Title: | Classes and methods for multi-omics data integration |
---|---|
Description: | Classes and tools for multi-omics data integration. |
Authors: | STATegra Consortia |
Maintainer: | David Gomez-Cabrero <[email protected]>, NĂºria Planell <[email protected]> |
License: | GPL-2 |
Version: | 1.43.0 |
Built: | 2024-12-30 04:37:01 UTC |
Source: | https://github.com/bioc/STATegRa |
Function to compute a bioDistclass object from profile data and a mapping. For details of the process see the user's guide, but briefly the process involves using the mapping to identify reference features appropriate to each surrogate feature (if any), aggregating the surrogate data into pseudo-data for each reference feature, and then calculating the correlation distance between the reference features according to the surrogate data.
bioDist(referenceFeatures=NULL, reference=NULL, mapping=NULL, referenceData=NULL, surrogateData=NULL, filtering=NULL, noMappingDist=NA, distance="spearman", aggregation="sum", maxitems=NULL, selectionRule="maxFC", expfac=NULL, name=NULL, ...)
bioDist(referenceFeatures=NULL, reference=NULL, mapping=NULL, referenceData=NULL, surrogateData=NULL, filtering=NULL, noMappingDist=NA, distance="spearman", aggregation="sum", maxitems=NULL, selectionRule="maxFC", expfac=NULL, name=NULL, ...)
referenceFeatures |
subset of features to be considered for the computation of the distances. If NULL then the features are first gathered from the features in referenceData. If referenceData is not provided then the list of features are gathered from mapping (bioMap class) and using the reference. |
reference |
A character indicating the variable that is being used as features to compute distance between |
mapping |
The mapping between feature types |
referenceData |
ExpressionSet object with the data from the reference features. |
surrogateData |
ExpressionSet object with the data from the surrogate features. |
filtering |
A filtering for the bioMap class. To be implemented. |
noMappingDist |
Distance value to be used when a reference feature do not map to any surrogate feature. If "max", maximum indirect distance among the rest of reference features is taken. If NA, distance weights are re-scaled so this surrogate association is not considered. If a number then the missing values are replaces with that value. |
distance |
Distance between features to be computed. Possible values are "pearson", "kendall", "spearman", "euclidean", "maximum", "manhattan", "canberra", "binary" and "minkowski". Default is "spearman". |
aggregation |
Action to perform when a reference feature maps to more than one surrogate feature. Options are "max", "sum", "mean" or "median" and the the values are aggregated according to the chosen statistic. |
maxitems |
The maximum number of surrogate features per reference feature to be used, selected according to "selectionRule" parameter. Default is 2. |
selectionRule |
Rule to select the surrogate features to be used (the number is determined by "maxitems"). It can be one of the following: (1) "maxcor" those presenting maximum correlation with corresponding main feature; in this case "referenceData" must be provided and the columns must overlap in at least 3 samples; (2) "maxmean": average across samples is computed and those features with higher mean are selected; case (3) is simmilar to (2) but considering other statistics: "maxmedian", "maxdiff", "maxFC", "sd" , "ee". |
expfac |
Not in use yet. |
name |
Character that describes the nature of the bioDist class computed |
... |
extra arguments passed to |
An object of class bioDistclass
containing distances between the features in surrogateData
.
David Gomez-Cabrero
data(STATegRa_S1) data(STATegRa_S2) require(Biobase) # Truncate data for brevity Block1 <- Block1[1:100,] Block2 <- Block2[1:100,] ## Create ExpressionSets mRNA.ds <- createOmicsExpressionSet(Data=Block1,pData=ed,pDataDescr=c("classname")) miRNA.ds <- createOmicsExpressionSet(Data=Block2,pData=ed,pDataDescr=c("classname")) ## Create the bioMap map.gene.miRNA<-bioMap(name = "Symbol-miRNA", metadata = list(type_v1="Gene",type_v2="miRNA", source_database="targetscan.Hs.eg.db", data_extraction="July2014"), map=mapdata) # Create Gene-gene distance computed through miRNA data bioDistmiRNA<-bioDist(referenceFeatures = rownames(Block1), reference = "Var1", mapping = map.gene.miRNA, surrogateData = miRNA.ds, ### miRNA data referenceData = mRNA.ds, ### mRNA data maxitems=2, selectionRule="sd", expfac=NULL, aggregation = "sum", distance = "spearman", noMappingDist = 0, filtering = NULL, name = "mRNAbymiRNA") # Create Gene-gene distance through mRNA data bioDistmRNA<-new("bioDistclass", name = "mRNAbymRNA", distance = cor(t(exprs(mRNA.ds)),method="spearman"), map.name = "id", map.metadata = list(), params = list()) ###### Generation of the list of Surrogated distances. bioDistList<-list(bioDistmRNA,bioDistmiRNA) sample.weights<-matrix(0,4,2) sample.weights[,1]<-c(0,0.33,0.67,1) sample.weights[,2]<-c(1,0.67,0.33,0) ###### Generation of the list of bioDistWclass objects. bioDistWList<-bioDistW(referenceFeatures = rownames(Block1), bioDistList = bioDistList, weights=sample.weights) ###### Plot of distances. bioDistWPlot(referenceFeatures = rownames(Block1) , listDistW = bioDistWList, method.cor="spearman") ###### Computing the matrix of features/distances associated. fm<-bioDistFeature(Feature = rownames(Block1)[1] , listDistW = bioDistWList, threshold.cor=0.7) bioDistFeaturePlot(data=fm)
data(STATegRa_S1) data(STATegRa_S2) require(Biobase) # Truncate data for brevity Block1 <- Block1[1:100,] Block2 <- Block2[1:100,] ## Create ExpressionSets mRNA.ds <- createOmicsExpressionSet(Data=Block1,pData=ed,pDataDescr=c("classname")) miRNA.ds <- createOmicsExpressionSet(Data=Block2,pData=ed,pDataDescr=c("classname")) ## Create the bioMap map.gene.miRNA<-bioMap(name = "Symbol-miRNA", metadata = list(type_v1="Gene",type_v2="miRNA", source_database="targetscan.Hs.eg.db", data_extraction="July2014"), map=mapdata) # Create Gene-gene distance computed through miRNA data bioDistmiRNA<-bioDist(referenceFeatures = rownames(Block1), reference = "Var1", mapping = map.gene.miRNA, surrogateData = miRNA.ds, ### miRNA data referenceData = mRNA.ds, ### mRNA data maxitems=2, selectionRule="sd", expfac=NULL, aggregation = "sum", distance = "spearman", noMappingDist = 0, filtering = NULL, name = "mRNAbymiRNA") # Create Gene-gene distance through mRNA data bioDistmRNA<-new("bioDistclass", name = "mRNAbymRNA", distance = cor(t(exprs(mRNA.ds)),method="spearman"), map.name = "id", map.metadata = list(), params = list()) ###### Generation of the list of Surrogated distances. bioDistList<-list(bioDistmRNA,bioDistmiRNA) sample.weights<-matrix(0,4,2) sample.weights[,1]<-c(0,0.33,0.67,1) sample.weights[,2]<-c(1,0.67,0.33,0) ###### Generation of the list of bioDistWclass objects. bioDistWList<-bioDistW(referenceFeatures = rownames(Block1), bioDistList = bioDistList, weights=sample.weights) ###### Plot of distances. bioDistWPlot(referenceFeatures = rownames(Block1) , listDistW = bioDistWList, method.cor="spearman") ###### Computing the matrix of features/distances associated. fm<-bioDistFeature(Feature = rownames(Block1)[1] , listDistW = bioDistWList, threshold.cor=0.7) bioDistFeaturePlot(data=fm)
Class to manage mappings between genomic features.
bioDistclass(name, distance, map.name, map.metadata, params)
bioDistclass(name, distance, map.name, map.metadata, params)
name |
Name assigned to the object |
distance |
Matrix giving the distance between features |
map.name |
Charactering giving the name of the bioMap object used to compute the distance |
map.metadata |
List of parameters used to generate the mapping |
params |
List of parameters used to generate the distance |
Function that computes for a given selected feature the closest features given a selected set of weighted distances.
