Package 'SingleCellAlleleExperiment'

Title: S4 Class for Single Cell Data with Allele and Functional Levels for Immune Genes
Description: Defines a S4 class that is based on SingleCellExperiment. In addition to the usual gene layer the object can also store data for immune genes such as HLAs, Igs and KIRs at allele and functional level. The package is part of a workflow named single-cell ImmunoGenomic Diversity (scIGD), that firstly incorporates allele-aware quantification data for immune genes. This new data can then be used with the here implemented data structure and functionalities for further data handling and data analysis.
Authors: Jonas Schuck [aut, cre] , Ahmad Al Ajami [aut] , Federico Marini [aut] , Katharina Imkeller [aut]
Maintainer: Jonas Schuck <[email protected]>
License: MIT + file LICENSE
Version: 1.3.0
Built: 2024-10-31 05:33:47 UTC
Source: https://github.com/bioc/SingleCellAlleleExperiment

Help Index


Building first new subassay for SingleCellAllelexperiment object

Description

Internal function for the first assay extension used in the SingleCellAlleleExperiment() constructor, computing the first of the two new subassays that get appended to the quantification assay. This subassay contains the allele gene identifiers instead of the allele identifiers present in the raw data and sums up the expression counts of alleles that have the same allele gene identifiers.

Usage

alleles2genes(sce, lookup, exp_type, gene_symbols)

Arguments

sce

A SingleCellExperiment object.

lookup

A data.frame object containing the lookup table.

exp_type

Internal character string parameter that determines in which format the gene symbols in the input data are. Can be c("ENS","noENS")

gene_symbols

A logical parameter to decide whether to compute additional gene gene symbols in case the raw data only contains ENSEMBL gene identifiers.

Value

A SingleCellExperiment object


Check package installation for optional functionalities

Description

Check package installation for optional functionalities

Usage

check_valid_optional_package(log, gene_symbols)

Arguments

log

A logical parameter to decide if a logcounts assay should be computed based on library factors computed with scuttle::computeLibraryFactors().

gene_symbols

A logical parameter to decide whether to compute additional gene gene symbols in case the raw data only contains ENSEMBL gene identifiers.

Value

Error messages if cases are met


Extend rowData with new annotation columns

Description

Extend rowData with new annotation columns

Usage

ext_rd(sce, exp_type, gene_symbols, verbose = FALSE)

Arguments

sce

A SingleCellExperiment object.

exp_type

Internal character string parameter that determines in which format the gene symbols in the input data are. Can be c("ENS","noENS")

gene_symbols

A logical parameter to decide whether to compute additional gene gene symbols in case the raw data only contains ENSEMBL gene identifiers.

verbose

A logical parameter to decide if runtime-messages should be shown during function execution. Use FALSE if no info runtime-messages should be shown (default), and TRUE for showing runtime-messages.

Value

A SingleCellExperiment object


Identify rows containing allele information

Description

Internal function used in get_allelecounts() to subsample the quantification assay and only return the rows specifying allele-quantification information.

Usage

find_allele_ids(sce)

Arguments

sce

A SingleCellExperiment object.

Value

A SingleCellExperiment object


Building second new subassay for the SingleCellAlleleExperiment object

Description

Internal function for the second assay extension used in the SingleCellAlleleExperiment() constructor, computing the second of the two new subassays that get appended to the quantification assay. This subassay contains the functional allele classes and sums up the expression counts of the allele genes that are in the same functional group.

Usage

genes2functional(sce, lookup, exp_type, gene_symbols)

Arguments

sce

A SingleCellExperiment object.

lookup

A data.frame object containing the lookup table.

exp_type

Internal character string parameter that determines in which format the gene symbols in the input data are. Can be c("ENS","noENS")

gene_symbols

A logical parameter to decide whether to compute additional gene gene symbols in case the raw data only contains ENSEMBL gene identifiers.

