Title: | The Cancer Genome Atlas Data Integration |
---|---|
Description: | The Cancer Genome Atlas (TCGA) Data Portal provides a platform for researchers to search, download, and analyze data sets generated by TCGA. It contains clinical information, genomic characterization data, and high level sequence analysis of the tumor genomes. The key is to understand genomics to improve cancer care. RTCGA package offers download and integration of the variety and volume of TCGA data using patient barcode key, what enables easier data possession. This may have an benefcial infuence on impact on development of science and improvement of patients' treatment. Furthermore, RTCGA package transforms TCGA data to tidy form which is convenient to use. |
Authors: | Marcin Kosinski [aut, cre], Przemyslaw Biecek [ctb], Witold Chodor [ctb] |
Maintainer: | Marcin Kosinski <[email protected]> |
License: | GPL-2 |
Version: | 1.37.0 |
Built: | 2024-11-30 04:28:36 UTC |
Source: | https://github.com/bioc/RTCGA |
The Cancer Genome Atlas (TCGA) Data Portal provides a platform for researchers to search, download, and analyze data sets generated by TCGA. It contains clinical information, genomic characterization data, and high level sequence analysis of the tumor genomes. The key is to understand genomics to improve cancer care. RTCGA package offers download and integration of the variety and volume of TCGA data using patient barcode key, what enables easier data possession. This may have an benefcial infuence on impact on development of science and improvement of patients' treatment. Furthermore, RTCGA package transforms TCGA data to form which is convenient to use in R statistical package. Those data transformations can be a part of statistical analysis pipeline which can be more reproducible with RTCGA
If you have any problems, issues or think that something is missing or is not clear please post an issue on https://github.com/RTCGA/RTCGA/issues.
Marcin Kosinski [aut, cre] [email protected]
Przemyslaw Biecek [aut] [email protected]
Witold Chodor [ctb] [email protected]
RTCGA website http://rtcga.github.io/RTCGA.
Other RTCGA:
boxplotTCGA()
,
checkTCGA()
,
convertTCGA()
,
datasetsTCGA
,
downloadTCGA()
,
expressionsTCGA()
,
heatmapTCGA()
,
infoTCGA()
,
installTCGA()
,
kmTCGA()
,
mutationsTCGA()
,
pcaTCGA()
,
readTCGA()
,
survivalTCGA()
,
theme_RTCGA()
## Not run: browseVignettes('RTCGA') ## End(Not run)
## Not run: browseVignettes('RTCGA') ## End(Not run)
Function creates boxplots (geom_boxplot) for TCGA Datasets.
boxplotTCGA( data, x, y, fill = x, coord.flip = TRUE, facet.names = NULL, ylab = y, xlab = x, legend.title = xlab, legend = "top", ..., ggtheme = theme_RTCGA() )
boxplotTCGA( data, x, y, fill = x, coord.flip = TRUE, facet.names = NULL, ylab = y, xlab = x, legend.title = xlab, legend = "top", ..., ggtheme = theme_RTCGA() )
data |
A data.frame from TCGA study containing variables to be plotted. |
x |
A character name of variable containing groups. |
y |
A character name of continous variable to be plotted. |
fill |
A character names of fill variable. By default, the same as |
coord.flip |
Whether to flip coordinates. |
facet.names |
A character of length maximum 2 containing names of variables to produce facets. See examples. |
ylab |
The name of y label. Remember about |
xlab |
The name of x label. Remember about |
legend.title |
A character with legend's title. |
legend |
A character specifying legend position. Allowed values are one of c("top", "bottom", "left", "right", "none"). Default is "top" side position. to remove the legend use legend = "none". |
... |
Further arguments passed to geom_boxplot. |
ggtheme |
a |
If you have any problems, issues or think that something is missing or is not clear please post an issue on https://github.com/RTCGA/RTCGA/issues.
Marcin Kosinski, [email protected]
RTCGA website http://rtcga.github.io/RTCGA/articles/Visualizations.html.
Other RTCGA:
RTCGA-package
,
checkTCGA()
,
convertTCGA()
,
datasetsTCGA
,
downloadTCGA()
,
expressionsTCGA()
,
heatmapTCGA()
,
infoTCGA()
,
installTCGA()
,
kmTCGA()
,
mutationsTCGA()
,
pcaTCGA()
,
readTCGA()
,
survivalTCGA()
,
theme_RTCGA()
library(RTCGA) library(RTCGA.rnaseq) # perfrom plot library(dplyr) expressionsTCGA(ACC.rnaseq, BLCA.rnaseq, BRCA.rnaseq, OV.rnaseq, extract.cols = "MET|4233") %>% rename(cohort = dataset, MET = `MET|4233`) %>% #cancer samples filter(substr(bcr_patient_barcode, 14, 15) == "01") -> ACC_BLCA_BRCA_OV.rnaseq boxplotTCGA(ACC_BLCA_BRCA_OV.rnaseq, "cohort", "MET") boxplotTCGA(ACC_BLCA_BRCA_OV.rnaseq, "cohort", "log1p(MET)") boxplotTCGA(ACC_BLCA_BRCA_OV.rnaseq, "reorder(cohort,log1p(MET), median)", "log1p(MET)") boxplotTCGA(ACC_BLCA_BRCA_OV.rnaseq, "reorder(cohort,log1p(MET), max)", "log1p(MET)") boxplotTCGA(ACC_BLCA_BRCA_OV.rnaseq, "reorder(cohort,log1p(MET), median)", "log1p(MET)", xlab = "Cohort Type", ylab = "Logarithm of MET") boxplotTCGA(ACC_BLCA_BRCA_OV.rnaseq, "reorder(cohort,log1p(MET), median)", "log1p(MET)", xlab = "Cohort Type", ylab = "Logarithm of MET", legend.title = "Cohorts") boxplotTCGA(ACC_BLCA_BRCA_OV.rnaseq, "reorder(cohort,log1p(MET), median)", "log1p(MET)", xlab = "Cohort Type", ylab = "Logarithm of MET", legend.title = "Cohorts", legend = "bottom") ## facet example library(RTCGA.mutations) library(dplyr) mutationsTCGA(BRCA.mutations, OV.mutations, ACC.mutations, BLCA.mutations) %>% filter(Hugo_Symbol == 'TP53') %>% filter(substr(bcr_patient_barcode, 14, 15) == "01") %>% # cancer tissue mutate(bcr_patient_barcode = substr(bcr_patient_barcode, 1, 12)) -> ACC_BLCA_BRCA_OV.mutations mutationsTCGA(BRCA.mutations, OV.mutations, ACC.mutations, BLCA.mutations) -> ACC_BLCA_BRCA_OV.mutations_all ACC_BLCA_BRCA_OV.rnaseq %>% mutate(bcr_patient_barcode = substr(bcr_patient_barcode, 1, 15)) %>% filter(bcr_patient_barcode %in% substr(ACC_BLCA_BRCA_OV.mutations_all$bcr_patient_barcode, 1, 15)) %>% # took patients for which we had any mutation information # so avoided patients without any information about mutations mutate(bcr_patient_barcode = substr(bcr_patient_barcode, 1, 12)) %>% # strin_length(ACC_BLCA_BRCA_OV.mutations$bcr_patient_barcode) == 12 left_join(ACC_BLCA_BRCA_OV.mutations, by = "bcr_patient_barcode") %>% #joined only with tumor patients mutate(TP53 = ifelse(!is.na(Variant_Classification), "Mut", "WILD")) %>% select(cohort, MET, TP53) -> ACC_BLCA_BRCA_OV.rnaseq_TP53mutations boxplotTCGA(ACC_BLCA_BRCA_OV.rnaseq_TP53mutations, "reorder(cohort,log1p(MET), median)", "log1p(MET)", xlab = "Cohort Type", ylab = "Logarithm of MET", legend.title = "Cohorts", legend = "bottom", facet.names = c("TP53")) boxplotTCGA(ACC_BLCA_BRCA_OV.rnaseq_TP53mutations, "reorder(cohort,log1p(MET), median)", "log1p(MET)", xlab = "Cohort Type", ylab = "Logarithm of MET", legend.title = "Cohorts", legend = "bottom", fill = c("TP53"))
library(RTCGA) library(RTCGA.rnaseq) # perfrom plot library(dplyr) expressionsTCGA(ACC.rnaseq, BLCA.rnaseq, BRCA.rnaseq, OV.rnaseq, extract.cols = "MET|4233") %>% rename(cohort = dataset, MET = `MET|4233`) %>% #cancer samples filter(substr(bcr_patient_barcode, 14, 15) == "01") -> ACC_BLCA_BRCA_OV.rnaseq boxplotTCGA(ACC_BLCA_BRCA_OV.rnaseq, "cohort", "MET") boxplotTCGA(ACC_BLCA_BRCA_OV.rnaseq, "cohort", "log1p(MET)") boxplotTCGA(ACC_BLCA_BRCA_OV.rnaseq, "reorder(cohort,log1p(MET), median)", "log1p(MET)") boxplotTCGA(ACC_BLCA_BRCA_OV.rnaseq, "reorder(cohort,log1p(MET), max)", "log1p(MET)") boxplotTCGA(ACC_BLCA_BRCA_OV.rnaseq, "reorder(cohort,log1p(MET), median)", "log1p(MET)", xlab = "Cohort Type", ylab = "Logarithm of MET") boxplotTCGA(ACC_BLCA_BRCA_OV.rnaseq, "reorder(cohort,log1p(MET), median)", "log1p(MET)", xlab = "Cohort Type", ylab = "Logarithm of MET", legend.title = "Cohorts") boxplotTCGA(ACC_BLCA_BRCA_OV.rnaseq, "reorder(cohort,log1p(MET), median)", "log1p(MET)", xlab = "Cohort Type", ylab = "Logarithm of MET", legend.title = "Cohorts", legend = "bottom") ## facet example library(RTCGA.mutations) library(dplyr) mutationsTCGA(BRCA.mutations, OV.mutations, ACC.mutations, BLCA.mutations) %>% filter(Hugo_Symbol == 'TP53') %>% filter(substr(bcr_patient_barcode, 14, 15) == "01") %>% # cancer tissue mutate(bcr_patient_barcode = substr(bcr_patient_barcode, 1, 12)) -> ACC_BLCA_BRCA_OV.mutations mutationsTCGA(BRCA.mutations, OV.mutations, ACC.mutations, BLCA.mutations) -> ACC_BLCA_BRCA_OV.mutations_all ACC_BLCA_BRCA_OV.rnaseq %>% mutate(bcr_patient_barcode = substr(bcr_patient_barcode, 1, 15)) %>% filter(bcr_patient_barcode %in% substr(ACC_BLCA_BRCA_OV.mutations_all$bcr_patient_barcode, 1, 15)) %>% # took patients for which we had any mutation information # so avoided patients without any information about mutations mutate(bcr_patient_barcode = substr(bcr_patient_barcode, 1, 12)) %>% # strin_length(ACC_BLCA_BRCA_OV.mutations$bcr_patient_barcode) == 12 left_join(ACC_BLCA_BRCA_OV.mutations, by = "bcr_patient_barcode") %>% #joined only with tumor patients mutate(TP53 = ifelse(!is.na(Variant_Classification), "Mut", "WILD")) %>% select(cohort, MET, TP53) -> ACC_BLCA_BRCA_OV.rnaseq_TP53mutations boxplotTCGA(ACC_BLCA_BRCA_OV.rnaseq_TP53mutations, "reorder(cohort,log1p(MET), median)", "log1p(MET)", xlab = "Cohort Type", ylab = "Logarithm of MET", legend.title = "Cohorts", legend = "bottom", facet.names = c("TP53")) boxplotTCGA(ACC_BLCA_BRCA_OV.rnaseq_TP53mutations, "reorder(cohort,log1p(MET), median)", "log1p(MET)", xlab = "Cohort Type", ylab = "Logarithm of MET", legend.title = "Cohorts", legend = "bottom", fill = c("TP53"))
The checkTCGA
function let's to check
DataSets
: TCGA datasets' names for current release date and cohort.
