Step 2: The Scone Workflow

K-nearest neighbors:

We read in input.scone.csv, which is our file modified (and renamed) from the get.marker.names() function. The K-nearest neighbor generation is derived from the Fast Nearest Neighbors (FNN) R package, within our function Fnn(), which takes as input the “input markers” to be used, along with the concatenated data previously generated, and the desired k. We advise the default selection to the total number of cells in the dataset divided by 100, as has been optimized on existing mass cytometry datasets. The output of this function is a matrix of each cell and the identity of its k-nearest neighbors, in terms of its row number in the dataset used here as input.

library(Sconify)
# Markers from the user-generated excel file
marker.file <- system.file('extdata', 'markers.csv', package = "Sconify")
markers <- ParseMarkers(marker.file)

# How to convert your excel sheet into vector of static and functional markers
markers
## $input
##  [1] "CD3(Cd110)Di"           "CD3(Cd111)Di"           "CD3(Cd112)Di"          
##  [4] "CD235-61-7-15(In113)Di" "CD3(Cd114)Di"           "CD45(In115)Di"         
##  [7] "CD19(Nd142)Di"          "CD22(Nd143)Di"          "IgD(Nd145)Di"          
## [10] "CD79b(Nd146)Di"         "CD20(Sm147)Di"          "CD34(Nd148)Di"         
## [13] "CD179a(Sm149)Di"        "CD72(Eu151)Di"          "IgM(Eu153)Di"          
## [16] "Kappa(Sm154)Di"         "CD10(Gd156)Di"          "Lambda(Gd157)Di"       
## [19] "CD24(Dy161)Di"          "TdT(Dy163)Di"           "Rag1(Dy164)Di"         
## [22] "PreBCR(Ho165)Di"        "CD43(Er167)Di"          "CD38(Er168)Di"         
## [25] "CD40(Er170)Di"          "CD33(Yb173)Di"          "HLA-DR(Yb174)Di"       
## 
## $functional
##  [1] "pCrkL(Lu175)Di"  "pCREB(Yb176)Di"  "pBTK(Yb171)Di"   "pS6(Yb172)Di"   
##  [5] "cPARP(La139)Di"  "pPLCg2(Pr141)Di" "pSrc(Nd144)Di"   "Ki67(Sm152)Di"  
##  [9] "pErk12(Gd155)Di" "pSTAT3(Gd158)Di" "pAKT(Tb159)Di"   "pBLNK(Gd160)Di" 
## [13] "pP38(Tm169)Di"   "pSTAT5(Nd150)Di" "pSyk(Dy162)Di"   "tIkBa(Er166)Di"
# Get the particular markers to be used as knn and knn statistics input
input.markers <- markers[[1]]
funct.markers <- markers[[2]]

# Selection of the k. See "Finding Ideal K" vignette
k <- 30

# The built-in scone functions
wand.nn <- Fnn(cell.df = wand.combined, input.markers = input.markers, k = k)
# Cell identity is in rows, k-nearest neighbors are columns
# List of 2 includes the cell identity of each nn, 
#   and the euclidean distance between
#   itself and the cell of interest