bioDistFeature(Feature, listDistW, threshold.cor)
bioDistFeature(Feature, listDistW, threshold.cor)
Feature |
Feature A selected as a reference. |
listDistW |
A list of bioDistWclass objects. All the objects must contain the Feature A selected and all of them must contain the same set of features. |
threshold.cor |
A threshold to select the features associated to Feature A |
Matrix with the associated features given the different weighted distances considered
David Gomez-Cabrero
data(STATegRa_S1) data(STATegRa_S2) require(Biobase) # Truncate data for brevity Block1 <- Block1[1:100,] Block2 <- Block2[1:100,] ## Create ExpressionSets mRNA.ds <- createOmicsExpressionSet(Data=Block1,pData=ed,pDataDescr=c("classname")) miRNA.ds <- createOmicsExpressionSet(Data=Block2,pData=ed,pDataDescr=c("classname")) ## Create the bioMap map.gene.miRNA<-bioMap(name = "Symbol-miRNA", metadata = list(type_v1="Gene",type_v2="miRNA", source_database="targetscan.Hs.eg.db", data_extraction="July2014"), map=mapdata) # Create Gene-gene distance computed through miRNA data bioDistmiRNA<-bioDist(referenceFeatures = rownames(Block1), reference = "Var1", mapping = map.gene.miRNA, surrogateData = miRNA.ds, ### miRNA data referenceData = mRNA.ds, ### mRNA data maxitems=2, selectionRule="sd", expfac=NULL, aggregation = "sum", distance = "spearman", noMappingDist = 0, filtering = NULL, name = "mRNAbymiRNA") # Create Gene-gene distance through mRNA data bioDistmRNA<-new("bioDistclass", name = "mRNAbymRNA", distance = cor(t(exprs(mRNA.ds)),method="spearman"), map.name = "id", map.metadata = list(), params = list()) ###### Generation of the list of Surrogated distances. bioDistList<-list(bioDistmRNA,bioDistmiRNA) sample.weights<-matrix(0,4,2) sample.weights[,1]<-c(0,0.33,0.67,1) sample.weights[,2]<-c(1,0.67,0.33,0) ###### Generation of the list of bioDistWclass objects. bioDistWList<-bioDistW(referenceFeatures = rownames(Block1), bioDistList = bioDistList, weights=sample.weights) ###### Plot of distances. bioDistWPlot(referenceFeatures = rownames(Block1) , listDistW = bioDistWList, method.cor="spearman") ###### Computing the matrix of features/distances associated. fm<-bioDistFeature(Feature = rownames(Block1)[1] , listDistW = bioDistWList, threshold.cor=0.7) bioDistFeaturePlot(data=fm)
data(STATegRa_S1) data(STATegRa_S2) require(Biobase) # Truncate data for brevity Block1 <- Block1[1:100,] Block2 <- Block2[1:100,] ## Create ExpressionSets mRNA.ds <- createOmicsExpressionSet(Data=Block1,pData=ed,pDataDescr=c("classname")) miRNA.ds <- createOmicsExpressionSet(Data=Block2,pData=ed,pDataDescr=c("classname")) ## Create the bioMap map.gene.miRNA<-bioMap(name = "Symbol-miRNA", metadata = list(type_v1="Gene",type_v2="miRNA", source_database="targetscan.Hs.eg.db", data_extraction="July2014"), map=mapdata) # Create Gene-gene distance computed through miRNA data bioDistmiRNA<-bioDist(referenceFeatures = rownames(Block1), reference = "Var1", mapping = map.gene.miRNA, surrogateData = miRNA.ds, ### miRNA data referenceData = mRNA.ds, ### mRNA data maxitems=2, selectionRule="sd", expfac=NULL, aggregation = "sum", distance = "spearman", noMappingDist = 0, filtering = NULL, name = "mRNAbymiRNA") # Create Gene-gene distance through mRNA data bioDistmRNA<-new("bioDistclass", name = "mRNAbymRNA", distance = cor(t(exprs(mRNA.ds)),method="spearman"), map.name = "id", map.metadata = list(), params = list()) ###### Generation of the list of Surrogated distances. bioDistList<-list(bioDistmRNA,bioDistmiRNA) sample.weights<-matrix(0,4,2) sample.weights[,1]<-c(0,0.33,0.67,1) sample.weights[,2]<-c(1,0.67,0.33,0) ###### Generation of the list of bioDistWclass objects. bioDistWList<-bioDistW(referenceFeatures = rownames(Block1), bioDistList = bioDistList, weights=sample.weights) ###### Plot of distances. bioDistWPlot(referenceFeatures = rownames(Block1) , listDistW = bioDistWList, method.cor="spearman") ###### Computing the matrix of features/distances associated. fm<-bioDistFeature(Feature = rownames(Block1)[1] , listDistW = bioDistWList, threshold.cor=0.7) bioDistFeaturePlot(data=fm)
Function that pltos the results from a bioDistFeature analysis
bioDistFeaturePlot(data)
bioDistFeaturePlot(data)
data |
Matrix produced by |
Generates a heatmap plot
David Gomez-Cabrero
data(STATegRa_S1) data(STATegRa_S2) require(Biobase) # Truncate data for brevity Block1 <- Block1[1:100,] Block2 <- Block2[1:100,] ## Create ExpressionSets mRNA.ds <- createOmicsExpressionSet(Data=Block1,pData=ed,pDataDescr=c("classname")) miRNA.ds <- createOmicsExpressionSet(Data=Block2,pData=ed,pDataDescr=c("classname")) ## Create the bioMap map.gene.miRNA<-bioMap(name = "Symbol-miRNA", metadata = list(type_v1="Gene",type_v2="miRNA", source_database="targetscan.Hs.eg.db", data_extraction="July2014"), map=mapdata) # Create Gene-gene distance computed through miRNA data bioDistmiRNA<-bioDist(referenceFeatures = rownames(Block1), reference = "Var1", mapping = map.gene.miRNA, surrogateData = miRNA.ds, ### miRNA data referenceData = mRNA.ds, ### mRNA data maxitems=2, selectionRule="sd", expfac=NULL, aggregation = "sum", distance = "spearman", noMappingDist = 0, filtering = NULL, name = "mRNAbymiRNA") # Create Gene-gene distance through mRNA data bioDistmRNA<-new("bioDistclass", name = "mRNAbymRNA", distance = cor(t(exprs(mRNA.ds)),method="spearman"), map.name = "id", map.metadata = list(), params = list()) ###### Generation of the list of Surrogated distances. bioDistList<-list(bioDistmRNA,bioDistmiRNA) sample.weights<-matrix(0,4,2) sample.weights[,1]<-c(0,0.33,0.67,1) sample.weights[,2]<-c(1,0.67,0.33,0) ###### Generation of the list of bioDistWclass objects. bioDistWList<-bioDistW(referenceFeatures = rownames(Block1), bioDistList = bioDistList, weights=sample.weights) ###### Plot of distances. bioDistWPlot(referenceFeatures = rownames(Block1) , listDistW = bioDistWList, method.cor="spearman") ###### Computing the matrix of features/distances associated. fm<-bioDistFeature(Feature = rownames(Block1)[1] , listDistW = bioDistWList, threshold.cor=0.7) bioDistFeaturePlot(data=fm)
data(STATegRa_S1) data(STATegRa_S2) require(Biobase) # Truncate data for brevity Block1 <- Block1[1:100,] Block2 <- Block2[1:100,] ## Create ExpressionSets mRNA.ds <- createOmicsExpressionSet(Data=Block1,pData=ed,pDataDescr=c("classname")) miRNA.ds <- createOmicsExpressionSet(Data=Block2,pData=ed,pDataDescr=c("classname")) ## Create the bioMap map.gene.miRNA<-bioMap(name = "Symbol-miRNA", metadata = list(type_v1="Gene",type_v2="miRNA", source_database="targetscan.Hs.eg.db", data_extraction="July2014"), map=mapdata) # Create Gene-gene distance computed through miRNA data bioDistmiRNA<-bioDist(referenceFeatures = rownames(Block1), reference = "Var1", mapping = map.gene.miRNA, surrogateData = miRNA.ds, ### miRNA data referenceData = mRNA.ds, ### mRNA data maxitems=2, selectionRule="sd", expfac=NULL, aggregation = "sum", distance = "spearman", noMappingDist = 0, filtering = NULL, name = "mRNAbymiRNA") # Create Gene-gene distance through mRNA data bioDistmRNA<-new("bioDistclass", name = "mRNAbymRNA", distance = cor(t(exprs(mRNA.ds)),method="spearman"), map.name = "id", map.metadata = list(), params = list()) ###### Generation of the list of Surrogated distances. bioDistList<-list(bioDistmRNA,bioDistmiRNA) sample.weights<-matrix(0,4,2) sample.weights[,1]<-c(0,0.33,0.67,1) sample.weights[,2]<-c(1,0.67,0.33,0) ###### Generation of the list of bioDistWclass objects. bioDistWList<-bioDistW(referenceFeatures = rownames(Block1), bioDistList = bioDistList, weights=sample.weights) ###### Plot of distances. bioDistWPlot(referenceFeatures = rownames(Block1) , listDistW = bioDistWList, method.cor="spearman") ###### Computing the matrix of features/distances associated. fm<-bioDistFeature(Feature = rownames(Block1)[1] , listDistW = bioDistWList, threshold.cor=0.7) bioDistFeaturePlot(data=fm)
Function that computes weighted distances between a list of bioDistclass objects.
bioDistW(referenceFeatures, bioDistList, weights)
bioDistW(referenceFeatures, bioDistList, weights)
referenceFeatures |
The set of features that weighted distance is computed between. |
bioDistList |
A list of bioDistclass objects. All the objects must contain the set of features selected. |
weights |
A matrix where the number of columns equals the number of elements included in the bioDistList list. |
Returns a list of bioDistWclass objects. Each element in the list returns the weighted distance associated to each row in the "weights" matrix.
