Title: | Functions for analysis of real-time quantitative PCR data at SIRS-Lab GmbH |
---|---|
Description: | Functions for analysis of real-time quantitative PCR data at SIRS-Lab GmbH |
Authors: | Matthias Kohl |
Maintainer: | Matthias Kohl <[email protected]> |
License: | GPL (>= 2) |
Version: | 1.73.0 |
Built: | 2024-12-03 05:57:18 UTC |
Source: | https://github.com/bioc/SLqPCR |
Functions for analysis of real-time quantitative PCR data at SIRS-Lab GmbH
Package: | SLqPCR |
Type: | Package |
Version: | 1.0.0 |
Date: | 2007-01-02 |
Depends: | R(>= 2.4.0), stats, RColorBrewer |
License: | GPL (version 2 or later) |
require(SLqPCR)
Dr. Matthias Kohl (SIRS-Lab GmbH) http://www.sirs-lab.com
Maintainer: Dr. Matthias Kohl [email protected]
Jo Vandesompele, Katleen De Preter, Filip Pattyn et al. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology 2002. 3(7):research0034.1-0034.11. http://genomebiology.com/2002/3/7/research/0034/
Computation of the gene expression stability value M for real-time quantitativ RT-PCR data. For more details we refer to Vandesompele et al. (2002).
geneStabM(relData, na.rm = FALSE)
geneStabM(relData, na.rm = FALSE)
relData |
matrix or data.frame containing real-time quantitative RT-PCR data |
na.rm |
a logical value indicating whether |
The gene expression stability value M is defined as the average pairwise normalization factor; i.e., one needs to specify data from at least two genes. For more details see Vandesompele et al. (2002).
numeric vector with gene expression stability values
Dr. Matthias Kohl (SIRS-Lab GmbH) [email protected]
Jo Vandesompele, Katleen De Preter, Filip Pattyn et al. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology 2002. 3(7):research0034.1-0034.11. http://genomebiology.com/2002/3/7/research/0034/
Computation of the geometric mean.
geomMean(x, na.rm = FALSE)
geomMean(x, na.rm = FALSE)
x |
numeric vector of non-negative Reals |
na.rm |
a logical value indicating whether |
The computation of the geometric mean is done via prod(x)^(1/length(x))
.
geometric mean
Dr. Matthias Kohl (SIRS-Lab GmbH) [email protected]
This function can be used to normalize real-time quantitative RT-PCR data.
normPCR(relData, HKs, method = "Vandesompele", na.rm = FALSE)
normPCR(relData, HKs, method = "Vandesompele", na.rm = FALSE)
relData |
matrix or data.frame containing relative quantities (genes in columns) |
HKs |
integer, column numbers of housekeeping genes |
method |
method for the computation |
na.rm |
a logical value indicating whether |
This function can be used to normalize real-time quantitative RT-PCR data.
The default method "Vandesompele"
was proposed by
Vandesompele et al. (2002).
Currently, only the method by Vandesompele et al. (2002) is implemented.
Normalized expression data
Dr. Matthias Kohl (SIRS-Lab GmbH) [email protected]
Jo Vandesompele, Katleen De Preter, Filip Pattyn et al. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology 2002. 3(7):research0034.1-0034.11. http://genomebiology.com/2002/3/7/research/0034/
data(SLqPCRdata) relData <- apply(SLqPCRdata, 2, relQuantPCR) geneStabM(relData[,c(3,4)]) exprData <- normPCR(SLqPCRdata, c(3,4))
data(SLqPCRdata) relData <- apply(SLqPCRdata, 2, relQuantPCR) geneStabM(relData[,c(3,4)]) exprData <- normPCR(SLqPCRdata, c(3,4))
Compute relative expression values for realtime quantitative RT-PCR data based on Ct or take-off values, respectively. The computations use the PCR efficiency.
relQuantPCR(x, E = 2, na.rm = FALSE)
relQuantPCR(x, E = 2, na.rm = FALSE)
x |
numeric vector containing raw data |
E |
PCR efficiency |
na.rm |
a logical value indicating whether |
vector of relative expression values w.r.t. specified PCR efficiency.