Value

A SingleCellExperiment object


Get immune gene rows

Description

Getter function returning subsampled SCAE object with all rows containing immune gene information. These rows are identified by "I" in rowData(scae)$NI_I and "G" in rowData(scae)$Quant_type.

Usage

get_agenes(scae)

Arguments

scae

A SingleCellAlleleExperiment object.

Value

A SingleCellAlleleExperiment object.


Get Subassay with allele gene names and raw allele quantification

Description

Internal function used to build a subassay containing counts from raw alleles. The rownames of this subassay are already translated to the corresponding immune gene identifier, which are extracted from the lookup table.

Usage

get_allelecounts(sce, lookup)

Arguments

sce

A SingleCellExperiment object.

lookup

A data.frame object containing the lookup table.

Value

A SingleCellExperiment object


Knee plot info

Description

Creates a knee plot information, ranking the barcodes according to their total UMI count. The information is later on passed to the metadata(scae)[["knee_info"]] slot.

Usage

get_knee_info(matrix, genes, barcodes)

Arguments

matrix

A sparse Matrix object containing the quantification data.

genes

A data.frame object containing gene identifiers.

barcodes

A data.frame object containing barcode identifiers.

Value

A list including a data.frame with barcode rank information, the corresponding knee and inflection point.


Get NCBI genes using the org.HS.db package

Description

Get NCBI genes using the org.HS.db package

Usage

get_ncbi_org(sce)

Arguments

sce

A SingleCellExperiment object.

Value

A list of character strings for gene names.


Get non-immune rows

Description

Getter function returning subsampled SCAE object with all rows containing non-immune gene information. These rows are identified by "NI" in rowData(scae)$NI_I and "G" in rowData(scae)$Quant_type.

Usage

get_nigenes(scae)

Arguments

scae

A SingleCellAlleleExperiment object.

Value

A SingleCellAlleleExperiment object.


Reading in allele quantification data into SingleCellAlleleExperiment object

Description

Main read in function for reading in allele quantification data and loading the data into an SingleCellAlleleExperiment object.

Usage

read_allele_counts(
  samples_dir,
  sample_names = names(samples_dir),
  filter_mode = c("no", "yes", "custom"),
  lookup_file = lookup,
  barcode_file = "cells_x_genes.barcodes.txt",
  gene_file = "cells_x_genes.genes.txt",
  matrix_file = "cells_x_genes.mtx",
  filter_threshold = NULL,
  log = FALSE,
  gene_symbols = FALSE,
  verbose = FALSE,
  BPPARAM = BiocParallel::SerialParam()
)

Arguments

samples_dir

A character string determining the path to one directory containing input files.

sample_names

A character string for a sample identifier. Can be used to describe the used dataset or sample.

filter_mode

A vector containing three character strings that describe different options for filtering. The value "yes" uses the inflection point of the knee plot to filter out low-quality cells. The default value "no" performs filtering on a threshold=0. The value "custom" allows for setting a custom threshold in the filter_threshold parameter.

lookup_file

A character string determining the path to the lookup table.

barcode_file

A character string determining the name of the file containing the barcode identifiers.

gene_file

A character string determining the name of the file containing the feature identifiers.

matrix_file

A character string determining the name of the file containing the count matrix.

filter_threshold

An integer value used as a threshold for filtering low-quality barcodes/cells. Standard value is NULL when using filter = c("yes", "no"). Value must be provided when using filter = "custom".

log

A logical parameter to decide if logcounts assay should be computed based on library factors computed with scuttle::computeLibraryFactors().

gene_symbols

A logical parameter to decide whether to compute additional gene gene symbols in case the raw data only contains ENSEMBL gene identifiers.

verbose

A logical parameter to decide if additional runtime-messages should be shown during function execution. Use FALSE if no info runtime-messages should be shown (default), and TRUE for showing runtime-messages.

BPPARAM

A BiocParallelParam object specifying how loading should be parallelized for multiple samples.

