Package 'ReactomeGSA'

Title: Client for the Reactome Analysis Service for comparative multi-omics gene set analysis
Description: The ReactomeGSA packages uses Reactome's online analysis service to perform a multi-omics gene set analysis. The main advantage of this package is, that the retrieved results can be visualized using REACTOME's powerful webapplication. Since Reactome's analysis service also uses R to perfrom the actual gene set analysis you will get similar results when using the same packages (such as limma and edgeR) locally. Therefore, if you only require a gene set analysis, different packages are more suited.
Authors: Johannes Griss [aut, cre]
Maintainer: Johannes Griss <[email protected]>
License: MIT + file LICENSE
Version: 1.21.2
Built: 2024-11-28 03:51:52 UTC
Source: https://github.com/bioc/ReactomeGSA

Help Index


add_dataset

Description

Adds a dataset to the analysis request

Usage

add_dataset(
  request,
  expression_values,
  name,
  type,
  comparison_factor,
  comparison_group_1,
  comparison_group_2,
  sample_data = NULL,
  additional_factors = NULL,
  overwrite = FALSE,
  ...
)

Arguments

request

The request to add the dataset to. Commonly a ReactomeAnalysisRequest object.

expression_values

Object containing the expression values of the dataset to add (multiple types supported).

name

character. Name of the dataset. This must be unique within one request.

type

character. The type of the dataset. Get available types using get_reactome_data_types

comparison_factor

character. The name of the sample property to use for the main comparison. The sample properties are either retrieved from expression_values or from sample_data.

comparison_group_1

character. Name of the first group within comparison_factor to use for the comparison.

comparison_group_2

character. Name of the second group within comparison_factor to use for the comparison.

sample_data

data.frame (optional) data.frame containing the sample metadata of the expression_values. Depending on the object type of expression_values, this information can also be extracted from there.

additional_factors

vector. Vector of additional sample properties that are used as blocking factors (if supported by the chosen analysis method) in the gene set analysis.

overwrite

boolean. If set to TRUE, datasets with the same name will be overwritten

...

Additional parameters passed to downstream functions. See the respective documentation of whether any additional parameters are supported.

Value

The ReactomeAnalysisRequest object with the added dataset

See Also

Other add_dataset methods: add_dataset,ReactomeAnalysisRequest,DGEList-method, add_dataset,ReactomeAnalysisRequest,EList-method, add_dataset,ReactomeAnalysisRequest,ExpressionSet-method, add_dataset,ReactomeAnalysisRequest,data.frame-method, add_dataset,ReactomeAnalysisRequest,matrix-method

Examples

# create a request using Camera as an analysis
library(ReactomeGSA.data)
data(griss_melanoma_proteomics)
library(methods)

my_request <- ReactomeAnalysisRequest(method = "Camera")

# since the expression_values object is a limma EList object, the sample_data is
# retrieved from there

# add the dataset
my_request <- add_dataset(request = my_request,
                          expression_values = griss_melanoma_proteomics,
                          name = "Proteomics",
                          type = "proteomics_int",
                          comparison_factor = "condition",
                          comparison_group_1 = "MOCK",
                          comparison_group_2 = "MCM",
                          additional_factors = c("cell.type", "patient.id"))

add_dataset - data.frame

Description

Adds a dataset to the analysis request

Usage

## S4 method for signature 'ReactomeAnalysisRequest,data.frame'
add_dataset(
  request,
  expression_values,
  name,
  type,
  comparison_factor,
  comparison_group_1,
  comparison_group_2,
  sample_data = NULL,
  additional_factors = NULL,
  overwrite = FALSE,
  ...
)

Arguments

request

ReactomeAnalysisRequest.

expression_values

data.frame. In this case, the sample_data must be set.

name

character. Name of the dataset. This must be unique within one request.

type

character. The type of the dataset. Get available types using get_reactome_data_types

comparison_factor

character. The name of the sample property to use for the main comparison. The sample properties are either retrieved from expression_values or from sample_data.

comparison_group_1

character. Name of the first group within comparison_factor to use for the comparison.

comparison_group_2

character. Name of the second group within comparison_factor to use for the comparison.

sample_data

data.frame (optional) data.frame containing the sample metadata of the expression_values. Depending on the object type of expression_values, this information can also be extracted from there.

additional_factors

vector. Vector of additional sample properties that are used as blocking factors (if supported by the chosen analysis method) in the gene set analysis.

overwrite

boolean. If set to TRUE, datasets with the same name will be overwritten

...

Additional parameters passed to downstream functions. See the respective documentation of whether any additional parameters are supported.

Value

The ReactomeAnalysisRequest object with the added dataset

See Also

Other add_dataset methods: add_dataset(), add_dataset,ReactomeAnalysisRequest,DGEList-method, add_dataset,ReactomeAnalysisRequest,EList-method, add_dataset,ReactomeAnalysisRequest,ExpressionSet-method, add_dataset,ReactomeAnalysisRequest,matrix-method

Examples

# create a request using Camera as an analysis
library(ReactomeGSA.data)
data(griss_melanoma_proteomics)
library(methods)

my_request <- ReactomeAnalysisRequest(method = "Camera")

# since the expression_values object is a limma EList object, the sample_data is
# retrieved from there

# add the dataset
my_request <- add_dataset(request = my_request,
                          expression_values = griss_melanoma_proteomics,
                          name = "Proteomics",
                          type = "proteomics_int",
                          comparison_factor = "condition",
                          comparison_group_1 = "MOCK",
                          comparison_group_2 = "MCM",
                          additional_factors = c("cell.type", "patient.id"))

add_dataset - DGEList

Description

Adds a dataset to the analysis request

Usage

## S4 method for signature 'ReactomeAnalysisRequest,DGEList'
add_dataset(
  request,
  expression_values,
  name,
  type,
  comparison_factor,
  comparison_group_1,
  comparison_group_2,
  sample_data = NULL,
  additional_factors = NULL,
  overwrite = FALSE,
  ...
)

Arguments

request

ReactomeAnalysisRequest.

expression_values

DGEList Here, the sample_data is automaticall extracted from the expression_values object unless sample_data is specified as well.

name

character. Name of the dataset. This must be unique within one request.

type

character. The type of the dataset. Get available types using get_reactome_data_types

comparison_factor

character. The name of the sample property to use for the main comparison. The sample properties are either retrieved from expression_values or from sample_data.

comparison_group_1

character. Name of the first group within comparison_factor to use for the comparison.

comparison_group_2

character. Name of the second group within comparison_factor to use for the comparison.

sample_data

data.frame (optional) data.frame containing the sample metadata of the expression_values. Depending on the object type of expression_values, this information can also be extracted from there.

additional_factors

vector. Vector of additional sample properties that are used as blocking factors (if supported by the chosen analysis method) in the gene set analysis.

overwrite

boolean. If set to TRUE, datasets with the same name will be overwritten

...

Additional parameters passed to downstream functions. See the respective documentation of whether any additional parameters are supported.

Value

The ReactomeAnalysisRequest object with the added dataset

See Also

Other add_dataset methods: add_dataset(), add_dataset,ReactomeAnalysisRequest,EList-method, add_dataset,ReactomeAnalysisRequest,ExpressionSet-method, add_dataset,ReactomeAnalysisRequest,data.frame-method, add_dataset,ReactomeAnalysisRequest,matrix-method

Examples

# create a request using Camera as an analysis
library(ReactomeGSA.data)
data(griss_melanoma_proteomics)
library(methods)

my_request <- ReactomeAnalysisRequest(method = "Camera")

# since the expression_values object is a limma EList object, the sample_data is
# retrieved from there

# add the dataset
my_request <- add_dataset(request = my_request,
                          expression_values = griss_melanoma_proteomics,
                          name = "Proteomics",
                          type = "proteomics_int",
                          comparison_factor = "condition",
                          comparison_group_1 = "MOCK",
                          comparison_group_2 = "MCM",
                          additional_factors = c("cell.type", "patient.id"))

add_dataset - EList

Description

Adds a dataset to the analysis request

Usage

## S4 method for signature 'ReactomeAnalysisRequest,EList'
add_dataset(
  request,
  expression_values,
  name,
  type,
  comparison_factor,
  comparison_group_1,
  comparison_group_2,
  sample_data = NULL,
  additional_factors = NULL,
  overwrite = FALSE,
  ...
)

Arguments

request

ReactomeAnalysisRequest.

expression_values

EList. Here, the sample_data is automaticall extracted from the expression_values object unless sample_data is specified as well.

name

character. Name of the dataset. This must be unique within one request.

type

character. The type of the dataset. Get available types using get_reactome_data_types

comparison_factor

character. The name of the sample property to use for the main comparison. The sample properties are either retrieved from expression_values or from sample_data.

comparison_group_1

character. Name of the first group within comparison_factor to use for the comparison.

comparison_group_2

character. Name of the second group within comparison_factor to use for the comparison.

sample_data

data.frame (optional) data.frame containing the sample metadata of the expression_values. Depending on the object type of expression_values, this information can also be extracted from there.

additional_factors

vector. Vector of additional sample properties that are used as blocking factors (if supported by the chosen analysis method) in the gene set analysis.

overwrite

boolean. If set to TRUE, datasets with the same name will be overwritten

...

