Step 2: The Scone Workflow

K-nearest neighbors:

We read in input.scone.csv, which is our file modified (and renamed) from the get.marker.names() function. The K-nearest neighbor generation is derived from the Fast Nearest Neighbors (FNN) R package, within our function Fnn(), which takes as input the “input markers” to be used, along with the concatenated data previously generated, and the desired k. We advise the default selection to the total number of cells in the dataset divided by 100, as has been optimized on existing mass cytometry datasets. The output of this function is a matrix of each cell and the identity of its k-nearest neighbors, in terms of its row number in the dataset used here as input.

library(Sconify)
# Markers from the user-generated excel file
marker.file <- system.file('extdata', 'markers.csv', package = "Sconify")
markers <- ParseMarkers(marker.file)

# How to convert your excel sheet into vector of static and functional markers
markers
## $input
##  [1] "CD3(Cd110)Di"           "CD3(Cd111)Di"           "CD3(Cd112)Di"          
##  [4] "CD235-61-7-15(In113)Di" "CD3(Cd114)Di"           "CD45(In115)Di"         
##  [7] "CD19(Nd142)Di"          "CD22(Nd143)Di"          "IgD(Nd145)Di"          
## [10] "CD79b(Nd146)Di"         "CD20(Sm147)Di"          "CD34(Nd148)Di"         
## [13] "CD179a(Sm149)Di"        "CD72(Eu151)Di"          "IgM(Eu153)Di"          
## [16] "Kappa(Sm154)Di"         "CD10(Gd156)Di"          "Lambda(Gd157)Di"       
## [19] "CD24(Dy161)Di"          "TdT(Dy163)Di"           "Rag1(Dy164)Di"         
## [22] "PreBCR(Ho165)Di"        "CD43(Er167)Di"          "CD38(Er168)Di"         
## [25] "CD40(Er170)Di"          "CD33(Yb173)Di"          "HLA-DR(Yb174)Di"       
## 
## $functional
##  [1] "pCrkL(Lu175)Di"  "pCREB(Yb176)Di"  "pBTK(Yb171)Di"   "pS6(Yb172)Di"   
##  [5] "cPARP(La139)Di"  "pPLCg2(Pr141)Di" "pSrc(Nd144)Di"   "Ki67(Sm152)Di"  
##  [9] "pErk12(Gd155)Di" "pSTAT3(Gd158)Di" "pAKT(Tb159)Di"   "pBLNK(Gd160)Di" 
## [13] "pP38(Tm169)Di"   "pSTAT5(Nd150)Di" "pSyk(Dy162)Di"   "tIkBa(Er166)Di"
# Get the particular markers to be used as knn and knn statistics input
input.markers <- markers[[1]]
funct.markers <- markers[[2]]

# Selection of the k. See "Finding Ideal K" vignette
k <- 30

# The built-in scone functions
wand.nn <- Fnn(cell.df = wand.combined, input.markers = input.markers, k = k)
# Cell identity is in rows, k-nearest neighbors are columns
# List of 2 includes the cell identity of each nn, 
#   and the euclidean distance between
#   itself and the cell of interest

