000101476
## rowData names(1): symbol
## colnames(99): AAACAACGAATAGTTC-1 AAACAAGTATCTCCCA-1 ...
## AAAGTCGACCCTCAGT-1 AAAGTGCCATCAATTA-1
## colData names(4): in_tissue array_row array_col sample_id
## reducedDimNames(0):
## mainExpName: NULL
## altExpNames(0):
## spatialCoords names(2) : pxl_col_in_fullres pxl_row_in_fullres
## imgData names(4): sample_id image_id data scaleFactor
To demonstrate how to accommodate molecule-based ST data
(e.g. seqFISH platform) inside a SpatialExperiment
object, we generate some mock data of 1000 molecule coordinates across
50 genes and 20 cells. These should be formatted into a
data.frame
where each row corresponds to a molecule, and
columns specify the xy-positions as well as which gene/cell the molecule
has been assigned to:
n <- 1e3 # number of molecules
ng <- 50 # number of genes
nc <- 20 # number of cells
# sample xy-coordinates in [0, 1]
x <- runif(n)
y <- runif(n)
# assign each molecule to some gene-cell pair
gs <- paste0("gene", seq(ng))
cs <- paste0("cell", seq(nc))
gene <- sample(gs, n, TRUE)
cell <- sample(cs, n, TRUE)
# assure gene & cell are factors so that
# missing observations aren't dropped
gene <- factor(gene, gs)
cell <- factor(cell, cs)
# construct data.frame of molecule coordinates
df <- data.frame(gene, cell, x, y)
head(df)
## gene cell x y
## 1 gene28 cell4 0.8578514 0.6730375
## 2 gene38 cell12 0.3813858 0.9145423
## 3 gene36 cell12 0.8768044 0.3048765
## 4 gene29 cell13 0.2815574 0.5212181
## 5 gene36 cell9 0.7874058 0.9938483
## 6 gene2 cell17 0.2339577 0.4012629
Next, it is possible to re-shape the above table into a BumpyMatrix
using splitAsBumpyMatrix()
, which takes as input the
xy-coordinates, as well as arguments specifying the row and column index
of each observation:
# construct 'BumpyMatrix'
library(BumpyMatrix)
mol <- splitAsBumpyMatrix(
df[, c("x", "y")],
row = gene, col = cell)
Finally, it is possible to construct a SpatialExperiment
object with two data slots:
counts
assay stores the number of molecules per
gene and cellmolecules
assay holds the spatial molecule
positions (xy-coordinates)Each entry in the molecules
assay is a
DFrame
that contains the positions of all molecules from a
given gene that have been assigned to a given cell.
## cell
## gene cell1 cell2 cell3 cell4 cell5
## gene1 2 2 2 1 1
## gene2 1 1 1 0 0
## gene3 1 2 1 0 1
## gene4 0 2 0 2 1
## gene5 0 0 2 1 2
# construct SpatialExperiment
spe <- SpatialExperiment(
assays = list(
counts = y,
molecules = mol))
spe
## class: SpatialExperiment
## dim: 50 20
## metadata(0):
## assays(2): counts molecules
## rownames(50): gene1 gene2 ... gene49 gene50
## rowData names(0):
## colnames(20): cell1 cell2 ... cell19 cell20
## colData names(1): sample_id
## reducedDimNames(0):
## mainExpName: NULL
## altExpNames(0):
## spatialCoords names(0) :
## imgData names(0):
The BumpyMatrix
of molecule locations can be accessed
using the dedicated molecules()
accessor:
## 50 x 20 BumpyDataFrameMatrix
## rownames: gene1 gene2 ... gene49 gene50
## colnames: cell1 cell2 ... cell19 cell20
## preview [1,1]:
## DataFrame with 2 rows and 2 columns
## x y
## <numeric> <numeric>
## 1 0.407064 0.554045
## 2 0.240953 0.423735
Subsetting objects is automatically defined to synchronize across all attributes, as for any other Bioconductor Experiment class.
For example, it is possible to subset
by
sample_id
as follows:
Or to retain only observations that map to tissue via:
## [1] TRUE
To work with multiple samples, the SpatialExperiment
class provides the cbind
method, which assumes unique
sample_id
(s) are provided for each sample.
In case the sample_id
(s) are duplicated across multiple
samples, the cbind
method takes care of this by appending
indices to create unique sample identifiers.