Additional parameters passed to downstream functions. See the respective documentation of whether any additional parameters are supported.

Value

The ReactomeAnalysisRequest object with the added dataset

See Also

Other add_dataset methods: add_dataset(), add_dataset,ReactomeAnalysisRequest,DGEList-method, add_dataset,ReactomeAnalysisRequest,ExpressionSet-method, add_dataset,ReactomeAnalysisRequest,data.frame-method, add_dataset,ReactomeAnalysisRequest,matrix-method

Examples

# create a request using Camera as an analysis
library(ReactomeGSA.data)
data(griss_melanoma_proteomics)
library(methods)

my_request <- ReactomeAnalysisRequest(method = "Camera")

# since the expression_values object is a limma EList object, the sample_data is
# retrieved from there

# add the dataset
my_request <- add_dataset(request = my_request,
                          expression_values = griss_melanoma_proteomics,
                          name = "Proteomics",
                          type = "proteomics_int",
                          comparison_factor = "condition",
                          comparison_group_1 = "MOCK",
                          comparison_group_2 = "MCM",
                          additional_factors = c("cell.type", "patient.id"))

add_dataset - ExpressionSet

Description

Adds a dataset to the analysis request

Usage

## S4 method for signature 'ReactomeAnalysisRequest,ExpressionSet'
add_dataset(
  request,
  expression_values,
  name,
  type,
  comparison_factor,
  comparison_group_1,
  comparison_group_2,
  sample_data = NULL,
  additional_factors = NULL,
  overwrite = FALSE,
  ...
)

Arguments

request

ReactomeAnalysisRequest.

expression_values

ExpressionSet. Here, the sample_data is automaticall extracted from the expression_values object unless sample_data is specified as well.

name

character. Name of the dataset. This must be unique within one request.

type

character. The type of the dataset. Get available types using get_reactome_data_types

comparison_factor

character. The name of the sample property to use for the main comparison. The sample properties are either retrieved from expression_values or from sample_data.

comparison_group_1

character. Name of the first group within comparison_factor to use for the comparison.

comparison_group_2

character. Name of the second group within comparison_factor to use for the comparison.

sample_data

data.frame (optional) data.frame containing the sample metadata of the expression_values. Depending on the object type of expression_values, this information can also be extracted from there.

additional_factors

vector. Vector of additional sample properties that are used as blocking factors (if supported by the chosen analysis method) in the gene set analysis.

overwrite

boolean. If set to TRUE, datasets with the same name will be overwritten

...

Additional parameters passed to downstream functions. See the respective documentation of whether any additional parameters are supported.

Value

The ReactomeAnalysisRequest object with the added dataset

See Also

Other add_dataset methods: add_dataset(), add_dataset,ReactomeAnalysisRequest,DGEList-method, add_dataset,ReactomeAnalysisRequest,EList-method, add_dataset,ReactomeAnalysisRequest,data.frame-method, add_dataset,ReactomeAnalysisRequest,matrix-method

Examples

# create a request using Camera as an analysis
library(ReactomeGSA.data)
data(griss_melanoma_proteomics)
library(methods)

my_request <- ReactomeAnalysisRequest(method = "Camera")

# since the expression_values object is a limma EList object, the sample_data is
# retrieved from there

# add the dataset
my_request <- add_dataset(request = my_request,
                          expression_values = griss_melanoma_proteomics,
                          name = "Proteomics",
                          type = "proteomics_int",
                          comparison_factor = "condition",
                          comparison_group_1 = "MOCK",
                          comparison_group_2 = "MCM",
                          additional_factors = c("cell.type", "patient.id"))

add_dataset - matrix

Description

Adds a dataset to the analysis request

Usage

## S4 method for signature 'ReactomeAnalysisRequest,matrix'
add_dataset(
  request,
  expression_values,
  name,
  type,
  comparison_factor,
  comparison_group_1,
  comparison_group_2,
  sample_data = NULL,
  additional_factors = NULL,
  overwrite = FALSE,
  ...
)

Arguments

request

ReactomeAnalysisRequest.

expression_values

matrix. In this case, the sample_data must be set.

name

character. Name of the dataset. This must be unique within one request.

type

character. The type of the dataset. Get available types using get_reactome_data_types

comparison_factor

character. The name of the sample property to use for the main comparison. The sample properties are either retrieved from expression_values or from sample_data.

comparison_group_1

character. Name of the first group within comparison_factor to use for the comparison.

comparison_group_2

character. Name of the second group within comparison_factor to use for the comparison.

sample_data

data.frame (optional) data.frame containing the sample metadata of the expression_values. Depending on the object type of expression_values, this information can also be extracted from there.

additional_factors

vector. Vector of additional sample properties that are used as blocking factors (if supported by the chosen analysis method) in the gene set analysis.

overwrite

boolean. If set to TRUE, datasets with the same name will be overwritten

...

Additional parameters passed to downstream functions. See the respective documentation of whether any additional parameters are supported.

Value

The ReactomeAnalysisRequest object with the added dataset

See Also

Other add_dataset methods: add_dataset(), add_dataset,ReactomeAnalysisRequest,DGEList-method, add_dataset,ReactomeAnalysisRequest,EList-method, add_dataset,ReactomeAnalysisRequest,ExpressionSet-method, add_dataset,ReactomeAnalysisRequest,data.frame-method

Examples

# create a request using Camera as an analysis
library(ReactomeGSA.data)
data(griss_melanoma_proteomics)
library(methods)

my_request <- ReactomeAnalysisRequest(method = "Camera")

# since the expression_values object is a limma EList object, the sample_data is
# retrieved from there

# add the dataset
my_request <- add_dataset(request = my_request,
                          expression_values = griss_melanoma_proteomics,
                          name = "Proteomics",
                          type = "proteomics_int",
                          comparison_factor = "condition",
                          comparison_group_1 = "MOCK",
                          comparison_group_2 = "MCM",
                          additional_factors = c("cell.type", "patient.id"))

analyse_sc_clusters

Description

Analyses cell clusters of a single-cell RNA-sequencing experiment to get pathway-level expressions for every cluster of cells.

Usage

analyse_sc_clusters(
  object,
  use_interactors = TRUE,
  include_disease_pathways = FALSE,
  create_reactome_visualization = FALSE,
  create_reports = FALSE,
  report_email = NULL,
  verbose = FALSE,
  ...
)

Arguments

object

The object containing the single-cell RNA-sequencing data.

use_interactors

If set (default), protein-protein interactors from IntAct are used to extend Reactome pathways.

include_disease_pathways

If set, disease pathways are included as well. Disease pathways in Reactome follow a different annotation approach and can therefore lead to inaccurate results.

create_reactome_visualization

If set, the interactive visualization in Reactome's PathwayBrowser is created.

create_reports

If set, PDF and Microsoft Excel reports are created. Links to these report files are send to the supplied e-mail address.

report_email

The e-mail address to which reports should be sent to.

verbose

If set, additional status messages are printed.

...

Parameters passed to the specific implementation. Detailed documentations can be found there.

Details

There are currently two specific implementations of this function, one to support Seurat objects and one to support Bioconductor's SingleCellExperiment class.

Value

A ReactomeAnalysisResult object.

Examples

# This example shows how a Seurat object can be analysed
# the approach is identical for SingleCellExperiment objects
library(ReactomeGSA.data)
data(jerby_b_cells)

# perform the GSVA analysis
gsva_result <- analyse_sc_clusters(jerby_b_cells, verbose = FALSE)

analyse_sc_clusters - Seurat

Description

Analyses cell clusters of a single-cell RNA-sequencing experiment to get pathway-level expressions for every cluster of cells.