Dates
: TCGA datasets' dates of release.
checkTCGA(what, cancerType, date = NULL)
checkTCGA(what, cancerType, date = NULL)
what |
One of |
cancerType |
A character of length 1 containing abbreviation (Cohort code - https://gdac.broadinstitute.org/) of types of cancers to check for. |
date |
A |
If what='DataSets'
enables to check TCGA datasets' names for current release date and cohort.
If what='Dates'
enables to check dates of TCGA datasets' releases.
If what='DataSets'
a data.frame of available datasets' names (to pass to the downloadTCGA function) and sizes.
If what='Dates'
a vector of available dates to pass to the downloadTCGA function.
If you have any problems, issues or think that something is missing or is not clear please post an issue on https://github.com/RTCGA/RTCGA/issues.
Marcin Kosinski, [email protected]
RTCGA website https://rtcga.github.io/RTCGA/.
Other RTCGA:
RTCGA-package
,
boxplotTCGA()
,
convertTCGA()
,
datasetsTCGA
,
downloadTCGA()
,
expressionsTCGA()
,
heatmapTCGA()
,
infoTCGA()
,
installTCGA()
,
kmTCGA()
,
mutationsTCGA()
,
pcaTCGA()
,
readTCGA()
,
survivalTCGA()
,
theme_RTCGA()
############################# # names for current release date and cohort checkTCGA('DataSets', 'BRCA') ## Not run: checkTCGA('DataSets', 'OV', tail(checkTCGA('Dates'))[3]) #checkTCGA('DataSets', 'OV', checkTCGA('Dates')[5]) # error ## End(Not run) # dates of TCGA datasets' releases. checkTCGA('Dates') ############################# ## Not run: # TCGA datasets' names availability for # current release date and cancer type. releaseDate <- '2015-08-21' cancerTypes <- c('OV', 'BRCA') cancerTypes %>% sapply(function(element){ grep(x = checkTCGA('DataSets', element, releaseDate)[, 1], pattern = 'humanmethylation450', value = TRUE) %>% as.vector() }) ## End(Not run)
############################# # names for current release date and cohort checkTCGA('DataSets', 'BRCA') ## Not run: checkTCGA('DataSets', 'OV', tail(checkTCGA('Dates'))[3]) #checkTCGA('DataSets', 'OV', checkTCGA('Dates')[5]) # error ## End(Not run) # dates of TCGA datasets' releases. checkTCGA('Dates') ############################# ## Not run: # TCGA datasets' names availability for # current release date and cancer type. releaseDate <- '2015-08-21' cancerTypes <- c('OV', 'BRCA') cancerTypes %>% sapply(function(element){ grep(x = checkTCGA('DataSets', element, releaseDate)[, 1], pattern = 'humanmethylation450', value = TRUE) %>% as.vector() }) ## End(Not run)
Functions use Biobase (http://bioconductor.org/packages/release/bioc/html/Biobase.html) package to transform
data from packages from RTCGA data family to Bioconductor classes (RTCGA.rnaseq, RTCGA.RPPA, RTCGA.PANCAN12,
mRNA, RTCGA.methylation to ExpressionSet and RTCGA.CNV to GRanges). For RTCGA.PANCAN12 there is sense to convert
expression.cb1, expression.cb2, cnv.cb
.
convertTCGA(dataSet, dataType = "expression") convertPANCAN12(dataSet)
convertTCGA(dataSet, dataType = "expression") convertPANCAN12(dataSet)
dataSet |
A data.frame to be converted to ExpressionSet or GRanges. |
dataType |
One of |
This functionality is motivated by that we were asked to offer the data in Bioconductor-friendly classes because many users already have their data in one of the core infrastructure classes. Data of the same type in compatible containers promotes interoperability and makes it easy to combine and organize.
Bioconductor classes were designed to capitalize on the biological structure of the data. If data have a range-based component it's natural, for Bioconductor users, to store and access these as a GRanges where they can extract position, strand etc. in the same way. Similarly for ExpressionSet. This class holds expression data along with experiment metadata and comes with built in accessors to extract and manipulate data. The idea is to offer a common API to the data; extracting the start position in a GRanges is always start(). With a data.frame it is different each time (unless select() is implemented) as the column names and organization of data can be different.
AnnotationHub and the soon to come ExperimentHub will host many different types of data. A primary goal moving forward is to offer similar data in a consistent format. For example, CNV data in AnnotationHub is offered as a GRanges and as more CNV are added we will ask that they too are packaged as GRanges. The aim is that streamlined data on the back-end will make for a more intuitive experience on the front-end.
Functions return an ExpressionSet or a GRanges for RTCGA.CNV
This function use tools from the fantastic Biobase (and GenomicRanges for CNV) package, so you'll need to make sure to have it installed.
If you have any problems, issues or think that something is missing or is not clear please post an issue on https://github.com/RTCGA/RTCGA/issues.
Marcin Kosinski, [email protected]
RTCGA website http://rtcga.github.io/RTCGA/.
Other RTCGA:
RTCGA-package
,
boxplotTCGA()
,
checkTCGA()
,
datasetsTCGA
,
downloadTCGA()
,
expressionsTCGA()
,
heatmapTCGA()
,
infoTCGA()
,
installTCGA()
,
kmTCGA()
,
mutationsTCGA()
,
pcaTCGA()
,
readTCGA()
,
survivalTCGA()
,
theme_RTCGA()
######## ######## # Expression data ######## ######## library(RTCGA.rnaseq) library(Biobase) convertTCGA(BRCA.rnaseq) -> BRCA.rnaseq_ExpressionSet ## Not run: library(RTCGA.PANCAN12) convertPANCAN12(expression.cb1) -> PANCAN12_ExpressionSet library(RTCGA.RPPA) convertTCGA(BRCA.RPPA) -> BRCA.RPPA_ExpressionSet library(RTCGA.methylation) convertTCGA(BRCA.methylation) -> BRCA.methylation_ExpressionSet library(RTCGA.mRNA) convertTCGA(BRCA.mRNA) -> BRCA.mRNA_ExpressionSet ######## ######## # CNV ######## ######## library(RTCGA.CNV) library(GRanges) convertTCGA(BRCA.CNV, "CNV") -> BRCA.CNV_GRanges ## End(Not run)
######## ######## # Expression data ######## ######## library(RTCGA.rnaseq) library(Biobase) convertTCGA(BRCA.rnaseq) -> BRCA.rnaseq_ExpressionSet ## Not run: library(RTCGA.PANCAN12) convertPANCAN12(expression.cb1) -> PANCAN12_ExpressionSet library(RTCGA.RPPA) convertTCGA(BRCA.RPPA) -> BRCA.RPPA_ExpressionSet library(RTCGA.methylation) convertTCGA(BRCA.methylation) -> BRCA.methylation_ExpressionSet library(RTCGA.mRNA) convertTCGA(BRCA.mRNA) -> BRCA.mRNA_ExpressionSet ######## ######## # CNV ######## ######## library(RTCGA.CNV) library(GRanges) convertTCGA(BRCA.CNV, "CNV") -> BRCA.CNV_GRanges ## End(Not run)
Snapshots of the clinical, mutations, CNVs, rnaseq, RPPA, mRNA, miRNASeq and methylation datasets from the 2016-01-28
release date (check all dates of release with checkTCGA('Dates')
) are included in the RTCGA
family (factory) that contains below packages:
RTCGA.rnaseq.20160128 rnaseq.20160128
RTCGA.clinical.20160128 clinical.20160128
RTCGA.mutations.20160128 mutations.20160128
RTCGA.CNV.20160128 CNV.20160128
RTCGA.RPPA.20160128 RPPA.20160128
RTCGA.mRNA.20160128 mRNA.20160128
RTCGA.miRNASeq.20160128 miRNASeq.20160128
RTCGA.methylation.20160128 methylation.20160128
Snapshots of the clinical, mutations, CNVs, rnaseq, RPPA, mRNA, miRNASeq and methylation datasets from the 2015-11-01
release date (check all dates of release with checkTCGA('Dates')
) are also included in the RTCGA
family (factory).