David Gomez-Cabrero
data(STATegRa_S1) data(STATegRa_S2) require(Biobase) # Truncate data for brevity Block1 <- Block1[1:100,] Block2 <- Block2[1:100,] ## Create ExpressionSets mRNA.ds <- createOmicsExpressionSet(Data=Block1,pData=ed,pDataDescr=c("classname")) miRNA.ds <- createOmicsExpressionSet(Data=Block2,pData=ed,pDataDescr=c("classname")) ## Create the bioMap map.gene.miRNA<-bioMap(name = "Symbol-miRNA", metadata = list(type_v1="Gene",type_v2="miRNA", source_database="targetscan.Hs.eg.db", data_extraction="July2014"), map=mapdata) # Create Gene-gene distance computed through miRNA data bioDistmiRNA<-bioDist(referenceFeatures = rownames(Block1), reference = "Var1", mapping = map.gene.miRNA, surrogateData = miRNA.ds, ### miRNA data referenceData = mRNA.ds, ### mRNA data maxitems=2, selectionRule="sd", expfac=NULL, aggregation = "sum", distance = "spearman", noMappingDist = 0, filtering = NULL, name = "mRNAbymiRNA") # Create Gene-gene distance through mRNA data bioDistmRNA<-new("bioDistclass", name = "mRNAbymRNA", distance = cor(t(exprs(mRNA.ds)),method="spearman"), map.name = "id", map.metadata = list(), params = list()) ###### Generation of the list of Surrogated distances. bioDistList<-list(bioDistmRNA,bioDistmiRNA) sample.weights<-matrix(0,4,2) sample.weights[,1]<-c(0,0.33,0.67,1) sample.weights[,2]<-c(1,0.67,0.33,0) ###### Generation of the list of bioDistWclass objects. bioDistWList<-bioDistW(referenceFeatures = rownames(Block1), bioDistList = bioDistList, weights=sample.weights) ###### Plot of distances. bioDistWPlot(referenceFeatures = rownames(Block1) , listDistW = bioDistWList, method.cor="spearman") ###### Computing the matrix of features/distances associated. fm<-bioDistFeature(Feature = rownames(Block1)[1] , listDistW = bioDistWList, threshold.cor=0.7) bioDistFeaturePlot(data=fm)
data(STATegRa_S1) data(STATegRa_S2) require(Biobase) # Truncate data for brevity Block1 <- Block1[1:100,] Block2 <- Block2[1:100,] ## Create ExpressionSets mRNA.ds <- createOmicsExpressionSet(Data=Block1,pData=ed,pDataDescr=c("classname")) miRNA.ds <- createOmicsExpressionSet(Data=Block2,pData=ed,pDataDescr=c("classname")) ## Create the bioMap map.gene.miRNA<-bioMap(name = "Symbol-miRNA", metadata = list(type_v1="Gene",type_v2="miRNA", source_database="targetscan.Hs.eg.db", data_extraction="July2014"), map=mapdata) # Create Gene-gene distance computed through miRNA data bioDistmiRNA<-bioDist(referenceFeatures = rownames(Block1), reference = "Var1", mapping = map.gene.miRNA, surrogateData = miRNA.ds, ### miRNA data referenceData = mRNA.ds, ### mRNA data maxitems=2, selectionRule="sd", expfac=NULL, aggregation = "sum", distance = "spearman", noMappingDist = 0, filtering = NULL, name = "mRNAbymiRNA") # Create Gene-gene distance through mRNA data bioDistmRNA<-new("bioDistclass", name = "mRNAbymRNA", distance = cor(t(exprs(mRNA.ds)),method="spearman"), map.name = "id", map.metadata = list(), params = list()) ###### Generation of the list of Surrogated distances. bioDistList<-list(bioDistmRNA,bioDistmiRNA) sample.weights<-matrix(0,4,2) sample.weights[,1]<-c(0,0.33,0.67,1) sample.weights[,2]<-c(1,0.67,0.33,0) ###### Generation of the list of bioDistWclass objects. bioDistWList<-bioDistW(referenceFeatures = rownames(Block1), bioDistList = bioDistList, weights=sample.weights) ###### Plot of distances. bioDistWPlot(referenceFeatures = rownames(Block1) , listDistW = bioDistWList, method.cor="spearman") ###### Computing the matrix of features/distances associated. fm<-bioDistFeature(Feature = rownames(Block1)[1] , listDistW = bioDistWList, threshold.cor=0.7) bioDistFeaturePlot(data=fm)
Function that plots the "distance relation" between features computed through different surrogate features.
bioDistWPlot(referenceFeatures, listDistW, method.cor)
bioDistWPlot(referenceFeatures, listDistW, method.cor)
referenceFeatures |
The set of features to be used. |
listDistW |
A list of bioDistWclass objects. |
method.cor |
Method to compute distances between the elements in the listDistW. The default is spearman correlation. |
Makes a plot with the projected distance between the listDistW objects.
David Gomez-Cabrero
data(STATegRa_S1) data(STATegRa_S2) require(Biobase) # Truncate data for brevity Block1 <- Block1[1:100,] Block2 <- Block2[1:100,] ## Create ExpressionSets mRNA.ds <- createOmicsExpressionSet(Data=Block1,pData=ed,pDataDescr=c("classname")) miRNA.ds <- createOmicsExpressionSet(Data=Block2,pData=ed,pDataDescr=c("classname")) ## Create the bioMap map.gene.miRNA<-bioMap(name = "Symbol-miRNA", metadata = list(type_v1="Gene",type_v2="miRNA", source_database="targetscan.Hs.eg.db", data_extraction="July2014"), map=mapdata) # Create Gene-gene distance computed through miRNA data bioDistmiRNA<-bioDist(referenceFeatures = rownames(Block1), reference = "Var1", mapping = map.gene.miRNA, surrogateData = miRNA.ds, ### miRNA data referenceData = mRNA.ds, ### mRNA data maxitems=2, selectionRule="sd", expfac=NULL, aggregation = "sum", distance = "spearman", noMappingDist = 0, filtering = NULL, name = "mRNAbymiRNA") # Create Gene-gene distance through mRNA data bioDistmRNA<-new("bioDistclass", name = "mRNAbymRNA", distance = cor(t(exprs(mRNA.ds)),method="spearman"), map.name = "id", map.metadata = list(), params = list()) ###### Generation of the list of Surrogated distances. bioDistList<-list(bioDistmRNA,bioDistmiRNA) sample.weights<-matrix(0,4,2) sample.weights[,1]<-c(0,0.33,0.67,1) sample.weights[,2]<-c(1,0.67,0.33,0) ###### Generation of the list of bioDistWclass objects. bioDistWList<-bioDistW(referenceFeatures = rownames(Block1), bioDistList = bioDistList, weights=sample.weights) ###### Plot of distances. bioDistWPlot(referenceFeatures = rownames(Block1) , listDistW = bioDistWList, method.cor="spearman") ###### Computing the matrix of features/distances associated. fm<-bioDistFeature(Feature = rownames(Block1)[1] , listDistW = bioDistWList, threshold.cor=0.7) bioDistFeaturePlot(data=fm)
data(STATegRa_S1) data(STATegRa_S2) require(Biobase) # Truncate data for brevity Block1 <- Block1[1:100,] Block2 <- Block2[1:100,] ## Create ExpressionSets mRNA.ds <- createOmicsExpressionSet(Data=Block1,pData=ed,pDataDescr=c("classname")) miRNA.ds <- createOmicsExpressionSet(Data=Block2,pData=ed,pDataDescr=c("classname")) ## Create the bioMap map.gene.miRNA<-bioMap(name = "Symbol-miRNA", metadata = list(type_v1="Gene",type_v2="miRNA", source_database="targetscan.Hs.eg.db", data_extraction="July2014"), map=mapdata) # Create Gene-gene distance computed through miRNA data bioDistmiRNA<-bioDist(referenceFeatures = rownames(Block1), reference = "Var1", mapping = map.gene.miRNA, surrogateData = miRNA.ds, ### miRNA data referenceData = mRNA.ds, ### mRNA data maxitems=2, selectionRule="sd", expfac=NULL, aggregation = "sum", distance = "spearman", noMappingDist = 0, filtering = NULL, name = "mRNAbymiRNA") # Create Gene-gene distance through mRNA data bioDistmRNA<-new("bioDistclass", name = "mRNAbymRNA", distance = cor(t(exprs(mRNA.ds)),method="spearman"), map.name = "id", map.metadata = list(), params = list()) ###### Generation of the list of Surrogated distances. bioDistList<-list(bioDistmRNA,bioDistmiRNA) sample.weights<-matrix(0,4,2) sample.weights[,1]<-c(0,0.33,0.67,1) sample.weights[,2]<-c(1,0.67,0.33,0) ###### Generation of the list of bioDistWclass objects. bioDistWList<-bioDistW(referenceFeatures = rownames(Block1), bioDistList = bioDistList, weights=sample.weights) ###### Plot of distances. bioDistWPlot(referenceFeatures = rownames(Block1) , listDistW = bioDistWList, method.cor="spearman") ###### Computing the matrix of features/distances associated. fm<-bioDistFeature(Feature = rownames(Block1)[1] , listDistW = bioDistWList, threshold.cor=0.7) bioDistFeaturePlot(data=fm)
Function to generate a bioMap object.