Usage

## S4 method for signature 'Seurat'
analyse_sc_clusters(
  object,
  use_interactors = TRUE,
  include_disease_pathways = FALSE,
  create_reactome_visualization = FALSE,
  create_reports = FALSE,
  report_email = NULL,
  verbose = FALSE,
  assay = "RNA",
  slot = "counts",
  ...
)

Arguments

object

The Seurat object containing the single cell RNA-sequencing data.

use_interactors

If set (default), protein-protein interactors from IntAct are used to extend Reactome pathways.

include_disease_pathways

If set, disease pathways are included as well. Disease pathways in Reactome follow a different annotation approach and can therefore lead to inaccurate results.

create_reactome_visualization

If set, the interactive visualization in Reactome's PathwayBrowser is created.

create_reports

If set, PDF and Microsoft Excel reports are created. Links to these report files are send to the supplied e-mail address.

report_email

The e-mail address to which reports should be sent to.

verbose

If set, additional status messages are printed.

assay

By default, the "RNA" assay is used, which contains the original read counts.

slot

The slot in the Seurat object to use. Default and recommended approach is to use the raw counts.

...

Parameters passed to the specific implementation. Detailed documentations can be found there.

Details

There are currently two specific implementations of this function, one to support Seurat objects and one to support Bioconductor's SingleCellExperiment class.

Value

A ReactomeAnalysisResult object.

Examples

# This example shows how a Seurat object can be analysed
# the approach is identical for SingleCellExperiment objects
library(ReactomeGSA.data)
data(jerby_b_cells)

# perform the GSVA analysis
gsva_result <- analyse_sc_clusters(jerby_b_cells, verbose = FALSE)

analyse_sc_clusters - SingleCellExperiment

Description

Analyses cell clusters of a single-cell RNA-sequencing experiment to get pathway-level expressions for every cluster of cells.

Usage

## S4 method for signature 'SingleCellExperiment'
analyse_sc_clusters(
  object,
  use_interactors = TRUE,
  include_disease_pathways = FALSE,
  create_reactome_visualization = FALSE,
  create_reports = FALSE,
  report_email = NULL,
  verbose = FALSE,
  cell_ids,
  ...
)

Arguments

object

The SingleCellExperiment object containing the single cell RNA-sequencing data.

use_interactors

If set (default), protein-protein interactors from IntAct are used to extend Reactome pathways.

include_disease_pathways

If set, disease pathways are included as well. Disease pathways in Reactome follow a different annotation approach and can therefore lead to inaccurate results.

create_reactome_visualization

If set, the interactive visualization in Reactome's PathwayBrowser is created.

create_reports

If set, PDF and Microsoft Excel reports are created. Links to these report files are send to the supplied e-mail address.

report_email

The e-mail address to which reports should be sent to.

verbose

If set, additional status messages are printed.

cell_ids

A factor specifying the group to which each cell belongs. For example, object$cluster. Alternatively, a string specifying the metada field's name may be passed.

...

Parameters passed to scater's aggregateAcrossCells function.

Details

There are currently two specific implementations of this function, one to support Seurat objects and one to support Bioconductor's SingleCellExperiment class.

Value

A ReactomeAnalysisResult object.

Examples

# This example shows how a Seurat object can be analysed
# the approach is identical for SingleCellExperiment objects
library(ReactomeGSA.data)
data(jerby_b_cells)

# perform the GSVA analysis
gsva_result <- analyse_sc_clusters(jerby_b_cells, verbose = FALSE)

break_names

Description

Introduce a line break in the middle of a long name.

Usage

break_names(the_names, long_name_limit = 46)

Arguments

the_names

A vector of names

long_name_limit

The limit to define a long name (defautl 46 chars.)

Value

The list of adapted names


check_reactome_url

Description

Makes sure the passed URL is valid. If not URL is passed, the one stored in the options is retrieved

Usage

check_reactome_url(reactome_url)

Arguments

reactome_url

character The URL to test. If NULL the URL is retrieved from the options.

Value

character The potentially cleaned / retrieved URL with a trailing "/"


Check's if a ReactomeAnalysisRequest object is valid

Description

Check's if a ReactomeAnalysisRequest object is valid

Usage

checkRequestValidity(object)

Arguments

object

The request object to check.

Value

TRUE if the object is valid or a string with the reason why it is not


Convert the Reactome JSON result to a ReactomeAnalysisResult object

Description

Convert the Reactome JSON result to a ReactomeAnalysisResult object

Usage

convert_reactome_result(reactome_result)

Arguments

reactome_result

The JSON result already converted to R objects (name list)

Value

A ReactomeAnalysisResult object


Converts a data.frame to a string representation

Description

A data.frame is converted into a single string using '\t' (the characters, not tab) as field delimiter and '\n' (the characters, not newline) as line delimiter

Usage

data_frame_as_string(data)

Arguments

data

The data.frame to convert

Value

A string representing the passed data.frame


fetch_public_data

Description

Loads an already available public dataset from ReactomeGSA and returns it as a Biobase::ExpressionSet object.

Usage

fetch_public_data(dataset_entry, reactome_url)

Arguments

dataset_entry

The entry of the respective dataset as returned by the find_public_datasets function.

reactome_url

URL of the Reactome API Server. Overwrites the URL set in the 'reactome_gsa.url' option. Specific ports can be set using the standard URL specification (for example http://your.service:1234)

Value

The loaded data as an ExpressionSet object.


find_public_datasets

Description

Search for a public dataset in the resources supported by ReactomeGSA as external data sources.

Usage

find_public_datasets(
  search_term,
  species = "Homo sapiens",
  reactome_url = NULL
)

Arguments

search_term

The search terms as a single string. Multiple words (seperated by a space) are combined by an "AND".

species

Limit the search to selected species. The complete list of available species can be retrieved through get_public_species. By default, entries as limited to human datasets.

reactome_url

URL of the Reactome API Server. Overwrites the URL set in the 'reactome_gsa.url' option. Specific ports can be set using the standard URL specification (for example http://your.service:1234)

Value

A data.frame containing a list of datasets found through the search.

Examples

# search for any public dataset relating to BRAF in melanoma
melanoma_datasets <- find_public_datasets("melanoma braf")

# it is also possible to limit this to another species than human
melanoma_mouse <- find_public_datasets("melanoma", species = "Mus musculus")

# the list of available species can be retrieved using get_public_species
all_species <- get_public_species()

# datasets can then be loaded using the load_public_dataset function

generate_metadata

Description

The pseudobulk data is generated using the generate_pseudo_bulk_data function.

Usage

generate_metadata(pseudo_bulk_data)

Arguments

pseudo_bulk_data

Pseudobulk data generated from the generate_pseudo_bulk_data function

Value

Metadata table for later use

See Also

generate_pseudo_bulk_data for generating pseudobulk data.

Examples

# Example pseudobulk data
pseudo_bulk_data <- data.frame(
  sample1_groupA = c(10, 20, 30),
  sample2_groupA = c(15, 25, 35),
  sample3_groupB = c(5, 10, 15)
)

# Generate metadata from pseudobulk data
metadata <- generate_metadata(pseudo_bulk_data)

Generate metadata

Description

Generate metadata

Usage

## S4 method for signature 'data.frame'
generate_metadata(pseudo_bulk_data)

Arguments

pseudo_bulk_data

Pseudobulk data generated from the generate_pseudo_bulk_data function

Value

Returns metadata table for later use


generate_pseudo_bulk_data

Description

generate_pseudo_bulk_data

Usage

generate_pseudo_bulk_data(
  object,
  group_by = NULL,
  split_by = "random",
  k_variable = 4
)

Arguments

object

The Seurat or SingleCellExperiment object to analyse.

group_by

entry in metadata table, based on these cluster annotation pseudo bulk is performed

split_by

variable -> split by a variable within the metadata; k must be a string random -> splits based on a random number; k must be a number Louvain, Louvain_multilevel, SLM, Leiden -> subclusters k must be a list with [resolution, cluster_1, cluster_2]

k_variable

variable dependent on the split_by

Value

returns pseudo bulk generated data

Examples

#using SCE object
library("scRNAseq")
SCE_OBJECT <- ZeiselBrainData()
# generating pseudo bulk data using the SCE object above,
# and clustering level level1class from the metadata

# generate pseudo bulk data based on random subsampling
SCE_RESULT_RANDOM <- generate_pseudo_bulk_data(SCE_OBJECT,
                                               group_by = "level1class",
                                               split_by = "random",
                                               k_variable = 5)

# generate pseudo bulk data based on variable within the metadata
SCE_RESULT_VARIABLE <- generate_pseudo_bulk_data(SCE_OBJECT, "level1class","variable","tissue")

generate_pseudo_bulk_data - Seurat

Description

Generate Pseudo Bulk Data for Seurat Objects

Usage

## S4 method for signature 'Seurat'
generate_pseudo_bulk_data(
  object,
  group_by = NULL,
  split_by = "random",
  k_variable = 4
)

