--- title: "SparseArray objects" author: - name: Hervé Pagès affiliation: Fred Hutchinson Cancer Research Center, Seattle, WA date: "Compiled `r BiocStyle::doc_date()`; Modified 27 September 2024" package: SparseArray vignette: | %\VignetteIndexEntry{SparseArray objects} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} output: BiocStyle::html_document --- ```{r setup, include=FALSE} library(BiocStyle) ``` # Introduction `r Biocpkg("SparseArray")` is an infrastructure package that enables high-performance sparse data representation and manipulation in R. The workhorse of the package is an array-like container that allows efficient in-memory representation of multidimensional sparse data in R. # Install and load the package Use `BiocManager::install()` to install the `r Biocpkg("SparseArray")` package: ```{r, eval=FALSE} if (!require("BiocManager", quietly=TRUE)) install.packages("BiocManager") BiocManager::install("SparseArray") ``` Load the package: ```{r, message=FALSE} library(SparseArray) ``` # The SparseArray virtual class and its two concrete subclasses The package defines the SparseArray virtual class and two concrete subclasses: COO\_SparseArray and SVT\_SparseArray. Each subclass uses its own internal representation of the nonzero multidimensional data: the "COO layout" and the "SVT layout", respectively. Note that the SparseArray virtual class makes no assumption about the internal representation of the nonzero data, so it could easily be extended by other S4 classes that use a different layout for the nonzero data. This vignette focuses on the SVT\_SparseArray container, which is the most memory-efficient and feature-complete of the two SparseArray subclasses. The COO\_SparseArray class is only provided to support some rare use-cases. In other words, using SVT\_SparseArray objects is almost always preferred over using COO\_SparseArray objects. # SVT\_SparseArray objects The SVT\_SparseArray container provides an efficient representation of the nonzero multidimensional data via a novel layout called the "SVT layout". Note that SVT\_SparseArray objects mimic as much as possible the behavior of ordinary matrix or array objects in base R. In particular, they suppport most of the "standard matrix and array API" defined in base R and in the `r Biocpkg("matrixStats")` package from CRAN. ## Construction SVT\_SparseArray objects can be constructed in many ways. A common way is to start with an empty object and to subassign nonzero values to it: ```{r} svt1 <- SVT_SparseArray(dim=c(6, 4)) svt1[c(1:2, 8, 10, 15:17, 24)] <- (1:8)*10L svt1 svt2 <- SVT_SparseArray(dim=5:3) svt2[c(1:2, 8, 10, 15:17, 20, 24, 40, 56:60)] <- (1:15)*10L svt2 ``` Another way is to coerce a matrix- or array-like object to SVT\_SparseArray: ```{r} # Coerce a dgCMatrix object to SVT_SparseArray: dgcm <- Matrix::rsparsematrix(12, 5, density=0.15) svt3 <- as(dgcm, "SVT_SparseArray") # Coerce a TENxMatrix object to SVT_SparseArray: suppressMessages(library(HDF5Array)) M <- writeTENxMatrix(svt3) svt3b <- as(M, "SVT_SparseArray") # Sanity check: stopifnot(identical(svt3, svt3b)) ``` Alternatively, these coercions can be done by simply passing the object to coerce to the `SVT_SparseArray()` constructor function: ```{r} svt3 <- SVT_SparseArray(dgcm) # same as as(dgcm, "SVT_SparseArray") svt3b <- SVT_SparseArray(M) # same as as(M, "SVT_SparseArray") ``` See `?SVT_SparseArray` for more information about the `SVT_SparseArray()` constructor function and additional examples. ## SVT\_SparseArray vs COO\_SparseArray As mentioned earlier, SVT\_SparseArray objects are almost always preferred over using COO\_SparseArray objects. Coercing to SparseArray or using the `SparseArray()` constructor function reflects this preference i.e. in both cases the actual class of the returned SparseArray derivative will almost always be SVT\_SparseArray (or SVT\_SparseMatrix). Except in the rare situation where returning a COO\_SparseArray object is a more natural fit for the input object. For example coercing the following objects to SparseArray will _always_ produce an SVT\_SparseArray object: ```{r} # Coerce an ordinary matrix to SparseArray: a <- array(rpois(80, lambda=0.35), dim=c(5, 8, 2)) class(as(a, "SparseArray")) # SVT_SparseArray # Coerce a dgCMatrix object to SparseArray: svt3 <- as(dgcm, "SparseArray") class(svt3) # SVT_SparseArray # Coerce a TENxMatrix object to SparseArray: svt3b <- as(M, "SparseArray") class(svt3) # SVT_SparseArray ``` Also using the `SparseArray()` constructor function on these objects will _always_ produce an SVT\_SparseArray object: ```{r} SparseArray(a) # same as as(a, "SparseArray") svt3 <- SparseArray(dgcm) # same as as(dgcm, "SparseArray") svt3b <- SparseArray(M) # same as as(M, "SparseArray") ``` This is actually the most convenient way to turn an ordinary matrix or array, or a dgCMatrix object, or a TENxMatrix object, into an SVT\_SparseArray object. One situation where `as(x, "SparseArray")` or `SparseArray(x)` will return a COO\_SparseArray object is when the input object `x` is a sparseMatrix derivative that uses a compressed _row-oriented_ representation (`"R"` representation) instead of the more widely used compressed _column-oriented_ representation (`"C"` representation): ```{r} ngrm <- sparseMatrix(i=c(1, 5, 5, 6), j=c(4, 2, 3, 2), repr="R") class(ngrm) # ngRMatrix class(SparseArray(ngrm)) # COO_SparseMatrix ``` One way to enforce the SVT\_SparseArray representation is to coerce the result to SVT\_SparseArray: ```{r} svt <- as(SparseArray(ngrm), "SVT_SparseArray") class(svt) # SVT_SparseMatrix ``` Finally, note that coercing back to ordinary matrix or array (dense representation) is supported, although obviously not a good idea if the SparseArray object is big: ```{r} as.array(svt1) # same as as.matrix(svt1) as.array(svt2) ``` # The SparseArray API ## The core array API SVT\_SparseArray objects support the "core array API" defined in base R: ```{r} dim(svt2) length(svt2) dimnames(svt2) <- list(NULL, letters[1:4], LETTERS[1:3]) svt2 ``` ## type() and is\_sparse() `type()` and `is_sparse()` are generic functions defined in `r Biocpkg("BiocGenerics")` and `r Biocpkg("S4Arrays")`, respectively. They extend the "core array API" defined in base R: ```{r} type(svt1) type(svt1) <- "double" svt1 is_sparse(svt1) ``` See `?SparseArray` for more information and additional examples. ## is\_nonzero() and the nz\*() functions A set of functions is provided for direct manipulation of the nonzero array elements: ```{r} is_nonzero(svt1) ## Get the number of nonzero array elements in 'svt1': nzcount(svt1) ## Extract the "linear indices" of the nonzero array elements in 'svt1': nzwhich(svt1) ## Extract the "array indices" (a.k.a. "array coordinates") of the ## nonzero array elements in 'svt1': nzwhich(svt1, arr.ind=TRUE) ## Extract the values of the nonzero array elements in 'svt1': nzvals(svt1) ``` Note that the vectors produced by `nzwhich()` and `nzvals()` are _parallel_, that is, they have the same length and the i-th element in one vector corresponds to the i-th element in the other vector. See `?is_nonzero` for more information and additional examples. ## Subsetting and subassignment ```{r} svt2[5:3, , "C"] ``` Like with ordinary arrays in base R, assigning values of type `"double"` to an SVT\_SparseArray object of type `"integer"` will automatically change the type of the object to `"double"`: ```{r} type(svt2) svt2[5, 1, 3] <- NaN type(svt2) ``` See `?SparseArray_subsetting` for more information and additional examples. ## Summarization methods (whole array) The following summarization methods are provided at the moment: `anyNA()`, `any`, `all`, `min`, `max`, `range`, `sum`, `prod`, `mean`, `var`, `sd`. ```{r} anyNA(svt2) range(svt2, na.rm=TRUE) mean(svt2, na.rm=TRUE) var(svt2, na.rm=TRUE) ``` See `?SparseArray_summarization` for more information and additional examples. ## Operations from the Arith, Compare, Logic, Math, Math2, and Complex groups SVT\_SparseArray objects support operations from the `Arith`, `Compare`, `Logic`, `Math`, `Math2`, and `Complex` groups, with some restrictions. See `?S4groupGeneric` in the `r Biocpkg("methods")` package for more information about these group generics. ```{r} signif((svt1^1.5 + svt1) %% 100 - 0.6 * svt1, digits=2) ``` See `?SparseArray_Arith`, `?SparseArray_Compare`, `?SparseArray_Logic`, `?SparseArray_Math`, and `?SparseArray_Complex` for more information and additional examples. # The 2D API ## SVT\_SparseMatrix objects SVT\_SparseMatrix objects are just two-dimensional SVT\_SparseArray objects. See `?SparseArray` for a diagram of the SparseArray class hierarchy. ## Transposition ```{r} t(svt1) ``` Note that multidimensional transposition is supported via `aperm()`: ```{r} aperm(svt2) ``` See `?SparseArray_aperm` for more information and additional examples. ## Combine multidimensional objects along a given dimension Like ordinary matrices in base R, SVT\_SparseMatrix objects can be combined by rows or columns, with `rbind()` or `cbind()`: ```{r} svt4 <- poissonSparseMatrix(6, 2, density=0.5) cbind(svt1, svt4) ``` Note that multidimensional objects can be combined along any dimension with `abind()`: ```{r} svt5a <- poissonSparseArray(c(5, 6, 2), density=0.4) svt5b <- poissonSparseArray(c(5, 6, 5), density=0.2) svt5c <- poissonSparseArray(c(5, 6, 4), density=0.2) abind(svt5a, svt5b, svt5c) svt6a <- aperm(svt5a, c(1, 3:2)) svt6b <- aperm(svt5b, c(1, 3:2)) svt6c <- aperm(svt5c, c(1, 3:2)) abind(svt6a, svt6b, svt6c, along=2) ``` See `?SparseArray_abind` for more information and additional examples. ## matrixStats methods The `r Biocpkg("SparseArray")` package provides memory-efficient col/row summarization methods for SVT\_SparseMatrix objects: ```{r} svt7 <- SVT_SparseArray(dim=5:6, dimnames=list(letters[1:5], LETTERS[1:6])) svt7[c(2, 6, 12:17, 22:30)] <- 101:117 colVars(svt7) ``` Note that multidimensional objects are supported: ```{r} colVars(svt2) colVars(svt2, dims=2) colAnyNAs(svt2) colAnyNAs(svt2, dims=2) ``` See `?SparseArray_matrixStats` for more information and additional examples. ## `rowsum()` and `colsum()` `rowsum()` and `colsum()` are supported: ```{r} rowsum(svt7, group=c(1:3, 2:1)) colsum(svt7, group=c("A", "B", "A", "B", "B", "A")) ``` See `?rowsum_methods` for more information and additional examples. ## Matrix multiplication and cross-product SVT\_SparseMatrix objects support matrix multiplication: ```{r} svt7 %*% svt4 ``` as well as `crossprod()` and `tcrossprod()`: ```{r} crossprod(svt4) ``` See `?SparseMatrix_mult` for more information and additional examples. # Other operations ## Generate a random SVT\_SparseArray object Two convenience functions are provided for this: ```{r} randomSparseArray(c(5, 6, 2), density=0.5) poissonSparseArray(c(5, 6, 2), density=0.5) ``` See `?randomSparseArray` for more information and additional examples. ## Read/write a sparse matrix from/to a CSV file Use `writeSparseCSV()` to write a sparse matrix to a CSV file: ```{r} csv_file <- tempfile() writeSparseCSV(svt7, csv_file) ``` Use `readSparseCSV()` to read the file. This will import the data as an SVT\_SparseMatrix object: ```{r} readSparseCSV(csv_file) ``` See `?readSparseCSV` for more information and additional examples. # Comparison with dgCMatrix objects ## "SVT layout" vs "CSC layout" The nonzero data of a SVT\_SparseArray object is stored in a _Sparse Vector Tree_. This internal data representation is referred to as the "SVT layout". It is similar to the "CSC layout" (compressed, sparse, column-oriented format) used by CsparseMatrix derivatives from the `r CRANpkg("Matrix")` package, like dgCMatrix or lgCMatrix objects, but with the following improvements: - The "SVT layout" supports sparse arrays of arbitrary dimensions. - With the "SVT layout", the sparse data can be of any type. Whereas CsparseMatrix derivatives only support sparse data of type `"double"` or `"logical"`. - The "SVT layout" imposes no limit on the number of nonzero array elements that can be stored. With dgCMatrix/lgCMatrix objects, this number must be < 2^31. - Overall, the "SVT layout" allows more efficient operations on SVT\_SparseArray objects. See `?SVT_SparseArray` for more information about the "SVT layout". ## Working with a big sparse dataset The "1.3 Million Brain Cell Dataset" from 10x Genomics is a sparse 2D dataset with more than 2^31 nonzero values. The dataset is stored in an HDF5 file that is available via ExperimentHub (resource id `EH1039`): ```{r} suppressMessages(library(HDF5Array)) suppressMessages(library(ExperimentHub)) hub <- ExperimentHub() oneM <- TENxMatrix(hub[["EH1039"]], group="mm10") oneM ``` `oneM` is a TENxMatrix object. This is a particular kind of sparse DelayedArray object where the data is on disk in an HDF5 file. See `?TENxMatrix` in the `r CRANpkg("HDF5Array")` package for more information about TENxMatrix objects. Note that the object has more than 2^31 nonzero values: ```{r} nzcount(oneM) ``` The standard way to load the data of a TENxMatrix object (or any DelayedArray derivative) from disk to memory is to simply coerce the object to the desired in-memory representation. For example, to load the data in an SVT\_SparseArray object: ```{r, eval=FALSE} # WARNING: This takes a couple of minutes on a modern laptop, and will # consume about 25Gb of RAM! svt <- as(oneM, "SVT_SparseArray") ``` To load the data in a dgCMatrix object: ```{r, eval=FALSE} # This will fail because 'oneM' has more than 2^31 nonzero values! as(oneM, "dgCMatrix") ``` # Learn more Please consult the individual man pages in the `r Biocpkg("SparseArray")` package to learn more about SVT\_SparseArray objects and about the package. A good starting point is the man page for SparseArray objects: `?SparseArray` # Session information ```{r} sessionInfo() ```