bioMap(name, metadata, map)
bioMap(name, metadata, map)
name |
Name to assign the object |
metadata |
A list with information of the mapping. Elements expected in the list are: (1) "type_v1" and "type_v2", refer to the nature of the features mapped; a vocabulary we recommend is "gene", "mRNA", "miRNA", "proteins", etc. (2) "source_database", provides information on the source of the mapping; from a specific data-base e.g. "targetscan.Hs.eg.db" to a genomic location mapping. (3) "data_extraction" stores information on the data the mapping was generated or downloaded. |
map |
A data.frame object storing the mapping. The data.frame may inclue an unlimited number of columns, however the first column must be named "Var1" and refer to the elements of "type_v1" and simmilarly for the second column ("Var2", "type_v2"). |
An object of class bioMap
David Gomez-Cabrero
data(STATegRa_S2) map.gene.miRNA<-bioMap(name = "Symbol-miRNA", metadata = list(type_v1="Gene",type_v2="miRNA", source_database="targetscan.Hs.eg.db", data_extraction="July2014"), map=mapdata)
data(STATegRa_S2) map.gene.miRNA<-bioMap(name = "Symbol-miRNA", metadata = list(type_v1="Gene",type_v2="miRNA", source_database="targetscan.Hs.eg.db", data_extraction="July2014"), map=mapdata)
Stores the results of any of the omicsPCA analyses.
InitialData
List of ExpressionSets, one for each set of omics data
Names
Character vector giving names for the input data
preprocessing
Character vector describing the preprocessing applied to the data
preproData
List of matrices containing data after preprocessing
caMethod
Character giving the component analysis method name
commonComps
Numeric giving the number of common components
distComps
Numeric vector giving the number of distinctive components for each block
scores
List of matrices of common and distinctive scores
loadings
List of matrices of common and distinctive loadings
VAF
List of matrices indicating VAF (Variability Explained For) for each component in each block of data
others
List containing other miscellaneous information specific to different SCA methods
Patricia Sebastian Leon
This function combines several annotation so that measurements across different datasets are mapped to the same reference elements (e.g., genes). The annotations should all be either data frame / matrices, named vectors/lists, or bioMap objects. See the examples for further details
combiningMappings(mappings, reference = NULL, retainAll = FALSE)
combiningMappings(mappings, reference = NULL, retainAll = FALSE)
mappings |
List of annotations. |
reference |
If the annotations are data frame, matrices or bioMap objects, the name of the column containing the reference elements |
retainAll |
Logical, if set to TRUE measurements that have no counterparts in other datasets are retained |
A data frame encoding the mapping across several dataset
Vincenzo Lagani
Nestoras Karathanasis, Ioannis Tsamardinos and Vincenzo Lagani. omicsNPC: applying the Non-Parametric Combination methodology to the integrative analysis of heterogeneous omics data. Submitted to PlosONE.
#Example 1 #Mapping with data frames mRNA <- data.frame(gene = rep(c('G1', 'G2', 'G3'), each = 2), probeset = paste('p', 1:6, sep = '')); methylation <- data.frame(gene = c(rep('G1', 3), rep('G2', 4)), methy = paste('methy', 1:7, sep = '')); miRNA <- data.frame(gene = c(rep('G1', 2), rep('G2', 1), rep('G3', 2)), miR = c('miR1', 'miR2', 'miR1', 'miR1', 'miR2')); mappings <- list(mRNA = mRNA, methylation = methylation, miRNA = miRNA); combiningMappings(mappings = mappings, retainAll = TRUE) #Example 2 #Mapping with character vectors mRNA <- rep(c('G1', 'G2', 'G3'), each = 2); names(mRNA) = paste('p', 1:6, sep = ''); methylation <- c(rep('G1', 3), rep('G2', 4)); names(methylation) = paste('methy', 1:7, sep = ''); miRNA <- c(rep('G1', 2), rep('G2', 1), rep('G3', 2)); names(miRNA) = c('miR1', 'miR2', 'miR1', 'miR1', 'miR2'); mappings <- list(mRNA = mRNA, methylation = methylation, miRNA = miRNA); combiningMappings(mappings = mappings, retainAll = TRUE)
#Example 1 #Mapping with data frames mRNA <- data.frame(gene = rep(c('G1', 'G2', 'G3'), each = 2), probeset = paste('p', 1:6, sep = '')); methylation <- data.frame(gene = c(rep('G1', 3), rep('G2', 4)), methy = paste('methy', 1:7, sep = '')); miRNA <- data.frame(gene = c(rep('G1', 2), rep('G2', 1), rep('G3', 2)), miR = c('miR1', 'miR2', 'miR1', 'miR1', 'miR2')); mappings <- list(mRNA = mRNA, methylation = methylation, miRNA = miRNA); combiningMappings(mappings = mappings, retainAll = TRUE) #Example 2 #Mapping with character vectors mRNA <- rep(c('G1', 'G2', 'G3'), each = 2); names(mRNA) = paste('p', 1:6, sep = ''); methylation <- c(rep('G1', 3), rep('G2', 4)); names(methylation) = paste('methy', 1:7, sep = ''); miRNA <- c(rep('G1', 2), rep('G2', 1), rep('G3', 2)); names(miRNA) = c('miR1', 'miR2', 'miR1', 'miR1', 'miR2'); mappings <- list(mRNA = mRNA, methylation = methylation, miRNA = miRNA); combiningMappings(mappings = mappings, retainAll = TRUE)
This function allow to the user to create a ExpressionSet object from a matrix representing an omics dataset. It allows to include the experimental design and annotation in the ExpressionSet object.
createOmicsExpressionSet(Data, pData = NULL, pDataDescr = NULL, feaData = NULL, feaDataDescr = NULL)
createOmicsExpressionSet(Data, pData = NULL, pDataDescr = NULL, feaData = NULL, feaDataDescr = NULL)
Data |
Omics data |
pData |
Data associated with the samples/phenotype |
pDataDescr |
Description of the phenotypic data |
feaData |
Data associated with the variables/features annotation |
feaDataDescr |
Description of the feature annotation |
In Data matrix, samples has to be in columns and variables has to be in rows
ExpressionSet with the data provided
Patricia Sebastian-Leon
data(STATegRa_S3) B1 <- createOmicsExpressionSet(Data=Block1.PCA,pData=ed.PCA, pDataDescr=c("classname")) B2 <- createOmicsExpressionSet(Data=Block2.PCA,pData=ed.PCA, pDataDescr=c("classname"))
data(STATegRa_S3) B1 <- createOmicsExpressionSet(Data=Block1.PCA,pData=ed.PCA, pDataDescr=c("classname")) B2 <- createOmicsExpressionSet(Data=Block2.PCA,pData=ed.PCA, pDataDescr=c("classname"))
Generic function to retrieve the initial data used for by omicsCompAnalysis
from a caClass-class
object
getInitialData(x, block=NULL)
getInitialData(x, block=NULL)
x |
|
block |
Character indicating the block of data to be returned. It can be specified by the position of the block ("1" or "2") or the name assigned in the |
The requested data block or blocks
Patricia Sebastian-Leon
omicsCompAnalysis
, caClass-class
data("STATegRa_S3") B1 <- createOmicsExpressionSet(Data=Block1.PCA, pData=ed.PCA, pDataDescr=c("classname")) B2 <- createOmicsExpressionSet(Data=Block2.PCA, pData=ed.PCA, pDataDescr=c("classname")) # Omics components analysis res <- omicsCompAnalysis(Input=list(B1, B2), Names=c("expr", "mirna"), method="DISCOSCA", Rcommon=2, Rspecific=c(2, 2), center=TRUE, scale=TRUE, weight=TRUE) getInitialData(res) getInitialData(res, block="expr")
data("STATegRa_S3") B1 <- createOmicsExpressionSet(Data=Block1.PCA, pData=ed.PCA, pDataDescr=c("classname")) B2 <- createOmicsExpressionSet(Data=Block2.PCA, pData=ed.PCA, pDataDescr=c("classname")) # Omics components analysis res <- omicsCompAnalysis(Input=list(B1, B2), Names=c("expr", "mirna"), method="DISCOSCA", Rcommon=2, Rspecific=c(2, 2), center=TRUE, scale=TRUE, weight=TRUE) getInitialData(res) getInitialData(res, block="expr")
Generic function to retrieve loadings (common and distinctive) found by omicsCompAnalysis
on a caClass-class
object.
getLoadings(x, part=NULL, block=NULL)
getLoadings(x, part=NULL, block=NULL)
x |
|
part |
Character indicating whether "common" or "distinctive" loadings should be displayed |
block |
Character indicating the block of data for which the loadings will be given. It can be specified by the position of the block ("1" or "2") or the name assigned in the |
A list containing the requested information.