Arguments

object

The object to analyse.

group_by

entry in metadata table, based on these cluster annotation pseudo bulk is performed

split_by

variable -> split by a variable within the metadata; k must be a string random -> splits based on a random number; k must be a number Louvain, Louvain_multilevel, SLM, Leiden -> subclusters k must be a list with [resolution, cluster_1, cluster_2]

k_variable

variable dependent on the split_by

Value

returns pseudo bulk generated data


generate_pseudo_bulk_data - SingleCellExperiment

Description

generate_pseudo_bulk_data - SingleCellExperiment

Usage

## S4 method for signature 'SingleCellExperiment'
generate_pseudo_bulk_data(
  object,
  group_by = NULL,
  split_by = "random",
  k_variable = 4
)

Arguments

object

The SingleCellExperiment object to analyse.

group_by

entry in metadata table, based on these cluster annotation pseudo bulk is performed

split_by

variable -> split by a variable within the metadata; k must be a string random -> splits based on a random number; k must be a number subclustering [resolution, cluster_1, cluster_2]

k_variable

variable dependent on the split_by

Value

returns pseudo bulk generated data


Retrieves the status of the submitted dataset loading request

Description

Retrieves the status of the submitted dataset loading request

Usage

get_dataset_loading_status(loading_id, reactome_url = NULL)

Arguments

loading_id

The dataset loading process' id

reactome_url

URL of the Reactome API Server. Overwrites the URL set in the 'reactome_gsa.url' option. Specific ports can be set using the standard URL specification (for example http://your.service:1234)

Value

A list containing the id, status (can be "running", "complete", "failed"), description, and completed (numeric between 0 - 1)


get_fc_for_dataset

Description

Retrieve the fold-changes for all pathways of the defined dataset

Usage

get_fc_for_dataset(dataset, pathway_result)

Arguments

dataset

Name of the dataset to retrieve the fold changes for.

pathway_result

The data.frame created by the pathways function.

Value

A vector of fold-changes


get_is_sig_dataset

Description

Determines how significant a pathway is across the datasets. Returns the lowest significance.

Usage

get_is_sig_dataset(dataset, pathway_result)

Arguments

dataset

Name of the dataset

pathway_result

data.frame created by the pathways function

Value

A vector with 3=non-significant, 2=p<=0.05, 1=p<0.01


get_public_species

Description

Return the list of found species labels in the supported public data resources

Usage

get_public_species(reactome_url = NULL)

Arguments

reactome_url

URL of the Reactome API Server. Overwrites the URL set in the 'reactome_gsa.url' option. Specific ports can be set using the standard URL specification (for example http://your.service:1234)

Value

A vector of species strings.

Examples

# get the available species
available_species <- get_public_species()

# inspect the first 1 - 3 entries
available_species[1:3]

Retrieves the result of the submitted analysis using perform_reactome_analysis

Description

The result is only available if get_reactome_analysis_status indicates that the analysis is complete.

Usage

get_reactome_analysis_result(analysis_id, reactome_url = NULL)

Arguments

analysis_id

The running analysis' id

reactome_url

URL of the Reactome API Server. Overwrites the URL set in the 'reactome_gsa.url' option. Specific ports can be set using the standard URL specification (for example http://your.service:1234)

Value

The result object


Retrieves the status of the submitted analysis using start_reactome_analysis

Description

Retrieves the status of the submitted analysis using start_reactome_analysis

Usage

get_reactome_analysis_status(analysis_id, reactome_url = NULL)

Arguments

analysis_id

The running analysis' id

reactome_url

URL of the Reactome API Server. Overwrites the URL set in the 'reactome_gsa.url' option. Specific ports can be set using the standard URL specification (for example http://your.service:1234)

Value

A list containing the id, status (can be "running", "complete", "failed"), description, and completed (numeric between 0 - 1)


ReactomeGSA supported data types

Description

ReactomeGSA supported data types

Usage

get_reactome_data_types(
  print_types = TRUE,
  return_result = FALSE,
  reactome_url = NULL
)

Arguments

print_types

If set to TRUE (default) a (relatively) nice formatted version of the result is printed.

return_result

If set to TRUE, the result is returned as a data.frame (see below)

reactome_url

URL of the Reactome API Server. Overwrites the URL set in the 'reactome_gsa.url' option. Specific ports can be set using the standard URL specification (for example http://your.service:1234)

Value

A data.frame containing one row per data type with its id and description.

Author(s)

Johannes Griss

See Also

Other Reactome Service functions: get_reactome_methods()

Examples

# retrieve the avialable data types
available_types <- get_reactome_data_types(print_types = FALSE,  return_result = TRUE)

# print all data type ids
available_types$id

# simply print the available methods
get_reactome_data_types()

get_reactome_methods

Description

Returns all available analysis methods from the Reactome analysis service.

Usage

get_reactome_methods(
  print_methods = TRUE,
  print_details = FALSE,
  return_result = FALSE,
  method = NULL,
  reactome_url = NULL
)

Arguments

print_methods

If set to TRUE (default) a (relatively) nice formatted version of the result is printed.

print_details

If set to TRUE detailed information about every method, including available parameters and description are displayed. This does not affect the data returned if return_result is TRUE.

return_result

If set to TRUE, the result is returned as a data.frame (see below)

method

If set to a method's id, only information for this method will be shown. This is especially useful if detailed information about a single method should be retrieved. This does not affect the data returned if return_result is TRUE.

reactome_url

URL of the Reactome API Server. Overwrites the URL set in the 'reactome_gsa.url' option. Specific ports can be set using the standard URL specification (for example http://your.service:1234)

Details

Every method has a type, a scope, and sometimes a list of allowed values. The type (string, int = integer, float) define the expected data type. The scope defines at what level the parameter can be set. dataset level parameters can be set at the dataset level (using the add_dataset function) or at the analysis request level (using set_parameters). If these parameters are set at the analysis request level, this overwrites the default value for all datasets. analysis and global level parameters must only be set at the analysis request level using set_parameters. The difference between these two types of parameters is that while analysis parameters influence the results, global parameters only influence the behaviour of the analysis system (for example whether a Reactome visualization is created).

Value

If return_result is set to TRUE, a data.frame with one row per method. Each method has a name, description, and (optional) a list of parameters. Parameters again have a name, type, and description.

Author(s)

Johannes Griss

See Also

Other Reactome Service functions: get_reactome_data_types()

Examples

# retrieve the available methods only in an object
available_methods <- get_reactome_methods(print_methods = FALSE, return_result = TRUE)

# print all method names
available_methods$name

# list all parameters for the first method
first_method_parameters <- available_methods[1, "parameters"]
first_method_parameters

# simply print the available methods
get_reactome_methods()

# get the details for PADOG
get_reactome_methods(print_details = TRUE, method = "PADOG")

get_result

Description

Retrieves a result from a ReactomeAnalysisResult object.

Usage

get_result(x, type, name)

Arguments

x

ReactomeAnalysisResult.

type

the type of result. Use result_types to retrieve all available types.

name

the name of the result. Use names to retrieve all available results.

Value

A data.frame containing the respective result.

See Also

Other ReactomeAnalysisResult functions: names,ReactomeAnalysisResult-method, open_reactome(), pathways(), plot_correlations(), plot_gsva_heatmap(), plot_gsva_pathway(), plot_heatmap(), plot_volcano(), reactome_links(), result_types()

Examples

# load an example result object
library(ReactomeGSA.data)
data(griss_melanoma_result)

# get the available result types
result_types(griss_melanoma_result)

# get the dataset names
names(griss_melanoma_result)

# get the fold_changes for the first dataset
prot_fc <- get_result(griss_melanoma_result, type = "fold_changes", name = "proteomics")

head(prot_fc)

ReactomeAnalysisResult - get_result

Description

Retrieves a result from a ReactomeAnalysisResult object.

Usage

## S4 method for signature 'ReactomeAnalysisResult'
get_result(x, type, name)

Arguments

x

ReactomeAnalysisResult.

type

the type of result. Use result_types to retrieve all available types.

name

the name of the result. Use names to retrieve all available results.

Value

A data.frame containing the respective result.