# Indices
str(wand.nn[[1]])
##  int [1:1000, 1:30] 728 600 472 977 173 799 564 485 52 176 ...
wand.nn[[1]][1:20, 1:10]
##       [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
##  [1,]  728  428  975  191  324  840  639  261  174   272
##  [2,]  600  470  214  872  989  833  952  257  414   482
##  [3,]  472  872  838  855  670  909   19  651  482   170
##  [4,]  977  392  611  610  976  444  821  827  932   651
##  [5,]  173   22  767  588  852  785  396  496  401   784
##  [6,]  799  668  572  224  123  941  494  702  802   755
##  [7,]  564  528  810   92  292  902  301  892  424   344
##  [8,]  485  213  745  841  677  492  323  548  631   217
##  [9,]   52  853  534  759  346  568  724  932   50   673
## [10,]  176  949  314  567  352  571  695  131   38   819
## [11,]  869  595  260  434  818  234  269  405  462   300
## [12,]  622  728  428  637  116  446  975  200  261   369
## [13,]  869  876  969  129  494  787  895  738  409   617
## [14,]  785  972  385   78  221  650  898  292  516   966
## [15,]  803  368  225  959  618  565  253  191  780   541
## [16,]  841  631  473  300  846  680  506   26  190   398
## [17,]  226  793  211  780  428  908  191  467  261   134
## [18,]  952  656  560  833  172  214  426  628  156   676
## [19,]  800  724  638   89  651  170  283  863  872   381
## [20,]  550  903  652  496  965   80  944  788  661   860
# Distance
str(wand.nn[[2]])
##  num [1:1000, 1:30] 2.63 3.63 4.21 2.34 3.07 ...
wand.nn[[2]][1:20, 1:10]
##           [,1]     [,2]     [,3]     [,4]     [,5]     [,6]     [,7]     [,8]
##  [1,] 2.628028 2.760060 2.976200 3.013099 3.063431 3.084616 3.098669 3.193783
##  [2,] 3.630493 3.647824 3.978432 3.993102 4.012787 4.014178 4.093523 4.099559
##  [3,] 4.209103 4.346599 4.352202 4.442967 4.600549 4.848014 4.877127 4.969283
##  [4,] 2.343261 2.696411 2.809258 2.961742 2.967441 3.137996 3.154311 3.159903
##  [5,] 3.072292 3.338310 3.490052 3.572306 3.673769 3.692126 3.729749 3.827220
##  [6,] 3.653781 3.736796 3.782037 3.816203 3.837499 4.078010 4.079693 4.083511
##  [7,] 4.631537 5.024567 5.657185 5.830067 6.037061 6.106859 6.207261 6.271510
##  [8,] 3.018629 3.079598 3.190289 3.297410 3.335644 3.394667 3.412268 3.482824
##  [9,] 3.488930 3.517163 3.555011 3.837582 3.879786 4.043410 4.073645 4.140539
## [10,] 4.376914 4.574178 5.123233 5.164057 5.180396 5.180790 5.223843 5.227210
## [11,] 3.247260 3.369159 3.412549 3.657511 3.708235 3.760682 3.867757 3.958814
## [12,] 2.453201 2.967051 3.104128 3.167093 3.185010 3.189332 3.206891 3.218411
## [13,] 2.612928 2.724873 2.775316 2.802767 2.941141 3.009110 3.046709 3.070737
## [14,] 3.933836 4.226732 4.237876 4.526058 4.617088 4.699386 4.702130 4.705292
## [15,] 3.850458 4.187139 4.248591 4.255944 4.289726 4.326873 4.328134 4.390694
## [16,] 2.366281 2.630707 2.635397 2.667544 2.752493 2.869122 2.914047 2.964926
## [17,] 3.745536 3.764372 3.786412 3.790699 3.822202 3.822912 3.824388 3.875307
## [18,] 2.951628 3.037363 3.048558 3.090264 3.177894 3.241036 3.260322 3.299411
## [19,] 2.915530 3.064093 3.485632 3.503581 3.653345 3.700618 3.732034 3.756622
## [20,] 4.681334 4.720201 4.728447 4.841910 4.903387 4.983522 4.996874 5.001183
##           [,9]    [,10]
##  [1,] 3.221482 3.252045
##  [2,] 4.115680 4.190158
##  [3,] 5.004522 5.022780
##  [4,] 3.462435 3.465246
##  [5,] 3.932257 4.028702
##  [6,] 4.089239 4.103829
##  [7,] 6.422010 6.426686
##  [8,] 3.515227 3.532004
##  [9,] 4.288083 4.358622
## [10,] 5.313258 5.365150
## [11,] 3.990841 3.996589
## [12,] 3.255873 3.264745
## [13,] 3.142829 3.206543
## [14,] 4.757414 4.793385
## [15,] 4.429798 4.437444
## [16,] 2.968273 2.972508
## [17,] 3.899263 3.917406
## [18,] 3.319166 3.329592
## [19,] 3.785342 3.910815
## [20,] 5.066946 5.081251

Finding scone values:

This function iterates through each KNN, and performs a series of calculations. The first is fold change values for each maker per KNN, where the user chooses whether this will be based on medians or means. The second is a statistical test, where the user chooses t test or Mann-Whitney U test. I prefer the latter, because it does not assume any properties of the distributions. Of note, the p values are adjusted for false discovery rate, and therefore are called q values in the output of this function. The user also inputs a threshold parameter (default 0.05), where the fold change values will only be shown if the corresponding statistical test returns a q value below said threshold. Finally, the “multiple.donor.compare” option, if set to TRUE will perform a t test based on the mean per-marker values of each donor. This is to allow the user to make comparisons across replicates or multiple donors if that is relevant to the user’s biological questions. This function returns a matrix of cells by computed values (change and statistical test results, labeled either marker.change or marker.qvalue). This matrix is intermediate, as it gets concatenated with the original input matrix in the post-processing step (see the relevant vignette). We show the code and the output below. See the post-processing vignette, where we show how this gets combined with the input data, and additional analysis is performed.