RTCGA.rnaseq rnaseq
RTCGA.clinical clinical
RTCGA.mutations mutations
RTCGA.CNV CNV
RTCGA.RPPA RPPA
RTCGA.mRNA mRNA
RTCGA.miRNASeq miRNASeq
RTCGA.methylation methylation
RTCGA.PANCAN12 (not from TCGA)
For more detailed information visit RTCGA family website https://rtcga.github.io/RTCGA. One can install all data packages with installTCGA.
If you have any problems, issues or think that something is missing or is not clear please post an issue on https://github.com/RTCGA/RTCGA/issues.
Marcin Kosinski [aut, cre] [email protected]
Przemyslaw Biecek [aut] [email protected]
Witold Chodor [aut] [email protected]
RTCGA website http://rtcga.github.io/RTCGA.
Other RTCGA:
RTCGA-package
,
boxplotTCGA()
,
checkTCGA()
,
convertTCGA()
,
downloadTCGA()
,
expressionsTCGA()
,
heatmapTCGA()
,
infoTCGA()
,
installTCGA()
,
kmTCGA()
,
mutationsTCGA()
,
pcaTCGA()
,
readTCGA()
,
survivalTCGA()
,
theme_RTCGA()
# installation of packages containing snapshots # of TCGA project's datasets ## Not run: ## RTCGA GitHub development newest versions library(RTCGA) ?installTCGA ## Bioconductor releases for data from 2016-01-28 release source('http://bioconductor.org/biocLite.R') biocLite(RTCGA.clinical.20160128) biocLite(RTCGA.mutations.20160128) biocLite(RTCGA.rnaseq.20160128) biocLite(RTCGA.CNV.20160128) biocLite(RTCGA.RPPA.20160128) biocLite(RTCGA.mRNA.20160128) biocLite(RTCGA.miRNASeq.20160128) biocLite(RTCGA.methylation.20160128) ## Bioconductor releases for data from 2015-11-01 release source('http://bioconductor.org/biocLite.R') biocLite(RTCGA.clinical) biocLite(RTCGA.mutations) biocLite(RTCGA.rnaseq) biocLite(RTCGA.CNV) biocLite(RTCGA.RPPA) biocLite(RTCGA.mRNA) biocLite(RTCGA.miRNASeq) biocLite(RTCGA.methylation) # use cases and examples + more data info browseVignettes('RTCGA') ## End(Not run)
# installation of packages containing snapshots # of TCGA project's datasets ## Not run: ## RTCGA GitHub development newest versions library(RTCGA) ?installTCGA ## Bioconductor releases for data from 2016-01-28 release source('http://bioconductor.org/biocLite.R') biocLite(RTCGA.clinical.20160128) biocLite(RTCGA.mutations.20160128) biocLite(RTCGA.rnaseq.20160128) biocLite(RTCGA.CNV.20160128) biocLite(RTCGA.RPPA.20160128) biocLite(RTCGA.mRNA.20160128) biocLite(RTCGA.miRNASeq.20160128) biocLite(RTCGA.methylation.20160128) ## Bioconductor releases for data from 2015-11-01 release source('http://bioconductor.org/biocLite.R') biocLite(RTCGA.clinical) biocLite(RTCGA.mutations) biocLite(RTCGA.rnaseq) biocLite(RTCGA.CNV) biocLite(RTCGA.RPPA) biocLite(RTCGA.mRNA) biocLite(RTCGA.miRNASeq) biocLite(RTCGA.methylation) # use cases and examples + more data info browseVignettes('RTCGA') ## End(Not run)
Enables to download TCGA data from specified dates of releases of concrete Cohorts of cancer types.
Pass a name of required dataset to the dataSet
parameter. By default the Merged Clinical
dataSet is downloaded (value dataSet = 'Merge_Clinical.Level_1'
) from the newest available date of the release.
downloadTCGA( cancerTypes, dataSet = "Merge_Clinical.Level_1", destDir, date = NULL, untarFile = TRUE, removeTar = TRUE, allDataSets = FALSE )
downloadTCGA( cancerTypes, dataSet = "Merge_Clinical.Level_1", destDir, date = NULL, untarFile = TRUE, removeTar = TRUE, allDataSets = FALSE )
cancerTypes |
A character vector containing abbreviations (Cohort code) of types of cancers to download from https://gdac.broadinstitute.org/. For easy access from R check details below. |
dataSet |
A part of the name of dataSet to be downloaded from https://gdac.broadinstitute.org/runs/. By default the Merged Clinical dataSet is downloaded (value |
destDir |
A character specifying a directory into which |
date |
A |
untarFile |
Logical - should the downloaded file be untarred. Default is |
removeTar |
Logical - should the downloaded |
allDataSets |
Logical - should download all datasets matching |
All cohort names can be checked using: sub( x = names( infoTCGA() ), '-counts', '' )
.
No values. It only downloads files.
If you have any problems, issues or think that something is missing or is not clear please post an issue on https://github.com/RTCGA/RTCGA/issues.
Marcin Kosinski, [email protected]
RTCGA website https://rtcga.github.io/RTCGA/articles/Data_Download.html.
Other RTCGA:
RTCGA-package
,
boxplotTCGA()
,
checkTCGA()
,
convertTCGA()
,
datasetsTCGA
,
expressionsTCGA()
,
heatmapTCGA()
,
infoTCGA()
,
installTCGA()
,
kmTCGA()
,
mutationsTCGA()
,
pcaTCGA()
,
readTCGA()
,
survivalTCGA()
,
theme_RTCGA()
dir.create('hre') downloadTCGA(cancerTypes = 'ACC', dataSet = 'miR_gene_expression', destDir = 'hre', date = tail(checkTCGA('Dates'), 2)[1]) ## Not run: downloadTCGA(cancerTypes = c('BRCA', 'OV'), destDir = 'hre', date = tail(checkTCGA('Dates'), 2)[1]) ## End(Not run)
dir.create('hre') downloadTCGA(cancerTypes = 'ACC', dataSet = 'miR_gene_expression', destDir = 'hre', date = tail(checkTCGA('Dates'), 2)[1]) ## Not run: downloadTCGA(cancerTypes = c('BRCA', 'OV'), destDir = 'hre', date = tail(checkTCGA('Dates'), 2)[1]) ## End(Not run)
Function gathers expressions over multiple TCGA datasets and extracts expressions for desired genes. See rnaseq, mRNA, RPPA, miRNASeq, methylation.
expressionsTCGA(..., extract.cols = NULL, extract.names = TRUE)
expressionsTCGA(..., extract.cols = NULL, extract.names = TRUE)
... |
A data.frame or data.frames from TCGA study containing expressions informations. |
extract.cols |
A character specifing the names of columns to be extracted with |
extract.names |
Logical, whether to extract names of passed data.frames in |
If you have any problems, issues or think that something is missing or is not clear please post an issue on https://github.com/RTCGA/RTCGA/issues.
Input data.frames should contain column bcr_patient_barcode
if extract.cols
is specified.
Marcin Kosinski, [email protected]
RTCGA website http://rtcga.github.io/RTCGA/articles/Visualizations.html.