See Also

Other ReactomeAnalysisResult functions: names,ReactomeAnalysisResult-method, open_reactome(), pathways(), plot_correlations(), plot_gsva_heatmap(), plot_gsva_pathway(), plot_heatmap(), plot_volcano(), reactome_links(), result_types()

Examples

# load an example result object
library(ReactomeGSA.data)
data(griss_melanoma_result)

# get the available result types
result_types(griss_melanoma_result)

# get the dataset names
names(griss_melanoma_result)

# get the fold_changes for the first dataset
prot_fc <- get_result(griss_melanoma_result, type = "fold_changes", name = "proteomics")

head(prot_fc)

is_gsva_result

Description

is_gsva_result

Usage

is_gsva_result(object)

Arguments

object

A ReactomeAnalysisResult object

Value

Boolean indicating whether the object is a GSVA result.


load_public_dataset

Description

Loads a public dataset that was found through the find_public_datasets function. The dataset is returned as a Biobase ExpressionSet object.

Usage

load_public_dataset(dataset_entry, verbose = FALSE, reactome_url = NULL)

Arguments

dataset_entry

The entry of the respective dataset as returned by the find_public_datasets function.

verbose

If set to TRUE, status messages and a status bar are displayed.

reactome_url

URL of the Reactome API Server. Overwrites the URL set in the 'reactome_gsa.url' option. Specific ports can be set using the standard URL specification (for example http://your.service:1234)

Value

The loaded data as an ExpressionSet object.

Examples

# As a first step, you need to find available datasets
available_datasets <- find_public_datasets("psoriasis tnf")

# have a quick look at the found datasets
available_datasets[, c("id", "title")]

# load the first one, use the whole row of the found datasets
# data.frame as the parameter
dataset_1 <- load_public_dataset(available_datasets[1,], verbose = TRUE)

ReactomeAnalysisResult - names

Description

Retrieves the names of the contained datasets within an ReactomeAnalysisResult object.

Usage

## S4 method for signature 'ReactomeAnalysisResult'
names(x)

Arguments

x

ReactomeAnalysisResult.

Value

character vector with the names of the contained datasets

See Also

Other ReactomeAnalysisResult functions: get_result(), open_reactome(), pathways(), plot_correlations(), plot_gsva_heatmap(), plot_gsva_pathway(), plot_heatmap(), plot_volcano(), reactome_links(), result_types()

Examples

# load an example result object
library(ReactomeGSA.data)
data(griss_melanoma_result)

# get the names of the available datasets
names(griss_melanoma_result)

open_reactome

Description

Opens the specified Reactome visualization in the system's default browser.

Usage

open_reactome(x, ...)

Arguments

x

ReactomeAnalysisResult.

...

Additional parameters passed to downstream functions.

Value

The opened link

See Also

Other ReactomeAnalysisResult functions: get_result(), names,ReactomeAnalysisResult-method, pathways(), plot_correlations(), plot_gsva_heatmap(), plot_gsva_pathway(), plot_heatmap(), plot_volcano(), reactome_links(), result_types()

Examples

# Note: This function only works with a newly created result
# since the visualization links only stay active for 7 days

# load an example result
library(ReactomeGSA.data)
data(griss_melanoma_result)

# get the reactome link - this does only work
# with new results
# open_reactome(griss_melanoma_result)

open_reactome - ReactomeAnalysisResult

Description

Opens the specified Reactome visualization in the system's default browser.

Usage

## S4 method for signature 'ReactomeAnalysisResult'
open_reactome(x, n_visualization = 1, ...)

Arguments

x

ReactomeAnalysisResult.

n_visualization

numeric The index of the visualization to display (default 1). Use reactome_links to retrieve all available visualizations and their index. By default, the first visualization is opened.

...

Additional parameters passed to downstream functions.

Value

The opened link

See Also

Other ReactomeAnalysisResult functions: get_result(), names,ReactomeAnalysisResult-method, pathways(), plot_correlations(), plot_gsva_heatmap(), plot_gsva_pathway(), plot_heatmap(), plot_volcano(), reactome_links(), result_types()

Examples

# Note: This function only works with a newly created result
# since the visualization links only stay active for 7 days

# load an example result
library(ReactomeGSA.data)
data(griss_melanoma_result)

# get the reactome link - this does only work
# with new results
# open_reactome(griss_melanoma_result)

pathways

Description

Combines and returns the pathways of all analysed datasets.

Usage

pathways(x, ...)

Arguments

x

ReactomeAnalysisResult.

...

Additional parameters for specific implementations.

Value

A data.frame containing all merged pathways.

See Also

Other ReactomeAnalysisResult functions: get_result(), names,ReactomeAnalysisResult-method, open_reactome(), plot_correlations(), plot_gsva_heatmap(), plot_gsva_pathway(), plot_heatmap(), plot_volcano(), reactome_links(), result_types()

Examples

# load an example result
library(ReactomeGSA.data)
data(griss_melanoma_result)

# get the combined pathway result
pathway_result <- pathways(griss_melanoma_result)

head(pathway_result)

ReactomeAnalysisResult - pathways

Description

Combines and returns the pathways of all analysed datasets.

Usage

## S4 method for signature 'ReactomeAnalysisResult'
pathways(x, p = 0.01, order_by = NULL, ...)

Arguments

x

ReactomeAnalysisResult.

p

Minimum p-value to accept a pathway as significantly regulated. Default is 0.01.

order_by

Name of the dataset to sort the result list by. By default, the results are sorted based on the first dataset.

...

Additional parameters for specific implementations.

Value

A data.frame containing all merged pathways.

See Also

Other ReactomeAnalysisResult functions: get_result(), names,ReactomeAnalysisResult-method, open_reactome(), plot_correlations(), plot_gsva_heatmap(), plot_gsva_pathway(), plot_heatmap(), plot_volcano(), reactome_links(), result_types()

Examples

# load an example result
library(ReactomeGSA.data)
data(griss_melanoma_result)

# get the combined pathway result
pathway_result <- pathways(griss_melanoma_result)

head(pathway_result)

Perform a Reactome Analaysis

Description

This function wraps all steps required to perform an Analysis using the Reactome Analysis Service. It submits the passed ReactomeAnalysisRequest object to the Reactome Analysis Service API, checks the submitted analysis' status and returns the result once the analysis is complete.

Usage

perform_reactome_analysis(
  request,
  verbose = TRUE,
  compress = TRUE,
  reactome_url = NULL
)

Arguments

request

ReactomeAnalysisRequest to submit.

verbose

logical. If FALSE status messages are not printed to the console.

compress

logical. If TRUE (default) the request data is compressed before submitting it to the ReactomeGSA API. This is the generally recommended way and should only be disabled for debugging purposes.

reactome_url

URL of the Reactome API Server. Overwrites the URL set in the 'reactome_gsa.url' option. Specific ports can be set using the standard URL specification (for example http://your.service:1234)

Value

The analysis' result

Examples

# create a request using Camera as an analysis
library(ReactomeGSA.data)
data(griss_melanoma_proteomics)

my_request <- ReactomeAnalysisRequest(method = "Camera")

# set maximum missing values to 0.5 and do not create any reactome visualizations
my_request <- set_parameters(request = my_request,
                             max_missing_values = 0.5,
                             create_reactome_visualization = FALSE)

# add the dataset
my_request <- add_dataset(request = my_request,
                          expression_values = griss_melanoma_proteomics,
                          name = "Proteomics",
                          type = "proteomics_int",
                          comparison_factor = "condition",
                          comparison_group_1 = "MOCK",
                          comparison_group_2 = "MCM",
                          additional_factors = c("cell.type", "patient.id"))

# perform the analysis
my_result <- perform_reactome_analysis(request = my_request, verbose = FALSE)

plot_correlations

Description

Plots correlations of the average fold-changes of all pathways between the different datasets. This function is only available to GSA based results (not GSVA ones).

Usage

plot_correlations(x, hide_non_sig = FALSE)

Arguments

x

ReactomeAnalysisResult. The result object to use as input

hide_non_sig

If set, non-significant pathways are not shown.

Value

A list of ggplot2 plot objects representing one plot per combination

See Also

Other ReactomeAnalysisResult functions: get_result(), names,ReactomeAnalysisResult-method, open_reactome(), pathways(), plot_gsva_heatmap(), plot_gsva_pathway(), plot_heatmap(), plot_volcano(), reactome_links(), result_types()

Examples

# load an example result
library(ReactomeGSA.data)
data(griss_melanoma_result)

# create the correlation plots
plot_objs <- plot_correlations(griss_melanoma_result)

# only one plot created for this result as it contains two datasets
length(plot_objs)

# show the plot using `print(plot_objs[[1]])`

plot_correlations - ReactomeAnalysisResult

Description

Plots correlations of the average fold-changes of all pathways between the different datasets. This function is only available to GSA based results (not GSVA ones).

Usage

## S4 method for signature 'ReactomeAnalysisResult'
plot_correlations(x, hide_non_sig = FALSE)

Arguments

x

ReactomeAnalysisResult. The result object to use as input

hide_non_sig

If set, non-significant pathways are not shown.