Patricia Sebastian-Leon
omicsCompAnalysis
, caClass-class
data("STATegRa_S3") B1 <- createOmicsExpressionSet(Data=Block1.PCA, pData=ed.PCA, pDataDescr=c("classname")) B2 <- createOmicsExpressionSet(Data=Block2.PCA, pData=ed.PCA, pDataDescr=c("classname")) # Omics components analysis res <- omicsCompAnalysis(Input=list(B1, B2), Names=c("expr", "mirna"), method="DISCOSCA", Rcommon=2, Rspecific=c(2, 2), center=TRUE, scale=TRUE, weight=TRUE) getLoadings(res) getLoadings(res, part="common", block="expr") getLoadings(res, part="distinctive", block="expr")
data("STATegRa_S3") B1 <- createOmicsExpressionSet(Data=Block1.PCA, pData=ed.PCA, pDataDescr=c("classname")) B2 <- createOmicsExpressionSet(Data=Block2.PCA, pData=ed.PCA, pDataDescr=c("classname")) # Omics components analysis res <- omicsCompAnalysis(Input=list(B1, B2), Names=c("expr", "mirna"), method="DISCOSCA", Rcommon=2, Rspecific=c(2, 2), center=TRUE, scale=TRUE, weight=TRUE) getLoadings(res) getLoadings(res, part="common", block="expr") getLoadings(res, part="distinctive", block="expr")
Generic function to retrieve information about the method used by omicsCompAnalysis
on a caClass-class
object.
getMethodInfo(x, method=FALSE, comps=NULL, block=NULL)
getMethodInfo(x, method=FALSE, comps=NULL, block=NULL)
x |
|
method |
Logical indicating whether to return the method name. |
comps |
Character indicating which component number to return ("common", "distinctive" or "all") |
block |
Character indicating the block of data for which the component count will be given. It can be specified by the position of the block ("1" or "2") or the name assigned in the |
A list containing the requested information.
Patricia Sebastian-Leon
omicsCompAnalysis
, caClass-class
data("STATegRa_S3") B1 <- createOmicsExpressionSet(Data=Block1.PCA, pData=ed.PCA, pDataDescr=c("classname")) B2 <- createOmicsExpressionSet(Data=Block2.PCA, pData=ed.PCA, pDataDescr=c("classname")) # Omics components analysis res <- omicsCompAnalysis(Input=list(B1, B2), Names=c("expr", "mirna"), method="DISCOSCA", Rcommon=2, Rspecific=c(2, 2), center=TRUE, scale=TRUE, weight=TRUE) getMethodInfo(res) getMethodInfo(res, method=TRUE) getMethodInfo(res, comps="all", block="expr")
data("STATegRa_S3") B1 <- createOmicsExpressionSet(Data=Block1.PCA, pData=ed.PCA, pDataDescr=c("classname")) B2 <- createOmicsExpressionSet(Data=Block2.PCA, pData=ed.PCA, pDataDescr=c("classname")) # Omics components analysis res <- omicsCompAnalysis(Input=list(B1, B2), Names=c("expr", "mirna"), method="DISCOSCA", Rcommon=2, Rspecific=c(2, 2), center=TRUE, scale=TRUE, weight=TRUE) getMethodInfo(res) getMethodInfo(res, method=TRUE) getMethodInfo(res, comps="all", block="expr")
Generic function to retrieve information about the preprocessing done by omicsCompAnalysis
on a caClass-class
object.
getPreprocessing(x, process=FALSE, preproData=FALSE, block=NULL)
getPreprocessing(x, process=FALSE, preproData=FALSE, block=NULL)
x |
|
process |
Logical indicating whether to return information about the processing done. |
preproData |
Logical indicating whether to return the pre-processed data matrices. |
block |
Character indicating the block of data to be returned. It can be specified by the position of the block ("1" or "2") or the name assigned in the |
If both process
and preproData
are specified, a list containing (otherwise the individual item):
Character indicating the processing done
Matrix (or list of matrices, depending on block
) containing pre-processed data
Patricia Sebastian-Leon
omicsCompAnalysis
, caClass-class
data("STATegRa_S3") B1 <- createOmicsExpressionSet(Data=Block1.PCA, pData=ed.PCA, pDataDescr=c("classname")) B2 <- createOmicsExpressionSet(Data=Block2.PCA, pData=ed.PCA, pDataDescr=c("classname")) # Omics components analysis res <- omicsCompAnalysis(Input=list(B1, B2), Names=c("expr", "mirna"), method="DISCOSCA", Rcommon=2, Rspecific=c(2, 2), center=TRUE, scale=TRUE, weight=TRUE) getPreprocessing(res, process=TRUE) getPreprocessing(res, preproData=TRUE, block="1")
data("STATegRa_S3") B1 <- createOmicsExpressionSet(Data=Block1.PCA, pData=ed.PCA, pDataDescr=c("classname")) B2 <- createOmicsExpressionSet(Data=Block2.PCA, pData=ed.PCA, pDataDescr=c("classname")) # Omics components analysis res <- omicsCompAnalysis(Input=list(B1, B2), Names=c("expr", "mirna"), method="DISCOSCA", Rcommon=2, Rspecific=c(2, 2), center=TRUE, scale=TRUE, weight=TRUE) getPreprocessing(res, process=TRUE) getPreprocessing(res, preproData=TRUE, block="1")
Generic function to retrieve scores (common and distinctive) found by omicsCompAnalysis
on a caClass-class
object.
getScores(x, part=NULL, block=NULL)
getScores(x, part=NULL, block=NULL)
x |
|
part |
Character indicating whether "common" or "distinctive" scores should be displayed |
block |
Character indicating the block of data for which the scores will be given. It can be specified by the position of the block ("1" or "2") or the name assigned in the |
A list containing the requested information.
Patricia Sebastian-Leon
omicsCompAnalysis
, caClass-class
data("STATegRa_S3") B1 <- createOmicsExpressionSet(Data=Block1.PCA, pData=ed.PCA, pDataDescr=c("classname")) B2 <- createOmicsExpressionSet(Data=Block2.PCA, pData=ed.PCA, pDataDescr=c("classname")) # Omics components analysis res <- omicsCompAnalysis(Input=list(B1, B2), Names=c("expr", "mirna"), method="DISCOSCA", Rcommon=2, Rspecific=c(2, 2), center=TRUE, scale=TRUE, weight=TRUE) getScores(res) getScores(res, part="common") getScores(res, part="distinctive", block="expr")
data("STATegRa_S3") B1 <- createOmicsExpressionSet(Data=Block1.PCA, pData=ed.PCA, pDataDescr=c("classname")) B2 <- createOmicsExpressionSet(Data=Block2.PCA, pData=ed.PCA, pDataDescr=c("classname")) # Omics components analysis res <- omicsCompAnalysis(Input=list(B1, B2), Names=c("expr", "mirna"), method="DISCOSCA", Rcommon=2, Rspecific=c(2, 2), center=TRUE, scale=TRUE, weight=TRUE) getScores(res) getScores(res, part="common") getScores(res, part="distinctive", block="expr")
Generic function to retrieve VAF found by omicsCompAnalysis
on a caClass-class
object.
getVAF(x, part=NULL, block=NULL)
getVAF(x, part=NULL, block=NULL)
x |
|
part |
Character indicating whether "common" or "distinctive" VAF should be displayed |
block |
Character indicating the block of data for which the VAF will be given. It can be specified by the position of the block ("1" or "2") or the name assigned in the |
A list containing the requested information.