Other RTCGA:
RTCGA-package
,
boxplotTCGA()
,
checkTCGA()
,
convertTCGA()
,
datasetsTCGA
,
downloadTCGA()
,
heatmapTCGA()
,
infoTCGA()
,
installTCGA()
,
kmTCGA()
,
mutationsTCGA()
,
pcaTCGA()
,
readTCGA()
,
survivalTCGA()
,
theme_RTCGA()
## for all examples library(dplyr) library(tidyr) library(ggplot2) ## RNASeq expressions library(RTCGA.rnaseq) expressionsTCGA(BRCA.rnaseq, OV.rnaseq, HNSC.rnaseq, extract.cols = "VENTX|27287") %>% rename(cohort = dataset, VENTX = `VENTX|27287`) %>% filter(substr(bcr_patient_barcode, 14, 15) == "01") %>% #cancer samples ggplot(aes(y = log1p(VENTX), x = reorder(cohort, log1p(VENTX), median), fill = cohort)) + geom_boxplot() + theme_RTCGA() + scale_fill_brewer(palette = "Dark2") ## mRNA expressions library(tidyr) library(RTCGA.mRNA) expressionsTCGA(BRCA.mRNA, COAD.mRNA, LUSC.mRNA, UCEC.mRNA, extract.cols = c("ARHGAP24", "TRAV20")) %>% rename(cohort = dataset) %>% select(-bcr_patient_barcode) %>% gather(key = "mRNA", value = "value", -cohort) %>% ggplot(aes(y = value, x = reorder(cohort, value, mean), fill = cohort)) + geom_boxplot() + theme_RTCGA() + scale_fill_brewer(palette = "Set3") + facet_grid(mRNA~.) + theme(legend.position = "top") ## RPPA expressions library(RTCGA.RPPA) expressionsTCGA(ACC.RPPA, BLCA.RPPA, BRCA.RPPA, extract.cols = c("4E-BP1_pS65", "4E-BP1")) %>% rename(cohort = dataset) %>% select(-bcr_patient_barcode) %>% gather(key = "RPPA", value = "value", -cohort) %>% ggplot(aes(fill = cohort, y = value, x = RPPA)) + geom_boxplot() + theme_dark(base_size = 15) + scale_fill_manual(values = c("#eb6420", "#207de5", "#fbca04")) + coord_flip() + theme(legend.position = "top") + geom_jitter(alpha = 0.5, col = "white", size = 0.6, width = 0.7) ## miRNASeq expressions library(RTCGA.miRNASeq) # miRNASeq has bcr_patienct_barcode in rownames... mutate(ACC.miRNASeq, bcr_patient_barcode = substr(rownames(ACC.miRNASeq), 1, 25)) -> ACC.miRNASeq.bcr mutate(CESC.miRNASeq, bcr_patient_barcode = substr(rownames(CESC.miRNASeq), 1, 25)) -> CESC.miRNASeq.bcr mutate(CHOL.miRNASeq, bcr_patient_barcode = substr(rownames(CHOL.miRNASeq), 1, 25)) -> CHOL.miRNASeq.bcr mutate(LAML.miRNASeq, bcr_patient_barcode = substr(rownames(LAML.miRNASeq), 1, 25)) -> LAML.miRNASeq.bcr mutate(PAAD.miRNASeq, bcr_patient_barcode = substr(rownames(PAAD.miRNASeq), 1, 25)) -> PAAD.miRNASeq.bcr mutate(THYM.miRNASeq, bcr_patient_barcode = substr(rownames(THYM.miRNASeq), 1, 25)) -> THYM.miRNASeq.bcr mutate(LGG.miRNASeq, bcr_patient_barcode = substr(rownames(LGG.miRNASeq), 1, 25)) -> LGG.miRNASeq.bcr mutate(STAD.miRNASeq, bcr_patient_barcode = substr(rownames(STAD.miRNASeq), 1, 25)) -> STAD.miRNASeq.bcr expressionsTCGA(ACC.miRNASeq.bcr, CESC.miRNASeq.bcr, CHOL.miRNASeq.bcr, LAML.miRNASeq.bcr, PAAD.miRNASeq.bcr, THYM.miRNASeq.bcr, LGG.miRNASeq.bcr, STAD.miRNASeq.bcr, extract.cols = c("machine", "hsa-mir-101-1", "miRNA_ID")) %>% rename(cohort = dataset) %>% filter(miRNA_ID == "read_count") %>% select(-bcr_patient_barcode, -miRNA_ID) %>% gather(key = "key", value = "value", -cohort, -machine) %>% mutate(value = as.numeric(value)) %>% ggplot(aes(x = cohort, y = log1p(value), fill = as.factor(machine)) )+ geom_boxplot() + theme_RTCGA(base_size = 13) + coord_flip() + theme(legend.position = "top") + scale_fill_brewer(palette = "Paired") + ggtitle("hsa-mir-101-1")
## for all examples library(dplyr) library(tidyr) library(ggplot2) ## RNASeq expressions library(RTCGA.rnaseq) expressionsTCGA(BRCA.rnaseq, OV.rnaseq, HNSC.rnaseq, extract.cols = "VENTX|27287") %>% rename(cohort = dataset, VENTX = `VENTX|27287`) %>% filter(substr(bcr_patient_barcode, 14, 15) == "01") %>% #cancer samples ggplot(aes(y = log1p(VENTX), x = reorder(cohort, log1p(VENTX), median), fill = cohort)) + geom_boxplot() + theme_RTCGA() + scale_fill_brewer(palette = "Dark2") ## mRNA expressions library(tidyr) library(RTCGA.mRNA) expressionsTCGA(BRCA.mRNA, COAD.mRNA, LUSC.mRNA, UCEC.mRNA, extract.cols = c("ARHGAP24", "TRAV20")) %>% rename(cohort = dataset) %>% select(-bcr_patient_barcode) %>% gather(key = "mRNA", value = "value", -cohort) %>% ggplot(aes(y = value, x = reorder(cohort, value, mean), fill = cohort)) + geom_boxplot() + theme_RTCGA() + scale_fill_brewer(palette = "Set3") + facet_grid(mRNA~.) + theme(legend.position = "top") ## RPPA expressions library(RTCGA.RPPA) expressionsTCGA(ACC.RPPA, BLCA.RPPA, BRCA.RPPA, extract.cols = c("4E-BP1_pS65", "4E-BP1")) %>% rename(cohort = dataset) %>% select(-bcr_patient_barcode) %>% gather(key = "RPPA", value = "value", -cohort) %>% ggplot(aes(fill = cohort, y = value, x = RPPA)) + geom_boxplot() + theme_dark(base_size = 15) + scale_fill_manual(values = c("#eb6420", "#207de5", "#fbca04")) + coord_flip() + theme(legend.position = "top") + geom_jitter(alpha = 0.5, col = "white", size = 0.6, width = 0.7) ## miRNASeq expressions library(RTCGA.miRNASeq) # miRNASeq has bcr_patienct_barcode in rownames... mutate(ACC.miRNASeq, bcr_patient_barcode = substr(rownames(ACC.miRNASeq), 1, 25)) -> ACC.miRNASeq.bcr mutate(CESC.miRNASeq, bcr_patient_barcode = substr(rownames(CESC.miRNASeq), 1, 25)) -> CESC.miRNASeq.bcr mutate(CHOL.miRNASeq, bcr_patient_barcode = substr(rownames(CHOL.miRNASeq), 1, 25)) -> CHOL.miRNASeq.bcr mutate(LAML.miRNASeq, bcr_patient_barcode = substr(rownames(LAML.miRNASeq), 1, 25)) -> LAML.miRNASeq.bcr mutate(PAAD.miRNASeq, bcr_patient_barcode = substr(rownames(PAAD.miRNASeq), 1, 25)) -> PAAD.miRNASeq.bcr mutate(THYM.miRNASeq, bcr_patient_barcode = substr(rownames(THYM.miRNASeq), 1, 25)) -> THYM.miRNASeq.bcr mutate(LGG.miRNASeq, bcr_patient_barcode = substr(rownames(LGG.miRNASeq), 1, 25)) -> LGG.miRNASeq.bcr mutate(STAD.miRNASeq, bcr_patient_barcode = substr(rownames(STAD.miRNASeq), 1, 25)) -> STAD.miRNASeq.bcr expressionsTCGA(ACC.miRNASeq.bcr, CESC.miRNASeq.bcr, CHOL.miRNASeq.bcr, LAML.miRNASeq.bcr, PAAD.miRNASeq.bcr, THYM.miRNASeq.bcr, LGG.miRNASeq.bcr, STAD.miRNASeq.bcr, extract.cols = c("machine", "hsa-mir-101-1", "miRNA_ID")) %>% rename(cohort = dataset) %>% filter(miRNA_ID == "read_count") %>% select(-bcr_patient_barcode, -miRNA_ID) %>% gather(key = "key", value = "value", -cohort, -machine) %>% mutate(value = as.numeric(value)) %>% ggplot(aes(x = cohort, y = log1p(value), fill = as.factor(machine)) )+ geom_boxplot() + theme_RTCGA(base_size = 13) + coord_flip() + theme(legend.position = "top") + scale_fill_brewer(palette = "Paired") + ggtitle("hsa-mir-101-1")
Function creates heatmaps (geom_tile) for TCGA Datasets.
heatmapTCGA( data, x, y, fill, legend.title = "Expression", legend = "right", title = "Heatmap of expression", facet.names = NULL, tile.size = 0.1, tile.color = "white", ... )
heatmapTCGA( data, x, y, fill, legend.title = "Expression", legend = "right", title = "Heatmap of expression", facet.names = NULL, tile.size = 0.1, tile.color = "white", ... )
data |
A data.frame from TCGA study containing variables to be plotted. |
x , y
|
A character name of variable containing groups. |
fill |
A character names of fill variable. |
legend.title |
A character with legend's title. |
legend |
A character specifying legend position. Allowed values are one of c("top", "bottom", "left", "right", "none"). Default is "top" side position. to remove the legend use legend = "none". |
title |
A character with plot title. |
facet.names |
A character of length maximum 2 containing names of variables to produce facets. See examples. |
tile.size , tile.color
|
A size and color passed to geom_tile. |
... |
Further arguments passed to geom_tile. |
If you have any problems, issues or think that something is missing or is not clear please post an issue on https://github.com/RTCGA/RTCGA/issues.
heatmapTCGA
uses scale_fill_viridis from viridis package which is a port of the new
matplotlib
color maps (viridis - the default -, magma
, plasma
and inferno
) to R
.
matplotlib
https://matplotlib.org/ is a popular plotting library for python
.
These color maps are designed in such a way that they will analytically be perfectly perceptually-uniform,
both in regular form and also when converted to black-and-white.
They are also designed to be perceived by readers with the most common form of color blindness.
Marcin Kosinski, [email protected]
RTCGA website http://rtcga.github.io/RTCGA/articles/Visualizations.html.