Value

A list of ggplot2 plot objects representing one plot per combination

See Also

Other ReactomeAnalysisResult functions: get_result(), names,ReactomeAnalysisResult-method, open_reactome(), pathways(), plot_gsva_heatmap(), plot_gsva_pathway(), plot_heatmap(), plot_volcano(), reactome_links(), result_types()

Examples

# load an example result
library(ReactomeGSA.data)
data(griss_melanoma_result)

# create the correlation plots
plot_objs <- plot_correlations(griss_melanoma_result)

# only one plot created for this result as it contains two datasets
length(plot_objs)

# show the plot using `print(plot_objs[[1]])`

plot_gsva_heatmap

Description

Plots pathway expression values / sample as a heatmap. Ranks pathways based on their expression difference.

Usage

plot_gsva_heatmap(
  object,
  pathway_ids = NULL,
  max_pathways = 20,
  truncate_names = TRUE,
  ...
)

Arguments

object

The ReactomeAnalysisResult object.

pathway_ids

A vector of pathway ids. If set, only these pathways are included in the plot.

max_pathways

The maximum number of pathways to include. Only takes effect if pathway_ids is not set.

truncate_names

If set, long pathway names are truncated.

...

Additional parameters passed to specific implementations.

Value

None

See Also

Other ReactomeAnalysisResult functions: get_result(), names,ReactomeAnalysisResult-method, open_reactome(), pathways(), plot_correlations(), plot_gsva_pathway(), plot_heatmap(), plot_volcano(), reactome_links(), result_types()

Examples

# load the scRNA-seq example data
library(ReactomeGSA.data)
data(jerby_b_cells)

# perform the GSVA analysis
gsva_result <- analyse_sc_clusters(jerby_b_cells, verbose = FALSE)

# plot the heatmap
relevant_pathways <- c("R-HSA-983170", "R-HSA-388841", "R-HSA-2132295", 
                       "R-HSA-983705", "R-HSA-5690714")
plot_gsva_heatmap(gsva_result, 
                  pathway_ids = relevant_pathways, # limit to these pathways
                  margins = c(6,30), # adapt the figure margins in heatmap.2
                  dendrogram = "col", # only plot column dendrogram
                  scale = "row", # scale for each pathway
                  key = FALSE, # don't display the color key
                  lwid=c(0.1,4)) # remove the white space on the left

plot_gsva_heatmap - ReactomeAnalysisResult function

Description

Plots pathway expression values / sample as a heatmap. Ranks pathways based on their expression difference.

Usage

## S4 method for signature 'ReactomeAnalysisResult'
plot_gsva_heatmap(
  object,
  pathway_ids = NULL,
  max_pathways = 20,
  truncate_names = TRUE,
  ...
)

Arguments

object

The ReactomeAnalysisResult object.

pathway_ids

A vector of pathway ids. If set, only these pathways are included in the plot.

max_pathways

The maximum number of pathways to include. Only takes effect if pathway_ids is not set.

truncate_names

If set, long pathway names are truncated.

...

Additional parameters passed to the heatmap.2 function.

Value

None

See Also

Other ReactomeAnalysisResult functions: get_result(), names,ReactomeAnalysisResult-method, open_reactome(), pathways(), plot_correlations(), plot_gsva_pathway(), plot_heatmap(), plot_volcano(), reactome_links(), result_types()

Examples

# load the scRNA-seq example data
library(ReactomeGSA.data)
data(jerby_b_cells)

# perform the GSVA analysis
gsva_result <- analyse_sc_clusters(jerby_b_cells, verbose = FALSE)

# plot the heatmap
relevant_pathways <- c("R-HSA-983170", "R-HSA-388841", "R-HSA-2132295", 
                       "R-HSA-983705", "R-HSA-5690714")
plot_gsva_heatmap(gsva_result, 
                  pathway_ids = relevant_pathways, # limit to these pathways
                  margins = c(6,30), # adapt the figure margins in heatmap.2
                  dendrogram = "col", # only plot column dendrogram
                  scale = "row", # scale for each pathway
                  key = FALSE, # don't display the color key
                  lwid=c(0.1,4)) # remove the white space on the left

plot_gsva_pathway

Description

Plots the expression of a specific pathway from a ssGSEA result.

Usage

plot_gsva_pathway(object, pathway_id, ...)

Arguments

object

The ReactomeAnalysisResult object.

pathway_id

The pathway's id

...

Additional parameters for specific implementations.

Value

A ggplot2 plot object

See Also

Other ReactomeAnalysisResult functions: get_result(), names,ReactomeAnalysisResult-method, open_reactome(), pathways(), plot_correlations(), plot_gsva_heatmap(), plot_heatmap(), plot_volcano(), reactome_links(), result_types()

Examples

# load the scRNA-seq example data
library(ReactomeGSA.data)
data(jerby_b_cells)

# perform the GSVA analysis
gsva_result <- analyse_sc_clusters(jerby_b_cells, verbose = FALSE)

# create the plot
plot_obj <- plot_gsva_pathway(gsva_result, "R-HSA-389542")

ReactomeAnalysisResult - plot_gsva_pathway

Description

Plots the expression of a specific pathway from a ssGSEA result.

Usage

## S4 method for signature 'ReactomeAnalysisResult'
plot_gsva_pathway(object, pathway_id, ...)

Arguments

object

The ReactomeAnalysisResult object.

pathway_id

The pathway's id

...

Additional parameters for specific implementations.

Value

A ggplot2 plot object

See Also

Other ReactomeAnalysisResult functions: get_result(), names,ReactomeAnalysisResult-method, open_reactome(), pathways(), plot_correlations(), plot_gsva_heatmap(), plot_heatmap(), plot_volcano(), reactome_links(), result_types()

Examples

# load the scRNA-seq example data
library(ReactomeGSA.data)
data(jerby_b_cells)

# perform the GSVA analysis
gsva_result <- analyse_sc_clusters(jerby_b_cells, verbose = FALSE)

# create the plot
plot_obj <- plot_gsva_pathway(gsva_result, "R-HSA-389542")

plot_gsva_pca

Description

Runs a Principal Component analysis (using prcomp) on the samples based on the pathway analysis results.

Usage

plot_gsva_pca(object, pathway_ids = NULL, ...)

Arguments

object

A ReactomeAnalysisResult object containing a ssGSEA result

pathway_ids

A character vector of pathway ids. If set, only these pathways will be used for the PCA analysis.

...

Additional paramters passed to specific implementations.

Value

A ggplot2 object representing the plot.

Examples

# load the scRNA-seq example data
library(ReactomeGSA.data)
data(jerby_b_cells)

# perform the GSVA analysis
gsva_result <- analyse_sc_clusters(jerby_b_cells, verbose = FALSE)

plot_gsva_pca - ReactomeAnalysisResult

Description

Runs a Principal Component analysis (using prcomp) on the samples based on the pathway analysis results.

Usage

## S4 method for signature 'ReactomeAnalysisResult'
plot_gsva_pca(object, pathway_ids = NULL, ...)

Arguments

object

A ReactomeAnalysisResult object containing a ssGSEA result

pathway_ids

A character vector of pathway ids. If set, only these pathways will be used for the PCA analysis.

...

Additional parameters are passed to prcomp

Value

A ggplot2 object representing the plot.

Examples

# load the scRNA-seq example data
library(ReactomeGSA.data)
data(jerby_b_cells)

# perform the GSVA analysis
gsva_result <- analyse_sc_clusters(jerby_b_cells, verbose = FALSE)

plot_heatmap

Description

Creates a heatmap to show which pathways are up- and down-regulated in different datasets

Usage

plot_heatmap(
  x,
  fdr = 0.01,
  max_pathways = 30,
  break_long_names = TRUE,
  return_data = FALSE
)

Arguments

x

ReactomeAnalysisResult. The result object to use as input

fdr

numeric. The minimum FDR to consider a pathways as significantly regulated. (Default 0.01)

max_pathways

numeric. The maximum number of pathways to plot. Pathways are sorted based on in how many datasets they are significantly regulated. This has no effect if return_data is set to TRUE.

break_long_names

logical. If set, long pathway names are broken into two lines.

return_data

logical. If set, only the plotting data, but not the plot object itself is returned. This can be used to create customized plots that use the same data structure.