Details

The SingleCellAlleleExperiment data structure serves as a data representation for data generated with the scIGD workflow. This workflow allows for the quantification of expression and interactive exploration of donor-specific alleles of different immune genes and its

Input data are generated by the scIGD workflow is stored in a shared folder. Expected naming scheme of the files from the data generating method:

  • quantification matrix: cells_x_genes.mtx

  • barcode information: cells_x_genes.barcodes.txt

  • feature information: cells_x_genes.genes.txt

  • allele lookup table: lookup_table.csv

File identifiers can be specifically stated if renamed.

Optional features:

  • Filtering: Used parameter is filter_mode. Default filtering is performed with a threshold=0 UMIs. filter_mode="yes" performs advanced filtering based on ranking the barcodes and infering a inflection point of a knee plot. Information regarding the knee plot is exported in the metadata(scae)[["knee_info"]] slot for later plotting (see vignette).

  • Computing a logcount assay by normalizing the input data based on a sizeFactor method recommended for single-cell data. Used parameter is log=TRUE/FALSE.

  • Computing additional gene symbols in case the input data only contains gene identifiers represented as Ensembl ids. Used parameter is gene_symbols=TRUE/FALSE.

Value

A SingleCellAlleleExperiment object.

See Also

SingleCellAlleleExperiment

Examples

example_data_5k <- scaeData::scaeDataGet(dataset="pbmc_5k")
lookup_name <- "pbmc_5k_lookup_table.csv"
lookup <- read.csv(system.file("extdata", lookup_name, package="scaeData"))


# preflight mode, default filtering with a threshold of 0 UMI counts
scae_preflight <- read_allele_counts(example_data_5k$dir,
                          sample_names="example_data",
                          filter_mode="no",
                          lookup_file=lookup,
                          barcode_file=example_data_5k$barcodes,
                          gene_file=example_data_5k$features,
                          matrix_file=example_data_5k$matrix,
                          filter_threshold=NULL)

scae_preflight

# automatic filtering mode, filtering out low-quality cells
# on the inflection point of the knee plot
#scae_filtered <- read_allele_counts(example_data_5k$dir,
#                         sample_names="example_data",
#                         filter_mode="yes",
#                         lookup_file=lookup,
#                         barcode_file=example_data_5k$barcodes,
#                         gene_file=example_data_5k$features,
#                         matrix_file=example_data_5k$matrix,
#                         filter_threshold=NULL,
#                         verbose=TRUE)

# scae_filtered

# custom filtering mode, setting up a custom filter threshold for filtering
# scae_custom_filter <- read_allele_counts(example_data_5k$dir,
#                         sample_names="example_data",
#                         filter_mode="custom",
#                         lookup_file=lookup,
#                         barcode_file=example_data_5k$barcodes,
#                         gene_file=example_data_5k$features,
#                         matrix_file=example_data_5k$matrix,
#                         filter_threshold=200)

# scae_custom_filter

Reading in allele-aware quantification data

Description

Internal function used in read_allele_counts() that reads in the data stated in the given directory path.

Usage

read_from_sparse_allele(path, barcode_file, gene_file, matrix_file)

Arguments

path

A character string determining the path to the directory containing the input files.

barcode_file

A character string determining the name of the file containing the sample-tag quantification data.

gene_file

A character string determining the name of the file containing the feature identifiers.

matrix_file

A character string determining the name of the file containing the count matrix.

Value

A list with three data.frames containing the input data information.


rowData setter for the SingleCellAlleleExperiment class

Description

Setter function for the rowData slot for the SingleCellAlleleExperiment class.

Usage

## S4 replacement method for signature 'SingleCellAlleleExperiment,ANY'
rowData(x) <- value

Arguments

x

A SingleCellAlleleExperiment object

value

Value of valid type and content (see validty.R)

Details

If you set rowData(scae)<- NULL the mandatory columns "NI_I" and "Quant_type" will be kept silently, setting all other columns to NULL.