Other RTCGA:
RTCGA-package
,
boxplotTCGA()
,
checkTCGA()
,
convertTCGA()
,
datasetsTCGA
,
downloadTCGA()
,
expressionsTCGA()
,
infoTCGA()
,
installTCGA()
,
kmTCGA()
,
mutationsTCGA()
,
pcaTCGA()
,
readTCGA()
,
survivalTCGA()
,
theme_RTCGA()
library(RTCGA.rnaseq) # perfrom plot library(dplyr) expressionsTCGA(ACC.rnaseq, BLCA.rnaseq, BRCA.rnaseq, OV.rnaseq, extract.cols = c("MET|4233", "ZNF500|26048", "ZNF501|115560")) %>% rename(cohort = dataset, MET = `MET|4233`) %>% #cancer samples filter(substr(bcr_patient_barcode, 14, 15) == "01") %>% mutate(MET = cut(MET, round(quantile(MET, probs = seq(0,1,0.25)), -2), include.lowest = TRUE, dig.lab = 5)) -> ACC_BLCA_BRCA_OV.rnaseq ACC_BLCA_BRCA_OV.rnaseq %>% select(-bcr_patient_barcode) %>% group_by(cohort, MET) %>% summarise_each(funs(median)) %>% mutate(ZNF500 = round(`ZNF500|26048`), ZNF501 = round(`ZNF501|115560`)) -> ACC_BLCA_BRCA_OV.rnaseq.medians heatmapTCGA(ACC_BLCA_BRCA_OV.rnaseq.medians, "cohort", "MET", "ZNF500", title = "Heatmap of ZNF500 expression") ## facet example library(RTCGA.mutations) library(dplyr) mutationsTCGA(BRCA.mutations, OV.mutations, ACC.mutations, BLCA.mutations) %>% filter(Hugo_Symbol == 'TP53') %>% filter(substr(bcr_patient_barcode, 14, 15) == "01") %>% # cancer tissue mutate(bcr_patient_barcode = substr(bcr_patient_barcode, 1, 12)) -> ACC_BLCA_BRCA_OV.mutations mutationsTCGA(BRCA.mutations, OV.mutations, ACC.mutations, BLCA.mutations) -> ACC_BLCA_BRCA_OV.mutations_all ACC_BLCA_BRCA_OV.rnaseq %>% mutate(bcr_patient_barcode = substr(bcr_patient_barcode, 1, 15)) %>% filter(bcr_patient_barcode %in% substr(ACC_BLCA_BRCA_OV.mutations_all$bcr_patient_barcode, 1, 15)) %>% # took patients for which we had any mutation information # so avoided patients without any information about mutations mutate(bcr_patient_barcode = substr(bcr_patient_barcode, 1, 12)) %>% # strin_length(ACC_BLCA_BRCA_OV.mutations$bcr_patient_barcode) == 12 left_join(ACC_BLCA_BRCA_OV.mutations, by = "bcr_patient_barcode") %>% #joined only with tumor patients mutate(TP53 = ifelse(!is.na(Variant_Classification), "Mut", "WILD")) %>% select(-bcr_patient_barcode, -Variant_Classification, -dataset, -Hugo_Symbol) %>% group_by(cohort, MET, TP53) %>% summarise_each(funs(median)) %>% mutate(ZNF501 = round(`ZNF501|115560`)) -> ACC_BLCA_BRCA_OV.rnaseq_TP53mutations_ZNF501medians heatmapTCGA(ACC_BLCA_BRCA_OV.rnaseq_TP53mutations_ZNF501medians, "cohort", "MET", fill = "ZNF501", facet.names = "TP53", title = "Heatmap of ZNF501 expression") heatmapTCGA(ACC_BLCA_BRCA_OV.rnaseq_TP53mutations_ZNF501medians, "TP53", "MET", fill = "ZNF501", facet.names = "cohort", title = "Heatmap of ZNF501 expression") heatmapTCGA(ACC_BLCA_BRCA_OV.rnaseq_TP53mutations_ZNF501medians, "TP53", "cohort", fill = "ZNF501", facet.names = "MET", title = "Heatmap of ZNF501 expression")
library(RTCGA.rnaseq) # perfrom plot library(dplyr) expressionsTCGA(ACC.rnaseq, BLCA.rnaseq, BRCA.rnaseq, OV.rnaseq, extract.cols = c("MET|4233", "ZNF500|26048", "ZNF501|115560")) %>% rename(cohort = dataset, MET = `MET|4233`) %>% #cancer samples filter(substr(bcr_patient_barcode, 14, 15) == "01") %>% mutate(MET = cut(MET, round(quantile(MET, probs = seq(0,1,0.25)), -2), include.lowest = TRUE, dig.lab = 5)) -> ACC_BLCA_BRCA_OV.rnaseq ACC_BLCA_BRCA_OV.rnaseq %>% select(-bcr_patient_barcode) %>% group_by(cohort, MET) %>% summarise_each(funs(median)) %>% mutate(ZNF500 = round(`ZNF500|26048`), ZNF501 = round(`ZNF501|115560`)) -> ACC_BLCA_BRCA_OV.rnaseq.medians heatmapTCGA(ACC_BLCA_BRCA_OV.rnaseq.medians, "cohort", "MET", "ZNF500", title = "Heatmap of ZNF500 expression") ## facet example library(RTCGA.mutations) library(dplyr) mutationsTCGA(BRCA.mutations, OV.mutations, ACC.mutations, BLCA.mutations) %>% filter(Hugo_Symbol == 'TP53') %>% filter(substr(bcr_patient_barcode, 14, 15) == "01") %>% # cancer tissue mutate(bcr_patient_barcode = substr(bcr_patient_barcode, 1, 12)) -> ACC_BLCA_BRCA_OV.mutations mutationsTCGA(BRCA.mutations, OV.mutations, ACC.mutations, BLCA.mutations) -> ACC_BLCA_BRCA_OV.mutations_all ACC_BLCA_BRCA_OV.rnaseq %>% mutate(bcr_patient_barcode = substr(bcr_patient_barcode, 1, 15)) %>% filter(bcr_patient_barcode %in% substr(ACC_BLCA_BRCA_OV.mutations_all$bcr_patient_barcode, 1, 15)) %>% # took patients for which we had any mutation information # so avoided patients without any information about mutations mutate(bcr_patient_barcode = substr(bcr_patient_barcode, 1, 12)) %>% # strin_length(ACC_BLCA_BRCA_OV.mutations$bcr_patient_barcode) == 12 left_join(ACC_BLCA_BRCA_OV.mutations, by = "bcr_patient_barcode") %>% #joined only with tumor patients mutate(TP53 = ifelse(!is.na(Variant_Classification), "Mut", "WILD")) %>% select(-bcr_patient_barcode, -Variant_Classification, -dataset, -Hugo_Symbol) %>% group_by(cohort, MET, TP53) %>% summarise_each(funs(median)) %>% mutate(ZNF501 = round(`ZNF501|115560`)) -> ACC_BLCA_BRCA_OV.rnaseq_TP53mutations_ZNF501medians heatmapTCGA(ACC_BLCA_BRCA_OV.rnaseq_TP53mutations_ZNF501medians, "cohort", "MET", fill = "ZNF501", facet.names = "TP53", title = "Heatmap of ZNF501 expression") heatmapTCGA(ACC_BLCA_BRCA_OV.rnaseq_TP53mutations_ZNF501medians, "TP53", "MET", fill = "ZNF501", facet.names = "cohort", title = "Heatmap of ZNF501 expression") heatmapTCGA(ACC_BLCA_BRCA_OV.rnaseq_TP53mutations_ZNF501medians, "TP53", "cohort", fill = "ZNF501", facet.names = "MET", title = "Heatmap of ZNF501 expression")
Function restores codes and counts for each cohort from TCGA project.
infoTCGA()
infoTCGA()
A list with a tabular information from https://gdac.broadinstitute.org/.
If you have any problems, issues or think that something is missing or is not clear please post an issue on https://github.com/RTCGA/RTCGA/issues.
Marcin Kosinski, [email protected]
RTCGA website https://rtcga.github.io/RTCGA/articles/Data_Download.html.
Other RTCGA:
RTCGA-package
,
boxplotTCGA()
,
checkTCGA()
,
convertTCGA()
,
datasetsTCGA
,
downloadTCGA()
,
expressionsTCGA()
,
heatmapTCGA()
,
installTCGA()
,
kmTCGA()
,
mutationsTCGA()
,
pcaTCGA()
,
readTCGA()
,
survivalTCGA()
,
theme_RTCGA()
infoTCGA() library(magrittr) (cohorts <- infoTCGA() %>% rownames() %>% sub('-counts', '', x=.)) # in knitr chunk -> results='asis' knitr::kable(infoTCGA())
infoTCGA() library(magrittr) (cohorts <- infoTCGA() %>% rownames() %>% sub('-counts', '', x=.)) # in knitr chunk -> results='asis' knitr::kable(infoTCGA())
Function installs data packages from https://github.com/RTCGA/. Packages are listed in datasetsTCGA.
installTCGA( packages = c("RTCGA.clinical.20160128", "RTCGA.mutations.20160128", "RTCGA.rnaseq.20160128", "RTCGA.RPPA.20160128", "RTCGA.mRNA.20160128", "RTCGA.CNV.20160128", "RTCGA.miRNASeq.20160128", "RTCGA.PANCAN12.20160128", "RTCGA.methylation.20160128"), build_vignettes = TRUE, ... )
installTCGA( packages = c("RTCGA.clinical.20160128", "RTCGA.mutations.20160128", "RTCGA.rnaseq.20160128", "RTCGA.RPPA.20160128", "RTCGA.mRNA.20160128", "RTCGA.CNV.20160128", "RTCGA.miRNASeq.20160128", "RTCGA.PANCAN12.20160128", "RTCGA.methylation.20160128"), build_vignettes = TRUE, ... )
packages |
A character specifing the names of the data packages to be installed. By default installs all packages from |
build_vignettes |
Should vignettes be build. |
... |
Further arguments passed to install_github. |
If you have any problems, issues or think that something is missing or is not clear please post an issue on https://github.com/RTCGA/RTCGA/issues.