Value

A ggplot2 plot object representing the heatmap of pathways

See Also

Other ReactomeAnalysisResult functions: get_result(), names,ReactomeAnalysisResult-method, open_reactome(), pathways(), plot_correlations(), plot_gsva_heatmap(), plot_gsva_pathway(), plot_volcano(), reactome_links(), result_types()

Examples

# load an example result
library(ReactomeGSA.data)
data(griss_melanoma_result)

# create the heatmap plot
plot_obj <- plot_heatmap(griss_melanoma_result)

# show the plot
print(plot_obj)

plot_heatmap - ReactomeAnalysisResult

Description

Creates a heatmap to show which pathways are up- and down-regulated in different datasets

Usage

## S4 method for signature 'ReactomeAnalysisResult'
plot_heatmap(
  x,
  fdr = 0.01,
  max_pathways = 30,
  break_long_names = TRUE,
  return_data = FALSE
)

Arguments

x

ReactomeAnalysisResult. The result object to use as input

fdr

numeric. The minimum FDR to consider a pathways as significantly regulated. (Default 0.01)

max_pathways

numeric. The maximum number of pathways to plot. Pathways are sorted based on in how many datasets they are significantly regulated. This has no effect if return_data is set to TRUE.

break_long_names

logical. If set, long pathway names are broken into two lines.

return_data

logical. If set, only the plotting data, but not the plot object itself is returned. This can be used to create customized plots that use the same data structure.

Value

A ggplot2 plot object representing the heatmap of pathways

See Also

Other ReactomeAnalysisResult functions: get_result(), names,ReactomeAnalysisResult-method, open_reactome(), pathways(), plot_correlations(), plot_gsva_heatmap(), plot_gsva_pathway(), plot_volcano(), reactome_links(), result_types()

Examples

# load an example result
library(ReactomeGSA.data)
data(griss_melanoma_result)

# create the heatmap plot
plot_obj <- plot_heatmap(griss_melanoma_result)

# show the plot
print(plot_obj)

plot_volcano

Description

Creates a volcano plot for the pathway analysis result. Every point represents one pathway, the x-axis the log fold-change and the y-axis the adjusted p-value (-log10).

Usage

plot_volcano(x, ...)

Arguments

x

ReactomeAnalysisResult. The analysis result to plot the volcano plot for.

...

Additional parameters for specific implementations.

Details

This function is only available for GSA-based analysis results.

Value

A ggplot2 plot object representing the volcano plot.

See Also

Other ReactomeAnalysisResult functions: get_result(), names,ReactomeAnalysisResult-method, open_reactome(), pathways(), plot_correlations(), plot_gsva_heatmap(), plot_gsva_pathway(), plot_heatmap(), reactome_links(), result_types()

Examples

# load an example result
library(ReactomeGSA.data)
data(griss_melanoma_result)

# create the volcano plot for the first dataset
plot_obj <- plot_volcano(griss_melanoma_result)

# display the plot using `print(plot_obj)`

ReactomeAnalysisResult - plot_volcano

Description

Creates a volcano plot for the pathway analysis result. Every point represents one pathway, the x-axis the log fold-change and the y-axis the adjusted p-value (-log10).

Usage

## S4 method for signature 'ReactomeAnalysisResult'
plot_volcano(x, dataset = 1, ...)

Arguments

x

ReactomeAnalysisResult. The analysis result to plot the volcano plot for.

dataset

The name or index of the dataset to plot (first one by default).

...

Additional parameters for specific implementations.

Details

This function is only available for GSA-based analysis results.

Value

A ggplot2 plot object representing the volcano plot.

See Also

Other ReactomeAnalysisResult functions: get_result(), names,ReactomeAnalysisResult-method, open_reactome(), pathways(), plot_correlations(), plot_gsva_heatmap(), plot_gsva_pathway(), plot_heatmap(), reactome_links(), result_types()

Examples

# load an example result
library(ReactomeGSA.data)
data(griss_melanoma_result)

# create the volcano plot for the first dataset
plot_obj <- plot_volcano(griss_melanoma_result)

# display the plot using `print(plot_obj)`

ReactomeAnalysisRequest class

Description

This class is used to collect all information required to submit an analysis request to the Reactome Analysis System.

Usage

ReactomeAnalysisRequest(method)

ReactomeAnalysisRequest(method)

Arguments

method

character. Name of the method to use.

Value

A ReactomeAnalysisRequest object.

Slots

method

character. Name of the method to use

request_object

list. This slot should not be set manually. It stores the internal request representation and should be modified using the classes' functions. To add parameters, use set_parameters,ReactomeAnalysisRequest-method

Examples

library(ReactomeGSA.data)
library(methods)

# create the request method and specify its method
request <- ReactomeAnalysisRequest(method = "Camera")

# add a dataset to the request
data(griss_melanoma_proteomics)

request <- add_dataset(request = request,
             expression_values = griss_melanoma_proteomics,
             name = "Proteomics",
             type = "proteomics_int",
             comparison_factor = "condition",
             comparison_group_1 = "MOCK",
             comparison_group_2 = "MCM",
             additional_factors = c("cell.type", "patient.id"))

# to launch the actual analysis use the perform_reactome_analysis function

ReactomeAnalysisResult class

Description

A ReactomeAnalysisResult object contains the pathway analysis results of all submitted datasets at once.

Details

This class represents a result retrieved from the Reactome Analysis Service. It is returned by get_reactome_analysis_result and its wrapper perform_reactome_analysis. Generally, object of this class should not be created manually.

Value

A ReactomeAnalysisResult object.

Slots

reactome_release

The Reactome version used to create this result.

mappings

Stores the mapping results that were generated for this analysis.

results

A named list containing the actual analysis results for every dataset and possibly combined results as well.

reactome_links

Links pointing to reactome results as a list.

Methods

names: Retrieves the names of all datasets in the result object

result_types: Retrieves the available result types

pathways: Merges the pathway results of all analysed datasets.

get_result: Retrieve a specific result as data.frame

reactome_links: Displays / retrieves the URLs to the available visualizations in Reactome's pathway browser.

open_reactome: Opens the specified Reactome visualization in the system's default browser.

Examples

# load an example result object
library(ReactomeGSA.data)
data(griss_melanoma_result)

# retrieve the names of all datasets in the result
names(griss_melanoma_result)

# get the combined pathway result
pathway_result <- pathways(griss_melanoma_result)

# check which result types are available
result_types(griss_melanoma_result)

# get the fold changes for the first dataset
first_dataset_name <- names(griss_melanoma_result)[1]

first_fc <- get_result(griss_melanoma_result, "fold_changes", first_dataset_name)

remove_dataset

Description

Remove the dataset from the ReactomeAnalysisRequest object.

Usage

remove_dataset(x, dataset_name)

Arguments

x

The ReactomeAnalysisRequest to remove the dataset from

dataset_name

character The dataset's name

Value

The updated ReactomeAnalysisRequest


remove_dataset - ReactomeAnalysisRequest

Description

Remove the dataset from the ReactomeAnalysisRequest object.

Usage

## S4 method for signature 'ReactomeAnalysisRequest'
remove_dataset(x, dataset_name)

Arguments

x

The ReactomeAnalysisRequest to remove the dataset from

dataset_name

character The dataset's name

Value

The updated ReactomeAnalysisRequest


result_types

Description

Retrieves the available result types for the ReactomeAnalysisResult object. Currently, the Reactome Analysis System supports pathways and gene level fold_changes as result types. Not all analysis methods return both data types though. Use the names function to find out which datasets are available in the result object.

Usage

result_types(x)

Arguments

x

ReactomeAnalysisResult.

Value

A cacharacter vector of result types.

See Also

Other ReactomeAnalysisResult functions: get_result(), names,ReactomeAnalysisResult-method, open_reactome(), pathways(), plot_correlations(), plot_gsva_heatmap(), plot_gsva_pathway(), plot_heatmap(), plot_volcano(), reactome_links()

Examples

# load an example result object
library(ReactomeGSA.data)
data(griss_melanoma_result)

# get the available result types
result_types(griss_melanoma_result)

ReactomeAnalysisResult - result_types

Description

Retrieves the available result types for the ReactomeAnalysisResult object. Currently, the Reactome Analysis System supports pathways and gene level fold_changes as result types. Not all analysis methods return both data types though. Use the names function to find out which datasets are available in the result object.

Usage

## S4 method for signature 'ReactomeAnalysisResult'
result_types(x)

Arguments

x

ReactomeAnalysisResult.

Value

A cacharacter vector of result types.

See Also

Other ReactomeAnalysisResult functions: get_result(), names,ReactomeAnalysisResult-method, open_reactome(), pathways(), plot_correlations(), plot_gsva_heatmap(), plot_gsva_pathway(), plot_heatmap(), plot_volcano(), reactome_links()

Examples

# load an example result object
library(ReactomeGSA.data)
data(griss_melanoma_result)

# get the available result types
result_types(griss_melanoma_result)

set_method

Description

Set the analysis method used by the ReactomeAnalysisRequest

Usage

set_method(request, method, ...)