Patricia Sebastian-Leon
omicsCompAnalysis
, caClass-class
data("STATegRa_S3") B1 <- createOmicsExpressionSet(Data=Block1.PCA, pData=ed.PCA, pDataDescr=c("classname")) B2 <- createOmicsExpressionSet(Data=Block2.PCA, pData=ed.PCA, pDataDescr=c("classname")) # Omics components analysis res <- omicsCompAnalysis(Input=list(B1, B2), Names=c("expr", "mirna"), method="DISCOSCA", Rcommon=2, Rspecific=c(2, 2), center=TRUE, scale=TRUE, weight=TRUE) getVAF(res) getVAF(res, part="common") getVAF(res, part="distinctive", block="expr")
data("STATegRa_S3") B1 <- createOmicsExpressionSet(Data=Block1.PCA, pData=ed.PCA, pDataDescr=c("classname")) B2 <- createOmicsExpressionSet(Data=Block2.PCA, pData=ed.PCA, pDataDescr=c("classname")) # Omics components analysis res <- omicsCompAnalysis(Input=list(B1, B2), Names=c("expr", "mirna"), method="DISCOSCA", Rcommon=2, Rspecific=c(2, 2), center=TRUE, scale=TRUE, weight=TRUE) getVAF(res) getVAF(res, part="common") getVAF(res, part="distinctive", block="expr")
This function is defunct. Use omicsNPC instead.
holistOmics(dataInput, dataTypes, comb.method = c("Fisher", "Liptak", "Tippett"), numPerm = 1000, numCores = 1, verbose = FALSE)
holistOmics(dataInput, dataTypes, comb.method = c("Fisher", "Liptak", "Tippett"), numPerm = 1000, numCores = 1, verbose = FALSE)
dataInput |
List of ExpressionSet objects, one for each data modality. |
dataTypes |
Character vector with possible values: 'RNA-seq', 'microarray' |
comb.method |
Character vector with possible values: 'Fisher', 'Liptak', 'Tippett', if more than one is specified, all will be used. |
numPerm |
Number of permutations |
numCores |
Number of CPU cores to use |
verbose |
Logical, if set to TRUE holistOmics prints out the step that it performs |
A data.frame
Nestoras Karathanasis
Pesarin, Fortunato, and Luigi Salmaso. Permutation tests for complex data: theory, applications and software. John Wiley & Sons, 2010.
# Load the data data("TCGA_BRCA_Batch_93") # Setting dataTypes, the first two ExpressionSets include RNAseq data, # the third ExpressionSet includes Microarray data. dataTypes <- c("RNAseq", "RNAseq", "Microarray") # Setting methods to combine pvalues comb.method = c("Fisher", "Liptak", "Tippett") # Setting number of permutations numPerm = 1000 # Setting number of cores numCores = 1 # Setting holistOmics to print out the steps that it performs. verbose = TRUE # Run holistOmics analysis. # The output is a data.frame of p-values. # Each row corresponds to a gene name. Each column corresponds to a method # used in the analysis. ## Not run: out <- holistOmics(dataInput = TCGA_BRCA_Data, dataTypes = dataTypes, comb.method = comb.method, numPerm = numPerm, numCores = numCores, verbose = verbose) ## End(Not run)
# Load the data data("TCGA_BRCA_Batch_93") # Setting dataTypes, the first two ExpressionSets include RNAseq data, # the third ExpressionSet includes Microarray data. dataTypes <- c("RNAseq", "RNAseq", "Microarray") # Setting methods to combine pvalues comb.method = c("Fisher", "Liptak", "Tippett") # Setting number of permutations numPerm = 1000 # Setting number of cores numCores = 1 # Setting holistOmics to print out the steps that it performs. verbose = TRUE # Run holistOmics analysis. # The output is a data.frame of p-values. # Each row corresponds to a gene name. Each column corresponds to a method # used in the analysis. ## Not run: out <- holistOmics(dataInput = TCGA_BRCA_Data, dataTypes = dataTypes, comb.method = comb.method, numPerm = numPerm, numCores = numCores, verbose = verbose) ## End(Not run)
Estimate the optimal number of common and distinctive components according to given selection criteria.
modelSelection(Input,Rmax,fac.sel,varthreshold=NULL,nvar=NULL,PCnum=NULL,center=FALSE,scale=FALSE,weight=FALSE, plot_common=FALSE, plot_dist=FALSE)
modelSelection(Input,Rmax,fac.sel,varthreshold=NULL,nvar=NULL,PCnum=NULL,center=FALSE,scale=FALSE,weight=FALSE, plot_common=FALSE, plot_dist=FALSE)
Input |
List of |
Rmax |
Maximum common components |
fac.sel |
PCA criteria for selection ("%accum", "single%", "rel.abs", "fixed.num") |
varthreshold |
Cumulative variance criteria for PCA selection. Threshold for "%accum" or "single%" criteria. |
nvar |
Relative variance criteria. Threshold for "rel.abs". |
PCnum |
Fixed number of components for "fixed.num". |
center |
Character (or FALSE) specifying which (if any) centering will be applied before analysis. Choices are "PERBLOCKS" (each block separately) or "ALLBLOCKS" (all data together). |
scale |
Character (or FALSE) specifying which (if any) scaling will be applied before analysis. Choices are "PERBLOCKS" (each block separately) or "ALLBLOCKS" (all data together). |
weight |
Logical indicating whether weighting is to be done. Choices are "BETWEEN-BLOCKS" |
plot_common |
Logical indicating whether to plot the explained variances (SSQ) of each block and its estimation and the ratios |
plot_dist |
Logical indicating whether to plot the explained variances (SSQ) and the accumulated variance for each block |
List containing:
List with common components results
Optimal number of common components
Matrix of SSQ for each block and estimator
ggplot
object showing SSQ for each block and estimator
ggplot
object showing SSQ ratios between each block and estimator
List containg the results of distinct PCA for each input block; for each block PCAres and numComps is returned within a list
List containing results of PCA, with fields "eigen", "var.exp", "scores" and "loadings"
Number of components selected
Patricia Sebastian-Leon
data(STATegRa_S3) B1 <- createOmicsExpressionSet(Data=Block1.PCA,pData=ed.PCA,pDataDescr=c("classname")) B2 <- createOmicsExpressionSet(Data=Block2.PCA,pData=ed.PCA,pDataDescr=c("classname")) ms <- modelSelection(Input=list(B1, B2), Rmax=3, fac.sel="single\%", varthreshold=0.03, center=TRUE, scale=FALSE, weight=TRUE, plot_common=FALSE, plot_dist=FALSE) ms
data(STATegRa_S3) B1 <- createOmicsExpressionSet(Data=Block1.PCA,pData=ed.PCA,pDataDescr=c("classname")) B2 <- createOmicsExpressionSet(Data=Block2.PCA,pData=ed.PCA,pDataDescr=c("classname")) ms <- modelSelection(Input=list(B1, B2), Rmax=3, fac.sel="single\%", varthreshold=0.03, center=TRUE, scale=FALSE, weight=TRUE, plot_common=FALSE, plot_dist=FALSE) ms
This function performs a components analysis of object wise omics data to understand the mechanisms that underlay all the data blocks under study (common mechanisms) and the mechanisms underlying each of the data block independently (distinctive mechanisms). This analysis include both, the preprocessing of data and the components analysis by using three different methodologies.
omicsCompAnalysis(Input, Names, method, Rcommon, Rspecific, convThres=1e-10, maxIter=600, center=FALSE, scale=FALSE, weight=FALSE)
omicsCompAnalysis(Input, Names, method, Rcommon, Rspecific, convThres=1e-10, maxIter=600, center=FALSE, scale=FALSE, weight=FALSE)
Input |
List of |
Names |
Character vector giving names for each Input object. |
method |
Method to use for analysis (either "DISCOSCA", "JIVE", or "O2PLS"). |
Rcommon |
Number of common components between all blocks |
Rspecific |
Vector giving number of unique components for each input block |
convThres |
Stop criteria for convergence |
maxIter |
Maximum number of iterations |
center |
Character (or FALSE) specifying which (if any) centering will be applied before analysis. Choices are "PERBLOCKS" (each block separately) or "ALLBLOCKS" (all data together). |
scale |
Character (or FALSE) specifying which (if any) scaling will be applied before analysis. Choices are "PERBLOCKS" (each block separately) or "ALLBLOCKS" (all data together). |
weight |
Logical indicating whether weighting is to be done. |
An object of class caClass-class
.