Marcin Kosinski, [email protected]
RTCGA website http://rtcga.github.io/RTCGA.
Other RTCGA:
RTCGA-package
,
boxplotTCGA()
,
checkTCGA()
,
convertTCGA()
,
datasetsTCGA
,
downloadTCGA()
,
expressionsTCGA()
,
heatmapTCGA()
,
infoTCGA()
,
kmTCGA()
,
mutationsTCGA()
,
pcaTCGA()
,
readTCGA()
,
survivalTCGA()
,
theme_RTCGA()
## Not run: installTCGA() # it installs all!!! of them installTCGA('RTCGA.clinical.20160128') ## End(Not run)
## Not run: installTCGA() # it installs all!!! of them installTCGA('RTCGA.clinical.20160128') ## End(Not run)
Plots Kaplan-Meier estimates of survival curves for survival data.
kmTCGA( x, times = "times", status = "patient.vital_status", explanatory.names = "1", main = "Survival Curves", risk.table = TRUE, risk.table.y.text = FALSE, conf.int = TRUE, return.survfit = FALSE, pval = FALSE, ggtheme = theme_RTCGA(), ... )
kmTCGA( x, times = "times", status = "patient.vital_status", explanatory.names = "1", main = "Survival Curves", risk.table = TRUE, risk.table.y.text = FALSE, conf.int = TRUE, return.survfit = FALSE, pval = FALSE, ggtheme = theme_RTCGA(), ... )
x |
A |
times |
The name of time variable. |
status |
The name of status variable. |
explanatory.names |
Names of explanatory variables to use in survival curves plot. |
main |
Title of the plot. |
risk.table |
Whether to show risk tables. |
risk.table.y.text |
Whether to show long strata names in legend of the risk table. |
conf.int |
Whether to show confidence intervals. |
return.survfit |
Should return survfit object additionaly to survival plot? |
pval |
Whether to add p-value of the log-rank test to the plot? |
ggtheme |
a |
... |
Further arguments passed to ggsurvplot. |
If you have any problems, issues or think that something is missing or is not clear please post an issue on https://github.com/RTCGA/RTCGA/issues.
Marcin Kosinski, [email protected]
RTCGA website http://rtcga.github.io/RTCGA/articles/Visualizations.html.
Other RTCGA:
RTCGA-package
,
boxplotTCGA()
,
checkTCGA()
,
convertTCGA()
,
datasetsTCGA
,
downloadTCGA()
,
expressionsTCGA()
,
heatmapTCGA()
,
infoTCGA()
,
installTCGA()
,
mutationsTCGA()
,
pcaTCGA()
,
readTCGA()
,
survivalTCGA()
,
theme_RTCGA()
## Extracting Survival Data library(RTCGA.clinical) survivalTCGA(BRCA.clinical, OV.clinical, extract.cols = "admin.disease_code") -> BRCAOV.survInfo ## Kaplan-Meier Survival Curves kmTCGA(BRCAOV.survInfo, explanatory.names = "admin.disease_code", pval = TRUE) kmTCGA(BRCAOV.survInfo, explanatory.names = "admin.disease_code", main = "", xlim = c(0,4000)) # first munge data, then extract survival info library(dplyr) BRCA.clinical %>% filter(patient.drugs.drug.therapy_types.therapy_type %in% c("chemotherapy", "hormone therapy")) %>% rename(therapy = patient.drugs.drug.therapy_types.therapy_type) %>% survivalTCGA(extract.cols = c("therapy")) -> BRCA.survInfo.chemo # first extract survival info, then munge data survivalTCGA(BRCA.clinical, extract.cols = c("patient.drugs.drug.therapy_types.therapy_type")) %>% filter(patient.drugs.drug.therapy_types.therapy_type %in% c("chemotherapy", "hormone therapy")) %>% rename(therapy = patient.drugs.drug.therapy_types.therapy_type) -> BRCA.survInfo.chemo kmTCGA(BRCA.survInfo.chemo, explanatory.names = "therapy", xlim = c(0, 3000), conf.int = FALSE)
## Extracting Survival Data library(RTCGA.clinical) survivalTCGA(BRCA.clinical, OV.clinical, extract.cols = "admin.disease_code") -> BRCAOV.survInfo ## Kaplan-Meier Survival Curves kmTCGA(BRCAOV.survInfo, explanatory.names = "admin.disease_code", pval = TRUE) kmTCGA(BRCAOV.survInfo, explanatory.names = "admin.disease_code", main = "", xlim = c(0,4000)) # first munge data, then extract survival info library(dplyr) BRCA.clinical %>% filter(patient.drugs.drug.therapy_types.therapy_type %in% c("chemotherapy", "hormone therapy")) %>% rename(therapy = patient.drugs.drug.therapy_types.therapy_type) %>% survivalTCGA(extract.cols = c("therapy")) -> BRCA.survInfo.chemo # first extract survival info, then munge data survivalTCGA(BRCA.clinical, extract.cols = c("patient.drugs.drug.therapy_types.therapy_type")) %>% filter(patient.drugs.drug.therapy_types.therapy_type %in% c("chemotherapy", "hormone therapy")) %>% rename(therapy = patient.drugs.drug.therapy_types.therapy_type) -> BRCA.survInfo.chemo kmTCGA(BRCA.survInfo.chemo, explanatory.names = "therapy", xlim = c(0, 3000), conf.int = FALSE)
Function gathers mutations over multiple TCGA datasets and extracts mutations and further informations about them for desired genes. See mutations.
mutationsTCGA( ..., extract.cols = c("Hugo_Symbol", "Variant_Classification", "bcr_patient_barcode"), extract.names = TRUE, unique = TRUE )
mutationsTCGA( ..., extract.cols = c("Hugo_Symbol", "Variant_Classification", "bcr_patient_barcode"), extract.names = TRUE, unique = TRUE )
... |
A data.frame or data.frames from TCGA study containing mutations information (RTCGA.mutations). |
extract.cols |
A character specifing the names of columns to be extracted with |
extract.names |
Logical, whether to extract names of passed data.frames in |
unique |
Should the outputed data be unique. By default it's |
If you have any problems, issues or think that something is missing or is not clear please post an issue on https://github.com/RTCGA/RTCGA/issues.
Input data.frames should contain column bcr_patient_barcode
if extract.cols
is specified.
Marcin Kosinski, [email protected]
RTCGA website http://rtcga.github.io/RTCGA/articles/Visualizations.html.
Other RTCGA:
RTCGA-package
,
boxplotTCGA()
,
checkTCGA()
,
convertTCGA()
,
datasetsTCGA
,
downloadTCGA()
,
expressionsTCGA()
,
heatmapTCGA()
,
infoTCGA()
,
installTCGA()
,
kmTCGA()
,
pcaTCGA()
,
readTCGA()
,
survivalTCGA()
,
theme_RTCGA()
library(RTCGA.mutations) library(dplyr) mutationsTCGA(BRCA.mutations, OV.mutations) %>% filter(Hugo_Symbol == 'TP53') %>% filter(substr(bcr_patient_barcode, 14, 15) == "01") %>% # cancer tissue mutate(bcr_patient_barcode = substr(bcr_patient_barcode, 1, 12)) -> BRCA_OV.mutations library(RTCGA.clinical) survivalTCGA(BRCA.clinical, OV.clinical, extract.cols = "admin.disease_code") %>% rename(disease = admin.disease_code)-> BRCA_OV.clinical BRCA_OV.clinical %>% left_join(BRCA_OV.mutations, by = "bcr_patient_barcode") %>% mutate(TP53 = ifelse(!is.na(Variant_Classification), "Mut", "WILDorNOINFO")) -> BRCA_OV.clinical_mutations BRCA_OV.clinical_mutations %>% select(times, patient.vital_status, disease, TP53) -> BRCA_OV.2plot kmTCGA(BRCA_OV.2plot, explanatory.names = c("TP53", "disease"), break.time.by = 400, xlim = c(0,2000))
library(RTCGA.mutations) library(dplyr) mutationsTCGA(BRCA.mutations, OV.mutations) %>% filter(Hugo_Symbol == 'TP53') %>% filter(substr(bcr_patient_barcode, 14, 15) == "01") %>% # cancer tissue mutate(bcr_patient_barcode = substr(bcr_patient_barcode, 1, 12)) -> BRCA_OV.mutations library(RTCGA.clinical) survivalTCGA(BRCA.clinical, OV.clinical, extract.cols = "admin.disease_code") %>% rename(disease = admin.disease_code)-> BRCA_OV.clinical BRCA_OV.clinical %>% left_join(BRCA_OV.mutations, by = "bcr_patient_barcode") %>% mutate(TP53 = ifelse(!is.na(Variant_Classification), "Mut", "WILDorNOINFO")) -> BRCA_OV.clinical_mutations BRCA_OV.clinical_mutations %>% select(times, patient.vital_status, disease, TP53) -> BRCA_OV.2plot kmTCGA(BRCA_OV.2plot, explanatory.names = c("TP53", "disease"), break.time.by = 400, xlim = c(0,2000))
Plots Two Main Components of Principal Component Analysis
pcaTCGA( x, group.names, title = "", return.pca = FALSE, scale = TRUE, center = TRUE, var.scale = 1, obs.scale = 1, ellipse = TRUE, circle = TRUE, var.axes = FALSE, alpha = 0.8, add.lines = TRUE, ggtheme = theme_RTCGA(), ... )
pcaTCGA( x, group.names, title = "", return.pca = FALSE, scale = TRUE, center = TRUE, var.scale = 1, obs.scale = 1, ellipse = TRUE, circle = TRUE, var.axes = FALSE, alpha = 0.8, add.lines = TRUE, ggtheme = theme_RTCGA(), ... )
x |
A |
group.names |
Names of group variable to use in labels of the plot. |
title |
The title of a plot. |
return.pca |
Should return pca object additionaly to pca plot? |
scale |
As in prcomp. |
center |
As in prcomp. |
var.scale |
As in |
obs.scale |
As in |
ellipse |
As in |
circle |
As in |
var.axes |
As in |
alpha |
As in |
add.lines |
Should axis lines be added to plot. |
ggtheme |
a |
... |
Further arguments passed to prcomp. |
If return.pca = TRUE
then a list containing a PCA plot (of class ggplot
) and a pca
model, the result of prcomp function.