Dr. Matthias Kohl (SIRS-Lab GmbH) [email protected]
Jo Vandesompele, Katleen De Preter, Filip Pattyn et al. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology 2002. 3(7):research0034.1-0034.11. http://genomebiology.com/2002/3/7/research/0034/
This function can be used to determine a set of reference/housekeeping (HK) genes for gene expression experiments.
selectHKgenes(relData, method = "Vandesompele", minNrHK = 2, geneSymbol, trace = TRUE, na.rm = FALSE)
selectHKgenes(relData, method = "Vandesompele", minNrHK = 2, geneSymbol, trace = TRUE, na.rm = FALSE)
relData |
matrix or data.frame containing relative expression values |
method |
method to compute most stable genes |
minNrHK |
minimum number of HK genes that should be considered |
geneSymbol |
gene symbols |
trace |
logical, print additional information |
na.rm |
a logical value indicating whether |
This function can be used to determine a set of reference/housekeeping (HK) genes
for gene expression experiments. The default method "Vandesompele"
was proposed by Vandesompele et al. (2002).
Currently, only the method by Vandesompele et al. (2002) is implemented.
Vandesompele et al. (2002) propose a cut-off value of 0.15 for the pairwise variation. Below this value the inclusion of an additional housekeeping gene is not required.
If method = "Vandesompele"
a list with the following components is
returnd
ranking |
ranking of genes from best to worst where the two most stable genes cannot be ranked |
variation |
pairwise variation during stepwise selection |
meanM |
average expression stability M |
Dr. Matthias Kohl (SIRS-Lab GmbH) [email protected]
Jo Vandesompele, Katleen De Preter, Filip Pattyn et al. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology 2002. 3(7):research0034.1-0034.11. http://genomebiology.com/2002/3/7/research/0034/
data(vandesompele) res.BM <- selectHKgenes(vandesompele[1:9,], method = "Vandesompele", geneSymbol = names(vandesompele), minNrHK = 2, trace = TRUE, na.rm = TRUE)
data(vandesompele) res.BM <- selectHKgenes(vandesompele[1:9,], method = "Vandesompele", geneSymbol = names(vandesompele), minNrHK = 2, trace = TRUE, na.rm = TRUE)
This data is part of a SIRS-Lab inhouse real-time quantitative PCR experiment.
data(SLqPCRdata)
data(SLqPCRdata)
A data frame with 16 observations on the following 4 variables.
Gene1
a numeric vector, average take-off values of gene 1
Gene2
a numeric vector, average take-off values of gene 2
HK1
a numeric vector, average take-off values of housekeeper 1
HK2
a numeric vector, average take-off values of housekeeper 2
The row names of this data set indicate the probes which were investigated. The take-off values are mean values of three replicates.
data(SLqPCRdata) SLqPCRdata
data(SLqPCRdata) SLqPCRdata
This data set was used in Vandesompele et al (2002) to demonstrate normalization of real-time quantitative RT-PCR data by geometric averaging of housekeeping genes.
data(vandesompele)
data(vandesompele)
A data frame with 85 observations on the following 10 variables which stand for expression data of ten commonly used housekeeping genes
ACTB
actin, beta
B2M
beta-2-microglobulin
GAPD
glyceraldehyde-3-phosphate dehydrogenase
HMBS
hydroxymethylbilane synthase
HPRT1
hypoxanthine phosphoribosyltransferase 1
RPL13A
ribosomal protein L13a
SDHA
succinate dehydrogenase complex subunit A
TBP
TATA box binding protein
UBC
ubiquitin C
YWHAZ
tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta polypeptide
The row names of this data set indicate the various human tissues which were investigated.
9 normal bone-marrow samples
9 normal human tissues from pooled organs (heart, brain, fetal brain, lung, trachea, kidney, mammary gland, small intestine and uterus)
20 short-term cultured normal fibroblast samples from different individuals
13 normal leukocyte samples
34 neuroblastoma cell lines (independently prepared in different labs from different patients)
The data set was obtained from http://genomebiology.com/content/supplementary/gb-2002-3-7-research0034-s1.txt
Jo Vandesompele, Katleen De Preter, Filip Pattyn et al. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology 2002. 3(7):research0034.1-0034.11. http://genomebiology.com/2002/3/7/research/0034/
data(vandesompele) str(vandesompele) rownames(vandesompele)
data(vandesompele) str(vandesompele) rownames(vandesompele)