Patricia Sebastian Leon
data("STATegRa_S3") B1 <- createOmicsExpressionSet(Data=Block1.PCA,pData=ed.PCA, pDataDescr=c("classname")) B2 <- createOmicsExpressionSet(Data=Block2.PCA, pData=ed.PCA,pDataDescr=c("classname")) # Omics components analysis discoRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"), method="DISCOSCA",Rcommon=2,Rspecific=c(2,2), center=TRUE,scale=TRUE,weight=TRUE) jiveRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"), method="JIVE",Rcommon=2,Rspecific=c(2,2), center=TRUE,scale=TRUE,weight=TRUE) o2plsRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"), method="O2PLS",Rcommon=2,Rspecific=c(2,2), center=TRUE,scale=TRUE,weight=TRUE)
data("STATegRa_S3") B1 <- createOmicsExpressionSet(Data=Block1.PCA,pData=ed.PCA, pDataDescr=c("classname")) B2 <- createOmicsExpressionSet(Data=Block2.PCA, pData=ed.PCA,pDataDescr=c("classname")) # Omics components analysis discoRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"), method="DISCOSCA",Rcommon=2,Rspecific=c(2,2), center=TRUE,scale=TRUE,weight=TRUE) jiveRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"), method="JIVE",Rcommon=2,Rspecific=c(2,2), center=TRUE,scale=TRUE,weight=TRUE) o2plsRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"), method="O2PLS",Rcommon=2,Rspecific=c(2,2), center=TRUE,scale=TRUE,weight=TRUE)
This function applies the NonParametric Combination methodology on the integrative analysis of different omics data modalities. It retrieves genes associated to a given outcome, taking into account all omics data. First, each datatype is analyzed independently using the appropriate method. omicsNPC analyses continuous data (microarray) using limma, while count data (e.g., RNAseq) are first preprocessed with using the "voom" function. The user can also specify their own function for computing deregulation / association The p-values from the single dataset analysis are then combined employing Fisher, Liptak and Tippett combining functions. The Tippett function returns findings which are supported by at least one omics modality. The Liptak function returns findings which are supportd by most modalities. The Fisher function has an intermediate behavior between those of Tippett and Liptak.
omicsNPC(dataInput, dataMapping, dataTypes = rep('continuous', length(dataInput)), combMethods = c("Fisher", "Liptak", "Tippett"), numPerms = 1000, numCores = 1, verbose = FALSE, functionGeneratingIndex = NULL, outcomeName = NULL, allCombinations = FALSE, dataWeights = rep(1, length(dataInput))/length(dataInput), returnPermPvalues = FALSE, ...)
omicsNPC(dataInput, dataMapping, dataTypes = rep('continuous', length(dataInput)), combMethods = c("Fisher", "Liptak", "Tippett"), numPerms = 1000, numCores = 1, verbose = FALSE, functionGeneratingIndex = NULL, outcomeName = NULL, allCombinations = FALSE, dataWeights = rep(1, length(dataInput))/length(dataInput), returnPermPvalues = FALSE, ...)
dataInput |
List of ExpressionSet objects, one for each data modality. |
dataMapping |
A data frame describing how to map measurements across datasets. See details for more information. |
dataTypes |
Character vector with possible values: 'continuous', 'count'. Alternatively, a list of functions for assessing deregulation / association with an outcome |
combMethods |
Character vector with possible values: 'Fisher', 'Liptak', 'Tippett'. If more than one is specified, all will be used. |
numPerms |
Number of permutations |
numCores |
Number of CPU cores to use |
verbose |
Logical, if set to TRUE omicsNPC prints out the step that it performs |
functionGeneratingIndex |
Function generating the indices for randomly permuting the samples |
outcomeName |
Name of the outcome of interest / experimental factor, as reported in the design matrices. If NULL, the last column of the design matrices is assumed to be the outcome of interest. |
allCombinations |
Logical, if TRUE all combinations of omics datasets are considered |
dataWeights |
A vector specifying the weigth to give to each dataset. Note that sum(dataWeights) should be 1. |
returnPermPvalues |
Logical, should the p-values computed at each permutation being returned? |
... |
Additional arguments to be passed to the user-defined functions |
A list containing: stats0 Partial deregulation / association statistics pvalues0 The partial p-values computed on each dataset pvaluesNPC The p-values computed through NPC. permPvalues The p-values computed at each permutation
Nestoras Karathanasis, Vincenzo Lagani
Pesarin, Fortunato, and Luigi Salmaso. Permutation tests for complex data: theory, applications and software. John Wiley & Sons, 2010. Nestoras Karathanasis, Ioannis Tsamardinos and Vincenzo Lagani. omicsNPC: applying the Non-Parametric Combination methodology to the integrative analysis of heterogeneous omics data. PlosONE 11(11): e0165545. doi:10.1371/journal.pone.0165545
# Load the data data("TCGA_BRCA_Batch_93") # Setting dataTypes, the first two ExpressionSets include RNAseq data, # the third ExpressionSet includes Microarray data. dataTypes <- c("count", "count", "continuous") # Setting methods to combine pvalues combMethods = c("Fisher", "Liptak", "Tippett") # Setting number of permutations numPerms = 1000 # Setting number of cores numCores = 1 # Setting omicsNPC to print out the steps that it performs. verbose = TRUE # Run omicsNPC analysis. # The output contains a data.frame of p-values, where each row corresponds to a gene, # and each column corresponds to a method used in the analysis. ## Not run: out <- omicsNPC(dataInput = TCGA_BRCA_Data, dataTypes = dataTypes, combMethods = combMethods, numPerms = numPerms, numCores = numCores, verbose = verbose) ## End(Not run)
# Load the data data("TCGA_BRCA_Batch_93") # Setting dataTypes, the first two ExpressionSets include RNAseq data, # the third ExpressionSet includes Microarray data. dataTypes <- c("count", "count", "continuous") # Setting methods to combine pvalues combMethods = c("Fisher", "Liptak", "Tippett") # Setting number of permutations numPerms = 1000 # Setting number of cores numCores = 1 # Setting omicsNPC to print out the steps that it performs. verbose = TRUE # Run omicsNPC analysis. # The output contains a data.frame of p-values, where each row corresponds to a gene, # and each column corresponds to a method used in the analysis. ## Not run: out <- omicsNPC(dataInput = TCGA_BRCA_Data, dataTypes = dataTypes, combMethods = combMethods, numPerms = numPerms, numCores = numCores, verbose = verbose) ## End(Not run)
Plot scatterplots of scores or loadings, for common and distinctive parts as well as combined plots.
plotRes(object, comps=c(1, 2), what, type, combined, block=NULL, color=NULL, shape=NULL, labels=NULL, title=NULL, xlabel=NULL, ylabel=NULL, background=TRUE, palette=NULL, pointSize=4, labelSize=NULL, axisSize=NULL, titleSize=NULL, sizeValues = c(2,4), shapeValues = c(17, 0))
plotRes(object, comps=c(1, 2), what, type, combined, block=NULL, color=NULL, shape=NULL, labels=NULL, title=NULL, xlabel=NULL, ylabel=NULL, background=TRUE, palette=NULL, pointSize=4, labelSize=NULL, axisSize=NULL, titleSize=NULL, sizeValues = c(2,4), shapeValues = c(17, 0))
object |
|
comps |
If combined=FALSE, it indicates the x and y components of the type and block chosen. If |
what |
Either "scores", "loadings" or "both" |
type |
Either "common", "individual" or "both" |
combined |
Logical indicating whether to make a simple plot of two components from one block, or components from different blocks |
block |
Which block to plot, either "1" or "2" or the name of the block. |
color |
Character specifying a pData column from the original data to use to color points |
shape |
Character specifying a pData column to select point shape |
labels |
Character specifying a pData column from which to take point labels |
title |
Main title |
xlabel |
x-axis name |
ylabel |
y-axis name |
background |
Logical specifying whether to make a grey background |
palette |
Vector giving the color palette for the plot |
pointSize |
Size of plot points |
labelSize |
Size of point labels if not NULL |
axisSize |
Size of axis text |
titleSize |
Size of title text |
sizeValues |
Vector containing sizes for scores and loadings |
shapeValues |
Vector indicating the shapes for scores and loadings |
ggplot
object
Patricia Sebastian-Leon