If not, then only PCA plot is returned.
This function is based on https://github.com/vqv/ggbiplot
which had to be copied to RTCGA because Bioconductor
does not support
remote dependencies from GitHub
.
If you have any problems, issues or think that something is missing or is not clear please post an issue on https://github.com/RTCGA/RTCGA/issues.
Marcin Kosinski, [email protected]
RTCGA website http://rtcga.github.io/RTCGA/articles/Visualizations.html.
Other RTCGA:
RTCGA-package
,
boxplotTCGA()
,
checkTCGA()
,
convertTCGA()
,
datasetsTCGA
,
downloadTCGA()
,
expressionsTCGA()
,
heatmapTCGA()
,
infoTCGA()
,
installTCGA()
,
kmTCGA()
,
mutationsTCGA()
,
readTCGA()
,
survivalTCGA()
,
theme_RTCGA()
## Not run: library(dplyr) ## RNASeq expressions library(RTCGA.rnaseq) expressionsTCGA(BRCA.rnaseq, OV.rnaseq, HNSC.rnaseq) %>% rename(cohort = dataset) %>% filter(substr(bcr_patient_barcode, 14, 15) == "01") -> BRCA.OV.HNSC.rnaseq.cancer pcaTCGA(BRCA.OV.HNSC.rnaseq.cancer, "cohort") pcaTCGA(BRCA.OV.HNSC.rnaseq.cancer, "cohort", add.lines = FALSE) pcaTCGA(BRCA.OV.HNSC.rnaseq.cancer, "cohort", return.pca = TRUE) -> pca.rnaseq pca.rnaseq$plot pca.rnaseq$pca ## End(Not run)
## Not run: library(dplyr) ## RNASeq expressions library(RTCGA.rnaseq) expressionsTCGA(BRCA.rnaseq, OV.rnaseq, HNSC.rnaseq) %>% rename(cohort = dataset) %>% filter(substr(bcr_patient_barcode, 14, 15) == "01") -> BRCA.OV.HNSC.rnaseq.cancer pcaTCGA(BRCA.OV.HNSC.rnaseq.cancer, "cohort") pcaTCGA(BRCA.OV.HNSC.rnaseq.cancer, "cohort", add.lines = FALSE) pcaTCGA(BRCA.OV.HNSC.rnaseq.cancer, "cohort", return.pca = TRUE) -> pca.rnaseq pca.rnaseq$plot pca.rnaseq$pca ## End(Not run)
readTCGA
function allows to read unzipped files:
clinical data - Merge_Clinical.Level_1
rnaseq data (genes' expressions) - rnaseqv2__illuminahiseq_rnaseqv2
genes' mutations data - Mutation_Packager_Calls.Level
Reverse phase protein array data (RPPA) - protein_normalization__data.Level_3
Merge transcriptome agilent data (mRNA) -
Merge_transcriptome__agilentg4502a_07_3__unc_edu__Level_3__unc_lowess_normalization_gene_level__data.Level_3
miRNASeq data -
Merge_mirnaseq__illuminaga_mirnaseq__bcgsc_ca__Level_3__miR_gene_expression__data.Level_3
or
"Merge_mirnaseq__illuminahiseq_mirnaseq__bcgsc_ca__Level_3__miR_gene_expression__data.Level_3"
methylation data -
Merge_methylation__humanmethylation27
isoforms data -
Merge_rnaseqv2__illuminahiseq_rnaseqv2__unc_edu__Level_3__RSEM_isoforms_normalized__data.Level_3
CNV data - segmented_scna_minus_germline_cnv_hg19
from TCGA project. Those files can be easily downloded with downloadTCGA function. See examples.
readTCGA(path, dataType, ...)
readTCGA(path, dataType, ...)
path |
See details and examples. |
dataType |
One of |
... |
Further arguments passed to the as.data.frame. |
All cohort names can be checked using: sub( x = names( infoTCGA() ), '-counts', '')
.
Parameter path
specification:
If dataType = 'clinical'
a path to a cancerType.clin.merged.txt
file.
If dataType = 'mutations'
a path to the unzziped folder Mutation_Packager_Calls.Level
containing .maf
files.
If dataType = 'rnaseq'
a path to the uzziped file rnaseqv2__illuminahiseq_rnaseqv2__unc_edu__Level_3__RSEM_genes_normalized__data.Level
.
If dataType = 'RPPA'
a path to the unzipped file in folder protein_normalization__data.Level_3
.
If dataType = 'mRNA'
a path to the unzipped file cancerType.transcriptome__agilentg4502a_07_3__unc_edu__Level_3__unc_lowess_normalization_gene_level__data.data.txt
.
If dataType = 'miRNASeq'
a path to unzipped files cancerType.mirnaseq__illuminahiseq_mirnaseq__bcgsc_ca__Level_3__miR_gene_expression__data.data.txt
or cancerType.mirnaseq__illuminaga_mirnaseq__bcgsc_ca__Level_3__miR_gene_expression__data.data.txt
If dataType = 'methylation'
a path to unzipped files cancerType.methylation__humanmethylation27__jhu_usc_edu__Level_3__within_bioassay_data_set_function__data.data.txt
.
If dataType = 'isoforms'
a path to unzipped files cancerType.rnaseqv2__illuminahiseq_rnaseqv2__unc_edu__Level_3__RSEM_isoforms_normalized__data.data.txt
.
If dataType = 'CNV'
a path to unzipped files cancerType.Merge_snp__genome_wide_snp_6__broad_mit_edu__Level_3__segmented_scna_minus_germline_cnv_hg18__seg.Level_3.txt
.
An output is a data.frame
with dataType
data.
If you have any problems, issues or think that something is missing or is not clear please post an issue on https://github.com/RTCGA/RTCGA/issues.
Marcin Kosinski, [email protected]
Witold Chodor, [email protected]
RTCGA website http://rtcga.github.io/RTCGA/articles/Data_Download.html.