wand.scone <- SconeValues(nn.matrix = wand.nn, 
                      cell.data = wand.combined, 
                      scone.markers = funct.markers, 
                      unstim = "basal")

wand.scone
## # A tibble: 1,000 × 34
##    `pCrkL(Lu175)Di.IL7.qvalue` pCREB(Yb176)Di.IL7.qvalu…¹ pBTK(Yb171)Di.IL7.qv…²
##                          <dbl>                      <dbl>                  <dbl>
##  1                       0.840                      0.964                  0.810
##  2                       0.840                      0.964                  0.981
##  3                       0.978                      0.762                  0.963
##  4                       0.954                      1                      0.967
##  5                       0.840                      0.986                  0.784
##  6                       0.840                      1                      0.989
##  7                       0.871                      1                      0.614
##  8                       0.893                      0.964                  1    
##  9                       0.897                      0.964                  0.863
## 10                       0.840                      0.982                  0.973
## # ℹ 990 more rows
## # ℹ abbreviated names: ¹​`pCREB(Yb176)Di.IL7.qvalue`,
## #   ²​`pBTK(Yb171)Di.IL7.qvalue`
## # ℹ 31 more variables: `pS6(Yb172)Di.IL7.qvalue` <dbl>,
## #   `cPARP(La139)Di.IL7.qvalue` <dbl>, `pPLCg2(Pr141)Di.IL7.qvalue` <dbl>,
## #   `pSrc(Nd144)Di.IL7.qvalue` <dbl>, `Ki67(Sm152)Di.IL7.qvalue` <dbl>,
## #   `pErk12(Gd155)Di.IL7.qvalue` <dbl>, `pSTAT3(Gd158)Di.IL7.qvalue` <dbl>, …

For programmers: performing additional per-KNN statistics

If one wants to export KNN data to perform other statistics not available in this package, then I provide a function that produces a list of each cell identity in the original input data matrix, and a matrix of all cells x features of its KNN.

I also provide a function to find the KNN density estimation independently of the rest of the “scone.values” analysis, to save time if density is all the user wants. With this density estimation, one can perform interesting analysis, ranging from understanding phenotypic density changes along a developmental progression (see post-processing vignette for an example), to trying out density-based binning methods (eg. X-shift). Of note, this density is specifically one divided by the aveage distance to k-nearest neighbors. This specific measure is related to the Shannon Entropy estimate of that point on the manifold (https://hal.archives-ouvertes.fr/hal-01068081/document).

I use this metric to avoid the unusual properties of the volume of a sphere as it increases in dimensions (https://en.wikipedia.org/wiki/Volume_of_an_n-ball). This being said, one can modify this vector to be such a density estimation (example http://www.cs.haifa.ac.il/~rita/ml_course/lectures_old/KNN.pdf), by treating the distance to knn as the radius of a n-dimensional sphere and incoroprating said volume accordingly.

An individual with basic programming skills can iterate through these elements to perform the statistics of one’s choosing. Examples would include per-KNN regression and classification, or feature imputation. The additional functionality is shown below, with the example knn.list in the package being the first ten instances:

# Constructs KNN list, computes KNN density estimation
wand.knn.list <- MakeKnnList(cell.data = wand.combined, nn.matrix = wand.nn)
wand.knn.list[[8]]
## # A tibble: 30 × 51
##    `CD3(Cd110)Di` `CD3(Cd111)Di` `CD3(Cd112)Di` `CD235-61-7-15(In113)Di`
##             <dbl>          <dbl>          <dbl>                    <dbl>
##  1        -0.234         0.373          0.244                     -0.252
##  2         0.0465       -0.0188        -0.146                     -1.15 
##  3        -0.0710       -0.00365       -0.235                     -0.892
##  4        -0.0179       -0.0305        -0.663                     -0.897
##  5         0.237        -0.0447        -0.119                     -0.717
##  6        -0.506        -0.0602         0.145                      0.158
##  7        -0.148         0.816         -0.0442                    -1.36 
##  8        -0.179        -0.131         -0.159                     -0.550
##  9        -0.474        -0.231         -0.312                     -0.419
## 10        -0.236        -0.109          0.00696                   -1.02 
## # ℹ 20 more rows
## # ℹ 47 more variables: `CD3(Cd114)Di` <dbl>, `CD45(In115)Di` <dbl>,
## #   `CD19(Nd142)Di` <dbl>, `CD22(Nd143)Di` <dbl>, `IgD(Nd145)Di` <dbl>,
## #   `CD79b(Nd146)Di` <dbl>, `CD20(Sm147)Di` <dbl>, `CD34(Nd148)Di` <dbl>,
## #   `CD179a(Sm149)Di` <dbl>, `CD72(Eu151)Di` <dbl>, `IgM(Eu153)Di` <dbl>,
## #   `Kappa(Sm154)Di` <dbl>, `CD10(Gd156)Di` <dbl>, `Lambda(Gd157)Di` <dbl>,
## #   `CD24(Dy161)Di` <dbl>, `TdT(Dy163)Di` <dbl>, `Rag1(Dy164)Di` <dbl>, …
# Finds the KNN density estimation for each cell, ordered by column, in the 
# original data matrix
wand.knn.density <- GetKnnDe(nn.matrix = wand.nn)
str(wand.knn.density)
##  num [1:1000] 0.3 0.227 0.197 0.283 0.239 ...