# Indices
str(wand.nn[[1]])
##  int [1:1000, 1:30] 135 258 943 604 846 229 711 275 814 632 ...
wand.nn[[1]][1:20, 1:10]
##       [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
##  [1,]  135  559   45  393  758  913  676  304  881   455
##  [2,]  258  768  240  874  541  311  549  789  694   104
##  [3,]  943  832  519  953  207  582  740  610   84    51
##  [4,]  604  265  326  918  969  163  501  852  716   320
##  [5,]  846  627  630  511  989  773  420    4  163   297
##  [6,]  229   47  724  210  705  870  709  257  682    49
##  [7,]  711  709  250  103  594  897   74  341  464   174
##  [8,]  275  203  341  711  659  661  822    7  476   644
##  [9,]  814  558  490  581  363  653  657  574  847   226
## [10,]  632  932  703   56  172  624  726   36  820   247
## [11,]  803  892  225  554  334  950  183   55  248   920
## [12,]  380  166  130  545  150  195  797  180  285   542
## [13,]  861  926   11  183  516  999  237   51  161   803
## [14,]  565  720  417  983  437  613  447  826  865   466
## [15,]  716  367  722   67  772  667  181  371  241   258
## [16,]  193  770   88  325  376  505   67  378  412   756
## [17,]  636  381  275  278  577  660  680  923  911   311
## [18,]  265  368  349  457  716  737  333  604  326   252
## [19,]  280  563   30  317  929   98  390  977  456   957
## [20,]  827  802  481  915   18  951  374  253  918   604
# Distance
str(wand.nn[[2]])
##  num [1:1000, 1:30] 3.31 3.19 3.95 2.61 3.43 ...
wand.nn[[2]][1:20, 1:10]
##           [,1]     [,2]     [,3]     [,4]     [,5]     [,6]     [,7]     [,8]
##  [1,] 3.307951 3.546798 3.898668 4.137591 4.140438 4.373694 4.423461 4.436593
##  [2,] 3.190382 3.202113 3.400571 3.477230 3.506575 3.515697 3.524951 3.543076
##  [3,] 3.952653 4.491266 4.607518 4.615528 4.685829 4.832555 4.844766 5.069151
##  [4,] 2.612928 2.709035 2.802767 2.904681 3.009110 3.016592 3.046709 3.070737
##  [5,] 3.426378 3.480374 3.571378 3.616311 3.703144 3.765286 3.791979 3.955882
##  [6,] 3.154017 3.185010 3.372972 3.707808 3.785822 3.810819 3.838643 3.857591
##  [7,] 2.628028 2.976200 3.013099 3.063431 3.084616 3.124423 3.188596 3.193783
##  [8,] 3.159509 3.181523 3.218693 3.301469 3.696267 3.703596 3.716144 3.739260
##  [9,] 3.157952 3.235178 3.280142 3.327577 3.334009 3.397645 3.432855 3.476889
## [10,] 4.050647 4.135238 4.296608 4.339992 4.536367 5.001013 5.120571 5.307969
## [11,] 2.551057 2.934124 3.246497 3.301250 3.467129 3.528934 3.537213 3.626039
## [12,] 3.122392 3.466023 3.758921 3.853933 3.890838 3.986126 4.018560 4.033475
## [13,] 3.703606 3.898671 3.901613 3.902774 3.989778 3.992463 4.087599 4.110172
## [14,] 4.262442 4.535107 4.842285 5.081027 5.094219 5.145122 5.243460 5.434153
## [15,] 2.786216 2.987076 3.062838 3.086236 3.089990 3.216017 3.216842 3.297911
## [16,] 3.732413 4.381576 4.465460 4.474524 4.581580 4.642551 4.674345 4.678632
## [17,] 4.176456 4.184986 4.366096 4.387111 4.555794 4.594899 4.616670 4.707321
## [18,] 2.977965 2.984140 3.091233 3.311228 3.320118 3.348014 3.355058 3.393778
## [19,] 3.802450 3.819593 3.912981 3.998455 4.008490 4.142636 4.205364 4.206469
## [20,] 3.628261 3.706452 3.792651 3.824039 3.953584 3.955012 3.959543 4.059143
##           [,9]    [,10]
##  [1,] 4.464983 4.514860
##  [2,] 3.578920 3.598481
##  [3,] 5.082720 5.157007
##  [4,] 3.206543 3.211902
##  [5,] 4.022172 4.040735
##  [6,] 3.917244 3.918454
##  [7,] 3.221482 3.252045
##  [8,] 3.970952 3.987337
##  [9,] 3.486682 3.495449
## [10,] 5.445113 5.536845
## [11,] 3.673624 3.676229
## [12,] 4.083185 4.114034
## [13,] 4.120862 4.155166
## [14,] 5.498970 5.543954
## [15,] 3.399645 3.430603
## [16,] 4.679538 4.722383
## [17,] 4.770444 4.811990
## [18,] 3.400751 3.413641
## [19,] 4.223790 4.235914
## [20,] 4.118343 4.128355

Finding scone values:

This function iterates through each KNN, and performs a series of calculations. The first is fold change values for each maker per KNN, where the user chooses whether this will be based on medians or means. The second is a statistical test, where the user chooses t test or Mann-Whitney U test. I prefer the latter, because it does not assume any properties of the distributions. Of note, the p values are adjusted for false discovery rate, and therefore are called q values in the output of this function. The user also inputs a threshold parameter (default 0.05), where the fold change values will only be shown if the corresponding statistical test returns a q value below said threshold. Finally, the “multiple.donor.compare” option, if set to TRUE will perform a t test based on the mean per-marker values of each donor. This is to allow the user to make comparisons across replicates or multiple donors if that is relevant to the user’s biological questions. This function returns a matrix of cells by computed values (change and statistical test results, labeled either marker.change or marker.qvalue). This matrix is intermediate, as it gets concatenated with the original input matrix in the post-processing step (see the relevant vignette). We show the code and the output below. See the post-processing vignette, where we show how this gets combined with the input data, and additional analysis is performed.