## 'sample_id's are duplicated across 'SpatialExperiment' objects to cbind; appending sample indices.
## [1] "sample01.1" "sample01.2"
Alternatively (and preferentially), we can create unique
sample_id
(s) prior to cbind
ing as follows:
In particular, when trying to replace the sample_id
(s)
of a SpatialExperiment
object, these must map uniquely with
the already existing ones, otherwise an error is returned.
## Error in .local(x, ..., value): Number of unique 'sample_id's is 2, but 3 were provided.
## Error in .local(x, ..., value): Number of unique 'sample_id's is 2, but 3 were provided.
Importantly, the sample_id
colData
field is
protected, i.e., it will be retained upon attempted removal (=
replacement by NULL
):
# backup original sample IDs
tmp <- spe$sample_id
# try to remove sample IDs
spe$sample_id <- NULL
# sample IDs remain unchanged
identical(tmp, spe$sample_id)
## [1] TRUE
Both the SpatialImage
(SpI) and
SpatialExperiment
(SpE) class currently support two basic
image transformations, namely, rotation (via rotateImg()
)
and mirroring (via mirrorImg()
). Specifically, for a SpI/E
x
:
rotateImg(x, degrees)
expects as degrees
a
single numeric in +/-[0,90,…,360].mirrorImg(x, axis)
expects as axis
a
character string specifying"h"
) or vertically
("v"
).Here, we apply various transformations using both a SpI
(spi
) and SpE (spe
) as input, and compare the
resulting images to the original:
## R version 4.4.2 (2024-10-31)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.1 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so; LAPACK version 3.12.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: Etc/UTC
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] BumpyMatrix_1.15.0 SpatialExperiment_1.17.0
## [3] SingleCellExperiment_1.29.1 SummarizedExperiment_1.37.0
## [5] Biobase_2.67.0 GenomicRanges_1.59.1
## [7] GenomeInfoDb_1.43.2 IRanges_2.41.2
## [9] S4Vectors_0.45.2 BiocGenerics_0.53.3
## [11] generics_0.1.3 MatrixGenerics_1.19.0
## [13] matrixStats_1.4.1 BiocStyle_2.35.0
##
## loaded via a namespace (and not attached):
## [1] rjson_0.2.23 xfun_0.49
## [3] bslib_0.8.0 rhdf5_2.51.1
## [5] lattice_0.22-6 rhdf5filters_1.19.0
## [7] tools_4.4.2 curl_6.0.1
## [9] parallel_4.4.2 R.oo_1.27.0
## [11] Matrix_1.7-1 sparseMatrixStats_1.19.0
## [13] dqrng_0.4.1 lifecycle_1.0.4
## [15] GenomeInfoDbData_1.2.13 compiler_4.4.2
## [17] statmod_1.5.0 codetools_0.2-20
## [19] htmltools_0.5.8.1 sys_3.4.3
## [21] buildtools_1.0.0 sass_0.4.9
## [23] yaml_2.3.10 crayon_1.5.3
## [25] jquerylib_0.1.4 R.utils_2.12.3
## [27] BiocParallel_1.41.0 DelayedArray_0.33.3
## [29] cachem_1.1.0 limma_3.63.2
## [31] magick_2.8.5 abind_1.4-8
## [33] locfit_1.5-9.10 digest_0.6.37
## [35] maketools_1.3.1 fastmap_1.2.0
## [37] grid_4.4.2 cli_3.6.3
## [39] SparseArray_1.7.2 magrittr_2.0.3
## [41] S4Arrays_1.7.1 edgeR_4.5.1
## [43] DelayedMatrixStats_1.29.0 UCSC.utils_1.3.0
## [45] rmarkdown_2.29 XVector_0.47.0
## [47] httr_1.4.7 DropletUtils_1.27.1
## [49] R.methodsS3_1.8.2 beachmat_2.23.4
## [51] HDF5Array_1.35.2 evaluate_1.0.1
## [53] knitr_1.49 rlang_1.1.4
## [55] Rcpp_1.0.13-1 scuttle_1.17.0
## [57] formatR_1.14 BiocManager_1.30.25
## [59] jsonlite_1.8.9 R6_2.5.1
## [61] Rhdf5lib_1.29.0 zlibbioc_1.52.0