If you want to change the content of the mandatory "NI_I" and "Quant_type" columns check the valid values:

  • NI_I: c("NI" and "I") are valid values.

  • Quant_type: c("A", "G" "F") are valid values.

Value

A SingleCellAlleleExperiment object

See Also

SingleCellAlleleExperiment


rowData-NULL-setter for the SingleCellAlleleExperiment class

Description

Setter function for the rowData slot for the SingleCellAlleleExperiment class.

Usage

## S4 replacement method for signature 'SingleCellAlleleExperiment,NULL'
rowData(x) <- value

Arguments

x

A SingleCellAlleleExperiment object

value

NULL

Value

A SingleCellAlleleExperiment object


Subset SCAE object

Description

Function used for subsetting the different layers stored in a SingleCellAlleleExperiment object. Valid subset values are: subset=c("nonimmune", "alleles", "immune_genes", "functional_groups").

Usage

scae_subset(
  scae,
  subset = c("nonimmune", "alleles", "immune_genes", "functional_groups")
)

Arguments

scae

SCAE object

subset

Character string specifying a data layer. Valid values are subset=c("nonimmune", "alleles", "immune_genes", "functional_groups").

Value

SCAE object

Examples

example_data_5k <- scaeData::scaeDataGet(dataset="pbmc_5k")
lookup_name <- "pbmc_5k_lookup_table.csv"
lookup <- read.csv(system.file("extdata", lookup_name, package="scaeData"))

scae <- read_allele_counts(example_data_5k$dir,
                          sample_names="example_data_wta",
                          filter_mode="no",
                          lookup_file=lookup,
                          barcode_file=example_data_5k$barcodes,
                          gene_file=example_data_5k$features,
                          matrix_file=example_data_5k$matrix,
                          filter_threshold=0,
                          verbose=TRUE)

scae

scae_nonimmune_subset <- scae_subset(scae, subset="nonimmune")
scae_nonimmune_subset

scae_alleles_subset <- scae_subset(scae, subset="alleles")
scae_alleles_subset

scae_immune_genes_subset <- scae_subset(scae, subset="immune_genes")
scae_immune_genes_subset

scae_functional_groups_subset <- scae_subset(scae, subset="functional_groups")
scae_functional_groups_subset

Get allele rows

Description

Getter function returning subsampled SCAE object with all rows containing raw allele information. These rows are identified by "I" in rowData(scae)$NI_I and "A" in rowData(scae)$Quant_type.

Usage

scae_subset_alleles(scae)

Arguments

scae

A SingleCellAlleleExperiment object.

Value

A SingleCellAlleleExperiment object.


Get functional class rows

Description

Getter function returning subsampled SCAE object with all rows containing functional class information. These rows are identified by "I" in rowData(scae)$NI_I and "F" in rowData(scae)$Quant_type.

Usage

scae_subset_functional(scae)

Arguments

scae

A SingleCellAlleleExperiment object.

Value

A SingleCellAlleleExperiment object.


The SingleCellAlleleExperiment class

Description

The SingleCellAlleleExperiment class is a comprehensive multi-layer data structure, enabling the representatino of immune genes at specific levels, including alleles, genes and groups of functionally similar genes. This data representation allows data handling and data analysis across these immunological relevant, different layers of annotation.

Usage

SingleCellAlleleExperiment(
  ...,
  lookup,
  metadata = NULL,
  threshold = 0,
  exp_type = "ENS",
  log = TRUE,
  gene_symbols = FALSE,
  verbose = FALSE
)

Arguments

...