Arguments

request

The ReactomeAnalysisRequest to adjust

method

The name of the method to use. Use get_reactome_methods to retrieve all available methods

...

Additional parameters passed to specific implementations

Value

The ReactomeAnalysisRequest with the adapted method

Examples

# create a request using Camera as an analysis
data(griss_melanoma_proteomics)
library(methods)

my_request <- ReactomeAnalysisRequest(method = "Camera")

print(my_request)

# change the method to ssGSEA
my_request <- set_method(my_request, "ssGSEA")

print(my_request)

set_method - ReactomeAnalysisRequest

Description

Set the analysis method used by the ReactomeAnalysisRequest

Usage

## S4 method for signature 'ReactomeAnalysisRequest'
set_method(request, method, ...)

Arguments

request

The ReactomeAnalysisRequest to adjust

method

The name of the method to use. Use get_reactome_methods to retrieve all available methods

...

Additional parameters passed to specific implementations

Value

The ReactomeAnalysisRequest with the adapted method

Examples

# create a request using Camera as an analysis
data(griss_melanoma_proteomics)
library(methods)

my_request <- ReactomeAnalysisRequest(method = "Camera")

print(my_request)

# change the method to ssGSEA
my_request <- set_method(my_request, "ssGSEA")

print(my_request)

set_parameters

Description

Sets the analysis parameters for the given ReactomeAnalysisRequest. If the parameter is already set, it is overwritten. Use get_reactome_methods to get a list of all available parameters for each available method.

Usage

set_parameters(request, ...)

Arguments

request

The ReactomeAnalysisRequest to set the parameters for.

...

Any name / value pair to set a parameter (see example). For a complete list of available parameters use get_reactome_methods

Details

Both, parameters with the scope "dataset" as well as "analysis" can be set on the analysis level. In this case, these parameters overwrite the system's default values. If a parameter with the scope "dataset" is defined again at the dataset level, this value will overwrite the analysis' scope value for the given dataset.

Value

The modified ReactomeAnalysisRequest object

Examples

library(methods)

# create a request object
request <- ReactomeAnalysisRequest(method = "Camera")

# add a parameter
request <- set_parameters(request, max_missing_values = 0.5, discrete_norm_function = "TMM")

ReactomeAnalysisRequest - set_parameters

Description

Sets the analysis parameters for the given ReactomeAnalysisRequest. If the parameter is already set, it is overwritten. Use get_reactome_methods to get a list of all available parameters for each available method.

Usage

## S4 method for signature 'ReactomeAnalysisRequest'
set_parameters(request, ...)

Arguments

request

The ReactomeAnalysisRequest to set the parameters for.

...

Any name / value pair to set a parameter (see example). For a complete list of available parameters use get_reactome_methods

Details

Both, parameters with the scope "dataset" as well as "analysis" can be set on the analysis level. In this case, these parameters overwrite the system's default values. If a parameter with the scope "dataset" is defined again at the dataset level, this value will overwrite the analysis' scope value for the given dataset.

Value

The modified ReactomeAnalysisRequest object

Examples

library(methods)

# create a request object
request <- ReactomeAnalysisRequest(method = "Camera")

# add a parameter
request <- set_parameters(request, max_missing_values = 0.5, discrete_norm_function = "TMM")

print - ReactomeAnalysisRequest

Description

Shows a ReactomeAnalysisRequest object summary.

Usage

## S4 method for signature 'ReactomeAnalysisRequest'
show(object)

Arguments

object

ReactomeAnalysisRequest

Value

The classname of the object

Examples

library(methods)

request <- ReactomeAnalysisRequest(method = "Camera")
print(request)

# add additional parameters
request <- set_parameters(request, "max_missing_values" = 0.5)
show(request)

show - ReactomeAnalysisResult

Description

Displays basic information about the ReactomeAnalysisResult object.

Usage

## S4 method for signature 'ReactomeAnalysisResult'
show(object)

Arguments

object

ReactomeAnalysisResult.

Value

character classname of the object

Examples

library(ReactomeGSA.data)
data(griss_melanoma_result)

show(griss_melanoma_result)

method implementation subclustering

Description

method implementation subclustering

Usage

split_clustering(seurat_object, group_by, res, alg, cluster1, cluster2)

Arguments

seurat_object

The Seurat object to analyse.

group_by

entry in metadata table, based on these cluster annotation pseudo bulk is performed

res

The clustering resolution to use.

alg

Seurat subclustering algorithm id

cluster1

cluster to subcluster

cluster2

cluster to subcluster

Value

returns pseudo bulk generated data


split SCE Object with random pooling

Description

split SCE Object with random pooling

Usage

split_random_sce(sce_object, group_by, k_variable)

Arguments

sce_object

The SingleCellExperiment object to analyse.

group_by

entry in metadata table, based on these cluster annotation pseudo bulk is performed

k_variable

number of pools that should be created

Value

returns pseudo bulk generated data


split SCE Object with random pooling

Description

split SCE Object with random pooling

Usage

split_subclustering_sce(
  sce_object,
  group_by,
  resolution,
  subcluster_ref,
  subcluster_comp
)

Arguments

sce_object

The SingleCellExperiment object to analyse.

group_by

entry in metadata table, based on these cluster annotation pseudo bulk is performed

resolution

resolution

subcluster_ref

cluster to subcluster as areference

subcluster_comp

cluster to subcluster for comparison

Value

returns pseudo bulk generated data


split Seurat object by variable

Description

split Seurat object by variable

Usage

split_variable(seurat_object, group_by, k_variable)

Arguments

seurat_object

The Seurat object to analyse.

group_by

entry in metadata table, based on these cluster annotation pseudo bulk is performed

k_variable

variable dependent on the split_by -> meta data entry

Value

returns pseudo bulk generated data


split Seurat object by random pooling

Description

split Seurat object by random pooling

Usage

split_variable_random(seurat_object, group_by, k_variable)

Arguments

seurat_object

The Seurat object to analyse.

group_by

entry in metadata table, based on these cluster annotation pseudo bulk is performed

k_variable

number of random pools

Value

returns pseudo bulk generated data


split SCE Object by variable

Description

split SCE Object by variable

Usage

split_variable_sce(sce_object, group_by, k_variable)

Arguments

sce_object

The SingleCellExperiment object to analyse.

group_by

entry in metadata table, based on these cluster annotation pseudo bulk is performed

k_variable

variable for sub setting must be in the metadata

Value

returns pseudo bulk generated data


Start Reactome Analysis

Description

Submits a ReactomeAnalysisRequest to the Reactome Analysis Service API and returns the analysis id of the submitted job.

Usage

start_reactome_analysis(request, compress = TRUE, reactome_url = NULL)

Arguments

request

ReactomeAnalysisRequest object to submit.

compress

If set (default) the JSON request data is compressed using gzip.

reactome_url

URL of the Reactome API Server. Overwrites the URL set in the 'reactome_gsa.url' option. Specific ports can be set using the standard URL specification (for example http://your.service:1234)

Details

This function should only be used for very large requests that likely take a long time to complete. By default, users should use the perform_reactome_analysis function to run an analysis.

Value

character The analysis job's id.

#' @examples # create a request using Camera as an analysis library(ReactomeGSA.data) data(griss_melanoma_proteomics)

my_request <- ReactomeAnalysisRequest(method = "Camera")

# set maximum missing values to 0.5 and do not create any reactome visualizations my_request <- set_parameters(request = my_request, max_missing_values = 0.5, create_reactome_visualization = FALSE)

# add the dataset my_request <- add_dataset(request = my_request, expression_values = griss_melanoma_proteomics, name = "Proteomics", type = "proteomics_int", comparison_factor = "condition", comparison_group_1 = "MOCK", comparison_group_2 = "MCM", additional_factors = c("cell.type", "patient.id")) # start the analysis analysis_id <- start_reactome_analysis(my_request)


wait_for_loading_dataset

Description

This function loops until the dataset is available. If verbose is set to TRUE, the progress is displayed in a status bar.

Usage

wait_for_loading_dataset(request, verbose, reactome_url)

Arguments

request

The httr request object of the dataset loading request.

verbose

If set to TRUE, the progress is displayed as a status bar.

reactome_url

URL of the Reactome API Server. Overwrites the URL set in the 'reactome_gsa.url' option. Specific ports can be set using the standard URL specification (for example http://your.service:1234)