data("STATegRa_S3") B1 <- createOmicsExpressionSet(Data=Block1.PCA,pData=ed.PCA, pDataDescr=c("classname")) B2 <- createOmicsExpressionSet(Data=Block2.PCA, pData=ed.PCA,pDataDescr=c("classname")) # Omics components analysis discoRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"), method="DISCOSCA",Rcommon=2,Rspecific=c(2,2), center=TRUE,scale=TRUE,weight=TRUE) jiveRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"), method="JIVE",Rcommon=2,Rspecific=c(2,2), center=TRUE,scale=TRUE,weight=TRUE) o2plsRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"), method="O2PLS",Rcommon=2,Rspecific=c(2,2), center=TRUE,scale=TRUE,weight=TRUE) # Scatterplot of scores variables associated to common components # DISCO-SCA plotRes(object=discoRes,comps=c(1,2),what="scores",type="common", combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL, background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, axisSize=NULL,titleSize=NULL) # JIVE plotRes(object=jiveRes,comps=c(1,2),what="scores",type="common", combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL, background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, axisSize=NULL,titleSize=NULL) # O2PLS # Scatterplot of scores variables associated to common components # Associated to first block p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common", combined=FALSE,block="expr",color="classname",shape=NULL, labels=NULL,background=TRUE,palette=NULL,pointSize=4, labelSize=NULL,axisSize=NULL,titleSize=NULL) # Associated to second block p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common", combined=FALSE,block="mirna",color="classname",shape=NULL, labels=NULL,background=TRUE,palette=NULL,pointSize=4, labelSize=NULL,axisSize=NULL,titleSize=NULL) # Combined plot of scores variables assocaited to common components plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="common", combined=TRUE,block=NULL,color="classname",shape=NULL, labels=NULL,background=TRUE,palette=NULL,pointSize=4, labelSize=NULL,axisSize=NULL,titleSize=NULL) # Loadings plot for individual components # Separately for each block p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual", combined=FALSE,block="expr",color="classname",shape=NULL, labels=NULL,background=TRUE,palette=NULL,pointSize=4, labelSize=NULL,axisSize=NULL,titleSize=NULL) p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual", combined=FALSE,block="mirna",color="classname",shape=NULL, labels=NULL,background=TRUE,palette=NULL,pointSize=4, labelSize=NULL,axisSize=NULL,titleSize=NULL) # Biplot: scores + loadings plotRes(object=discoRes,comps=c(1,2),what="both",type="common", combined=FALSE,block="expr",color="classname",shape=NULL, labels=NULL,background=TRUE,palette=NULL,pointSize=4, labelSize=NULL,axisSize=NULL,titleSize=NULL)
data("STATegRa_S3") B1 <- createOmicsExpressionSet(Data=Block1.PCA,pData=ed.PCA, pDataDescr=c("classname")) B2 <- createOmicsExpressionSet(Data=Block2.PCA, pData=ed.PCA,pDataDescr=c("classname")) # Omics components analysis discoRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"), method="DISCOSCA",Rcommon=2,Rspecific=c(2,2), center=TRUE,scale=TRUE,weight=TRUE) jiveRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"), method="JIVE",Rcommon=2,Rspecific=c(2,2), center=TRUE,scale=TRUE,weight=TRUE) o2plsRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"), method="O2PLS",Rcommon=2,Rspecific=c(2,2), center=TRUE,scale=TRUE,weight=TRUE) # Scatterplot of scores variables associated to common components # DISCO-SCA plotRes(object=discoRes,comps=c(1,2),what="scores",type="common", combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL, background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, axisSize=NULL,titleSize=NULL) # JIVE plotRes(object=jiveRes,comps=c(1,2),what="scores",type="common", combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL, background=TRUE,palette=NULL,pointSize=4,labelSize=NULL, axisSize=NULL,titleSize=NULL) # O2PLS # Scatterplot of scores variables associated to common components # Associated to first block p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common", combined=FALSE,block="expr",color="classname",shape=NULL, labels=NULL,background=TRUE,palette=NULL,pointSize=4, labelSize=NULL,axisSize=NULL,titleSize=NULL) # Associated to second block p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common", combined=FALSE,block="mirna",color="classname",shape=NULL, labels=NULL,background=TRUE,palette=NULL,pointSize=4, labelSize=NULL,axisSize=NULL,titleSize=NULL) # Combined plot of scores variables assocaited to common components plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="common", combined=TRUE,block=NULL,color="classname",shape=NULL, labels=NULL,background=TRUE,palette=NULL,pointSize=4, labelSize=NULL,axisSize=NULL,titleSize=NULL) # Loadings plot for individual components # Separately for each block p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual", combined=FALSE,block="expr",color="classname",shape=NULL, labels=NULL,background=TRUE,palette=NULL,pointSize=4, labelSize=NULL,axisSize=NULL,titleSize=NULL) p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual", combined=FALSE,block="mirna",color="classname",shape=NULL, labels=NULL,background=TRUE,palette=NULL,pointSize=4, labelSize=NULL,axisSize=NULL,titleSize=NULL) # Biplot: scores + loadings plotRes(object=discoRes,comps=c(1,2),what="both",type="common", combined=FALSE,block="expr",color="classname",shape=NULL, labels=NULL,background=TRUE,palette=NULL,pointSize=4, labelSize=NULL,axisSize=NULL,titleSize=NULL)
This function visualises the VAF results from component analysis. The input is a caClass-class
object from omicsCompAnalysis
. VAF cannot be calculated if mode "O2PLS" was used. The plots for modes "DISCOSCA" and "JIVE" are different since DISCO-SCA distinctive components have some VAF in the other block. This VAF can be interpreted as an error in the rotation.
plotVAF(object, mainTitle="")
plotVAF(object, mainTitle="")
object |
|
mainTitle |
Plot title |
ggplot
object
Patricia Sebastian-Leon
data("STATegRa_S3") require(ggplot2) B1 <- createOmicsExpressionSet(Data=Block1.PCA,pData=ed.PCA, pDataDescr=c("classname")) B2 <- createOmicsExpressionSet(Data=Block2.PCA, pData=ed.PCA,pDataDescr=c("classname")) # Omics components analysis discoRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"), method="DISCOSCA",Rcommon=2,Rspecific=c(2,2), center=TRUE,scale=TRUE,weight=TRUE) jiveRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"), method="JIVE",Rcommon=2,Rspecific=c(2,2), center=TRUE,scale=TRUE,weight=TRUE) # DISCO-SCA plotVAF plotVAF(discoRes) # JIVE plotVAF plotVAF(jiveRes)
data("STATegRa_S3") require(ggplot2) B1 <- createOmicsExpressionSet(Data=Block1.PCA,pData=ed.PCA, pDataDescr=c("classname")) B2 <- createOmicsExpressionSet(Data=Block2.PCA, pData=ed.PCA,pDataDescr=c("classname")) # Omics components analysis discoRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"), method="DISCOSCA",Rcommon=2,Rspecific=c(2,2), center=TRUE,scale=TRUE,weight=TRUE) jiveRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"), method="JIVE",Rcommon=2,Rspecific=c(2,2), center=TRUE,scale=TRUE,weight=TRUE) # DISCO-SCA plotVAF plotVAF(discoRes) # JIVE plotVAF plotVAF(jiveRes)
STATegRa is a package for the integrative analysis of multi-omic data-sets.
For full information, see the user's guide.
mRNA data (Block1
), miRNA data (Block2
) and the design matrix (ed
), from STATegRa_S1
, provides selected data downloaded from https://tcga-data.nci.nih.gov/docs/publications/gbm_exp/. The mapping between miRNA and mRNA (mapdata
, available in STATegRa_S2
) contains, as a processed matrix, selected information available from TargetScan; we selected the set of miRNA target predictions for humans for those miRNA-mRNA pairs where both miRNA and mRNA were in Block1
and Block2
respectively.
The PCA version of the data (Block1.PCA
, Block2.PCA
, ed.PCA
; available in STATegRa_S3
), provides a similar data-set to Block1
, Block2
and ed
data; however in this case the data has been processed in order to provide a pedagogic example of OmicsPCA. Results obtained from OmicsPCA (omicsCompAnalysis
) with the existing data should not be taken as clinically valid.
Two matrices with mRNA and miRNA expression data, a design matrix that describes both and a mapping between miRNA and genes.
David Gomez-Cabrero, Patricia Sebastian-Leon, Gordon Ball
(a) See https://tcga-data.nci.nih.gov/docs/publications/gbm_exp/.
(b) Gabor Csardi, targetscan.Hs.eg.db
: TargetScan miRNA target predictions for human. R package version 0.6.1
data(STATegRa_S1) data(STATegRa_S2) data(STATegRa_S3)
data(STATegRa_S1) data(STATegRa_S2) data(STATegRa_S3)
Data were downloaded from TCGA data portal, https://tcga-data.nci.nih.gov/tcga/.
We downloaded sixteen tumour samples and the sixteen matching normal, for Breast invasive carcinoma, BRCA, batch 93.
Herein, three types of data modalities are included, RNAseq (TCGA_BRCA_Data$RNAseq
), RNAseqV2 (TCGA_BRCA_Data$RNAseqV2
)
and Expression-Genes (TCGA_BRCA_Data$Microarray
). The Data Level was set to Level 3.
For each data type, we pooled all data to one matrix, where rows corresponded to genes and columns to samples.
Only the first 100 genes are included.
One list, which contains three ExpressionSet objects.
Nestoras Karathanasis, Vincenzo Lagani
See https://tcga-data.nci.nih.gov/tcga/.
# load data data(TCGA_BRCA_Batch_93)
# load data data(TCGA_BRCA_Batch_93)
These functions have are defunct and no longer available
holistOmics: replaced by omicsNPC
Finds the location of the STATegRa User's Guide and optionally opens it.
STATegRaUsersGuide(view = TRUE)
STATegRaUsersGuide(view = TRUE)
view |
Whether to open a browser |
The path to the documentation
David Gomez-Cabrero
STATegRaUsersGuide(view=FALSE)
STATegRaUsersGuide(view=FALSE)