Arguments passed to the SingleCellExperiment constructor to fill the slots of the SCE-class.

lookup

A data.frame object containing the lookup table.

metadata

A list containing a dataframe and two integer values of information regarding plotting a knee plot for quality control. This parameter is linked to filter_mode="yes" in the read_allele_counts() function.

threshold

An integer value used as a threshold for filtering low-quality barcodes/cells.

exp_type

Internal character string parameter that determines in which format the gene symbols in the input data are. Can be c("ENS","noENS")

log

A logical parameter which determines if the user wants to compute the logcounts assay.

gene_symbols

A logical parameter to decide whether to compute additional gene gene symbols in case the raw data only contains ENSEMBL gene identifiers.

verbose

A logical parameter to decide if runtime-messages should be shown during function execution. Use FALSE if no info runtime-messages should be shown (default), and TRUE for showing runtime-messages.

Details

The SingleCellAlleleExperiment class builds upon and extends the data representation that can be facilitated using a SingleCellExperiment object.

The Constructor SingleCellAlleleExperiment() can be used on its own, if raw data is processed accordingly (see examples) OR in a more convenient way using this packages read in function read_allele_counts()

A getter function scae_subset() allows to subset the object according to the newly implemented layers.

In this class, similar to the SingleCellExperiment class, rows should represent genomic features (including immune genes, represented as allele information), while columns represent single cells/barcodes.

The SingleCellAlleleExperiment data structure serves as a data representation for data generated with the scIGD workflow. This workflow allows for the quantification of expression and interactive exploration of donor-specific alleles of different immune genes and its

Value

A SingleCellAlleleExperiment object.

See Also

read_allele_counts()

scae_subset()

Examples

##-If you want to use the Constructor on its own, some preprocessing is
##-necessary to bring the data in proper format
##-Here, we use an example dataset found in in the `scaeData` package.

##-Find an alternative and recommended read in below as a second example

example_data_5k <- scaeData::scaeDataGet(dataset="pbmc_5k")
lookup_name <- "pbmc_5k_lookup_table.csv"
lookup <- read.csv(system.file("extdata", lookup_name, package="scaeData"))

barcode_loc <- file.path(example_data_5k$dir, example_data_5k$barcodes)
feature_loc <- file.path(example_data_5k$dir, example_data_5k$features)
matrix_loc  <- file.path(example_data_5k$dir, example_data_5k$matrix)

feature_info <- utils::read.delim(feature_loc, header=FALSE)
cell_names   <- utils::read.csv(barcode_loc, sep="", header=FALSE)
mat <- t(Matrix::readMM(matrix_loc))

##-Prepare input data
colnames(feature_info) <- "Ensembl_ID"
sample_names <- "pbmc_5k"
sparse_mat <- as(mat, "CsparseMatrix")

##--colData
cell_info_list <- S4Vectors::DataFrame(Sample=rep(sample_names,
                                                 length(cell_names)),
                                      Barcode=cell_names$V1,
                                      row.names=NULL)
##--rowData and count matrix
rownames(feature_info) <- feature_info[,1]
cnames <- cell_info_list$Barcode
colnames(sparse_mat) <- cnames

scae <- SingleCellAlleleExperiment(assays=list(counts=sparse_mat),
                                   rowData=feature_info,
                                   colData=cell_info_list,
                                   lookup=lookup,
                                   verbose=TRUE)

scae

##-OR, use the read in function `read_allele_counts()` !![RECOMMENDED]!!
##-Find more examples in its documentation using `?read_allele_counts`

# scae_2 <- read_allele_counts(example_data_5k$dir,
#                              sample_names="example_data",
#                              filter_mode="no",
#                              lookup_file=lookup,
#                              barcode_file=example_data_5k$barcodes,
#                              gene_file=example_data_5k$features,
#                              matrix_file=example_data_5k$matrix,
#                              verbose=TRUE)

# scae_2

Miscellaneous SingleCellAlleleExperiment methods

Description

Miscellaneous methods for the SingleCellAlleleExperiment class and its descendants that do not fit into any other documentation category such as, for example, show methods.

Usage

## S4 method for signature 'SingleCellAlleleExperiment'
show(object)

Arguments

object

a SingleCellAlleleExperiment object

Value

Returns NULL