wand.scone <- SconeValues(nn.matrix = wand.nn, 
                      cell.data = wand.combined, 
                      scone.markers = funct.markers, 
                      unstim = "basal")

wand.scone
## # A tibble: 1,000 × 34
##    `pCrkL(Lu175)Di.IL7.qvalue` pCREB(Yb176)Di.IL7.qvalu…¹ pBTK(Yb171)Di.IL7.qv…²
##                          <dbl>                      <dbl>                  <dbl>
##  1                       1                          0.966                  0.924
##  2                       0.989                      0.930                  0.962
##  3                       0.989                      0.962                  0.870
##  4                       0.989                      0.996                  0.870
##  5                       0.989                      0.969                  0.962
##  6                       0.989                      0.965                  0.962
##  7                       1                          0.992                  0.891
##  8                       0.989                      0.992                  0.870
##  9                       1                          0.962                  0.958
## 10                       0.989                      0.965                  0.924
## # ℹ 990 more rows
## # ℹ abbreviated names: ¹​`pCREB(Yb176)Di.IL7.qvalue`,
## #   ²​`pBTK(Yb171)Di.IL7.qvalue`
## # ℹ 31 more variables: `pS6(Yb172)Di.IL7.qvalue` <dbl>,
## #   `cPARP(La139)Di.IL7.qvalue` <dbl>, `pPLCg2(Pr141)Di.IL7.qvalue` <dbl>,
## #   `pSrc(Nd144)Di.IL7.qvalue` <dbl>, `Ki67(Sm152)Di.IL7.qvalue` <dbl>,
## #   `pErk12(Gd155)Di.IL7.qvalue` <dbl>, `pSTAT3(Gd158)Di.IL7.qvalue` <dbl>, …

For programmers: performing additional per-KNN statistics

If one wants to export KNN data to perform other statistics not available in this package, then I provide a function that produces a list of each cell identity in the original input data matrix, and a matrix of all cells x features of its KNN.

I also provide a function to find the KNN density estimation independently of the rest of the “scone.values” analysis, to save time if density is all the user wants. With this density estimation, one can perform interesting analysis, ranging from understanding phenotypic density changes along a developmental progression (see post-processing vignette for an example), to trying out density-based binning methods (eg. X-shift). Of note, this density is specifically one divided by the aveage distance to k-nearest neighbors. This specific measure is related to the Shannon Entropy estimate of that point on the manifold (https://hal.archives-ouvertes.fr/hal-01068081/document).

I use this metric to avoid the unusual properties of the volume of a sphere as it increases in dimensions (https://en.wikipedia.org/wiki/Volume_of_an_n-ball). This being said, one can modify this vector to be such a density estimation (example http://www.cs.haifa.ac.il/~rita/ml_course/lectures_old/KNN.pdf), by treating the distance to knn as the radius of a n-dimensional sphere and incoroprating said volume accordingly.

An individual with basic programming skills can iterate through these elements to perform the statistics of one’s choosing. Examples would include per-KNN regression and classification, or feature imputation. The additional functionality is shown below, with the example knn.list in the package being the first ten instances:

# Constructs KNN list, computes KNN density estimation
wand.knn.list <- MakeKnnList(cell.data = wand.combined, nn.matrix = wand.nn)
wand.knn.list[[8]]
## # A tibble: 30 × 51
##    `CD3(Cd110)Di` `CD3(Cd111)Di` `CD3(Cd112)Di` `CD235-61-7-15(In113)Di`
##             <dbl>          <dbl>          <dbl>                    <dbl>
##  1        -0.138         -0.170          0.651                    -0.824
##  2        -0.248          0.710          0.475                     0.105
##  3        -0.0477        -0.0514        -0.0339                   -0.474
##  4        -0.0498         0.201          0.573                    -0.355
##  5        -0.0648        -0.0166        -0.0818                   -0.681
##  6        -0.0153         0.269         -0.0503                    0.918
##  7         0.588          0.207          1.50                     -0.411
##  8        -0.326         -0.0343         1.04                      0.157
##  9         0.394          0.636          0.527                     0.686
## 10        -0.165         -0.0208         0.0296                   -0.129
## # ℹ 20 more rows
## # ℹ 47 more variables: `CD3(Cd114)Di` <dbl>, `CD45(In115)Di` <dbl>,
## #   `CD19(Nd142)Di` <dbl>, `CD22(Nd143)Di` <dbl>, `IgD(Nd145)Di` <dbl>,
## #   `CD79b(Nd146)Di` <dbl>, `CD20(Sm147)Di` <dbl>, `CD34(Nd148)Di` <dbl>,
## #   `CD179a(Sm149)Di` <dbl>, `CD72(Eu151)Di` <dbl>, `IgM(Eu153)Di` <dbl>,
## #   `Kappa(Sm154)Di` <dbl>, `CD10(Gd156)Di` <dbl>, `Lambda(Gd157)Di` <dbl>,
## #   `CD24(Dy161)Di` <dbl>, `TdT(Dy163)Di` <dbl>, `Rag1(Dy164)Di` <dbl>, …
# Finds the KNN density estimation for each cell, ordered by column, in the 
# original data matrix
wand.knn.density <- GetKnnDe(nn.matrix = wand.nn)
str(wand.knn.density)
##  num [1:1000] 0.211 0.275 0.192 0.302 0.239 ...