Other RTCGA:
RTCGA-package
,
boxplotTCGA()
,
checkTCGA()
,
convertTCGA()
,
datasetsTCGA
,
downloadTCGA()
,
expressionsTCGA()
,
heatmapTCGA()
,
infoTCGA()
,
installTCGA()
,
kmTCGA()
,
mutationsTCGA()
,
pcaTCGA()
,
survivalTCGA()
,
theme_RTCGA()
## Not run: ############## ##### clinical ############## dir.create('data') # downloading clinical data # dataset = "clinical" is default parameter so we may omit it downloadTCGA(cancerTypes = c('BRCA', 'OV'), destDir = 'data' ) # shorten paths so that they are shorter than 256 signs - windows issue list.files("data", full.names = TRUE) %>% file.rename(to = substr(., start = 1, stop = 50)) # reading datasets sapply(c('BRCA', 'OV'), function(element){ path <- list.files('data', recursive = TRUE, full.names = TRUE, patten = "clin.merged.txt") assign(value = readTCGA( path, 'clinical' ), x = paste0(element, '.clin.data'), envir = .GlobalEnv)}) ############ ##### rnaseq ############ dir.create('data2') # downloading rnaseq data downloadTCGA(cancerTypes = 'BRCA', dataSet = 'Level_3__RSEM_genes_normalized', destDir = 'data2') # shorten paths so that they are shorter than 256 signs - windows issue list.files("data2", full.names = TRUE) %>% file.rename(to = substr(., start = 1, stop = 50)) path_rnaseq <- list.files('data2', recursive = TRUE, full.names = TRUE, patten = 'illuminahiseq') readTCGA(path = pathRNA, dataType = 'rnaseq') -> rnaseq_data ############### ##### mutations ############### # Example directory in which untarred data will be stored dir.create('data3') downloadTCGA(cancerTypes = 'OV', dataSet = 'Mutation_Packager_Calls.Level', destDir = 'data3') # reading data list.files('data3', recursive = TRUE) -> directory readTCGA(directory, 'mutations') -> mut_file ################# ##### methylation ################# # Example directory in which untarred data will be stored dir.create('data4') # Download KIRP methylation data and store it in data4 folder cancerType = "KIRP" downloadTCGA(cancerTypes = cancerType, dataSet = "Merge_methylation__humanmethylation27", destDir = "data4") # Shorten path of subdirectory with KIRP methylation data list.files(path = "data4", full.names = TRUE) %>% file.rename(to = file.path("data4", paste0(cancerType, ".methylation"))) # Remove manifest.txt file list.files(path = "data4", full.names = TRUE, recursive = TRUE, pattern = "MANIFEST") %>% file.remove() # Read KIRP methylation data path <- list.files(path = "data4", full.names = TRUE, recursive = TRUE) KIRP.methylation <- readTCGA(path, dataType = "methylation") ########## ##### RPPA ########## # Directory in which untarred data will be stored dir.create('data5') # Download BRCA RPPA data and store it in data5 folder cancerType = "BRCA" downloadTCGA(cancerTypes = cancerType, dataSet = "protein_normalization__data.Level_3", destDir = "data5") # Shorten path of subdirectory with BRCA RPPA data list.files(path = "data5", full.names = TRUE) %>% file.rename(from = ., to = file.path("data5", paste0(cancerType, ".RPPA"))) # Remove manifest.txt file list.files(path = "data5", full.names = TRUE, recursive = TRUE, pattern = "MANIFEST") %>% file.remove() # Read BRCA RPPA data path <- list.files(path = "data5", full.names = TRUE, recursive = TRUE) BRCA.RPPA <- readTCGA(path, dataType = "RPPA") ########## ##### mRNA ########## # Directory in which untarred data will be stored dir.create('data6') # Download UCEC mRNA data and store it in data6 folder cancerType = "UCEC" downloadTCGA(cancerTypes = cancerType, dataSet = "agilentg4502a_07_3__unc_edu__Level_3", destDir = "data6") # Shorten path of subdirectory with UCEC mRNA data list.files(path = "data6", full.names = TRUE) %>% file.rename(from = ., to = file.path("data6",paste0(cancerType, ".mRNA"))) # Remove manifest.txt file list.files(path = "data6", full.names = TRUE, recursive = TRUE, pattern = "MANIFEST") %>% file.remove() # Read UCEC mRNA data path <- list.files(path = "data6", full.names = TRUE, recursive = TRUE) UCEC.mRNA <- readTCGA(path, dataType = "mRNA") ############## ##### miRNASeq ############## # Directory in which untarred data will be stored dir.create('data7') # Download BRCA miRNASeq data and store it in data7 folder # Remember that miRNASeq data are produced by two machines: # Illumina Genome Analyzer and Illumina HiSeq 2000 machines cancerType <- "BRCA" downloadTCGA(cancerTypes = cancerType, dataSet = paste0("Merge_mirnaseq__illuminaga_mirnaseq__bcgsc", "_ca__Level_3__miR_gene_expression__data.Level_3"), destDir = "data7") downloadTCGA(cancerTypes = cancerType, dataSet = paste0("Merge_mirnaseq__illuminahiseq_mirnaseq__", "bcgsc_ca__Level_3__miR_gene_expression__data.Level_3"), destDir = "data7") # Shorten path of subdirectory with BRCA miRNASeq data list.files(path = "data7", full.names = TRUE) %>% sapply(function(path){ if (grepl(pattern = "illuminaga", path)){ file.rename(from = grep(pattern = "illuminaga", path, value = TRUE), to = file.path("data7",paste0(cancerType, ".miRNASeq.illuminaga"))) } else if (grepl(pattern = "illuminahiseq", path)){ file.rename(from = grep(pattern = "illuminahiseq", path, value = TRUE), to = file.path("data7",paste0(cancerType, ".miRNASeq.illuminahiseq"))) } }) # Remove manifest.txt file list.files(path = "data6", full.names = TRUE, recursive = TRUE, pattern = "MANIFEST") %>% file.remove() # Read BRCA miRNASeq data path <- list.files(path = "data7", full.names = TRUE, recursive = TRUE) path_illuminaga <- grep("illuminaga", path, fixed = TRUE, value = TRUE) path_illuminahiseq <- grep("illuminahiseq", path, fixed = TRUE, value = TRUE) BRCA.miRNASeq.illuminaga <- readTCGA(path_illuminaga, dataType = "miRNASeq") BRCA.miRNASeq.illuminahiseq <- readTCGA(path_illuminahiseq, dataType = "miRNASeq") BRCA.miRNASeq.illuminaga <- cbind(machine = "Illumina Genome Analyzer", BRCA.miRNASeq.illuminaga) BRCA.miRNASeq.illuminahiseq <- cbind(machine = "Illumina HiSeq 2000", BRCA.miRNASeq.illuminahiseq) BRCA.miRNASeq <- rbind(BRCA.miRNASeq.illuminaga, BRCA.miRNASeq.illuminahiseq) ############## ##### isoforms ############## # Directory in which untarred data will be stored dir.create('data8') # Download ACC isoforms data and store it in data8 folder cancerType = "ACC" downloadTCGA(cancerTypes = cancerType, dataSet = paste0("Merge_rnaseqv2__illuminahiseq_rnaseqv2__unc", "_edu__Level_3__RSEM_isoforms_normalized__data.Level_3"), destDir = "data8") # Shorten path of subdirectory with ACC isoforms data list.files(path = "data8", full.names = TRUE) %>% file.rename(from = ., to = file.path("data8",paste0(cancerType, ".isoforms"))) # Remove manifest.txt file list.files(path = "data6", full.names = TRUE, recursive = TRUE, pattern = "MANIFEST") %>% file.remove() # Read ACC isoforms data path <- list.files(path = "data8", full.names = TRUE, recursive = TRUE) ACC.isoforms <- readTCGA(path, dataType = "isoforms") ## End(Not run)
## Not run: ############## ##### clinical ############## dir.create('data') # downloading clinical data # dataset = "clinical" is default parameter so we may omit it downloadTCGA(cancerTypes = c('BRCA', 'OV'), destDir = 'data' ) # shorten paths so that they are shorter than 256 signs - windows issue list.files("data", full.names = TRUE) %>% file.rename(to = substr(., start = 1, stop = 50)) # reading datasets sapply(c('BRCA', 'OV'), function(element){ path <- list.files('data', recursive = TRUE, full.names = TRUE, patten = "clin.merged.txt") assign(value = readTCGA( path, 'clinical' ), x = paste0(element, '.clin.data'), envir = .GlobalEnv)}) ############ ##### rnaseq ############ dir.create('data2') # downloading rnaseq data downloadTCGA(cancerTypes = 'BRCA', dataSet = 'Level_3__RSEM_genes_normalized', destDir = 'data2') # shorten paths so that they are shorter than 256 signs - windows issue list.files("data2", full.names = TRUE) %>% file.rename(to = substr(., start = 1, stop = 50)) path_rnaseq <- list.files('data2', recursive = TRUE, full.names = TRUE, patten = 'illuminahiseq') readTCGA(path = pathRNA, dataType = 'rnaseq') -> rnaseq_data ############### ##### mutations ############### # Example directory in which untarred data will be stored dir.create('data3') downloadTCGA(cancerTypes = 'OV', dataSet = 'Mutation_Packager_Calls.Level', destDir = 'data3') # reading data list.files('data3', recursive = TRUE) -> directory readTCGA(directory, 'mutations') -> mut_file ################# ##### methylation ################# # Example directory in which untarred data will be stored dir.create('data4') # Download KIRP methylation data and store it in data4 folder cancerType = "KIRP" downloadTCGA(cancerTypes = cancerType, dataSet = "Merge_methylation__humanmethylation27", destDir = "data4") # Shorten path of subdirectory with KIRP methylation data list.files(path = "data4", full.names = TRUE) %>% file.rename(to = file.path("data4", paste0(cancerType, ".methylation"))) # Remove manifest.txt file list.files(path = "data4", full.names = TRUE, recursive = TRUE, pattern = "MANIFEST") %>% file.remove() # Read KIRP methylation data path <- list.files(path = "data4", full.names = TRUE, recursive = TRUE) KIRP.methylation <- readTCGA(path, dataType = "methylation") ########## ##### RPPA ########## # Directory in which untarred data will be stored dir.create('data5') # Download BRCA RPPA data and store it in data5 folder cancerType = "BRCA" downloadTCGA(cancerTypes = cancerType, dataSet = "protein_normalization__data.Level_3", destDir = "data5") # Shorten path of subdirectory with BRCA RPPA data list.files(path = "data5", full.names = TRUE) %>% file.rename(from = ., to = file.path("data5", paste0(cancerType, ".RPPA"))) # Remove manifest.txt file list.files(path = "data5", full.names = TRUE, recursive = TRUE, pattern = "MANIFEST") %>% file.remove() # Read BRCA RPPA data path <- list.files(path = "data5", full.names = TRUE, recursive = TRUE) BRCA.RPPA <- readTCGA(path, dataType = "RPPA") ########## ##### mRNA ########## # Directory in which untarred data will be stored dir.create('data6') # Download UCEC mRNA data and store it in data6 folder cancerType = "UCEC" downloadTCGA(cancerTypes = cancerType, dataSet = "agilentg4502a_07_3__unc_edu__Level_3", destDir = "data6") # Shorten path of subdirectory with UCEC mRNA data list.files(path = "data6", full.names = TRUE) %>% file.rename(from = ., to = file.path("data6",paste0(cancerType, ".mRNA"))) # Remove manifest.txt file list.files(path = "data6", full.names = TRUE, recursive = TRUE, pattern = "MANIFEST") %>% file.remove() # Read UCEC mRNA data path <- list.files(path = "data6", full.names = TRUE, recursive = TRUE) UCEC.mRNA <- readTCGA(path, dataType = "mRNA") ############## ##### miRNASeq ############## # Directory in which untarred data will be stored dir.create('data7') # Download BRCA miRNASeq data and store it in data7 folder # Remember that miRNASeq data are produced by two machines: # Illumina Genome Analyzer and Illumina HiSeq 2000 machines cancerType <- "BRCA" downloadTCGA(cancerTypes = cancerType, dataSet = paste0("Merge_mirnaseq__illuminaga_mirnaseq__bcgsc", "_ca__Level_3__miR_gene_expression__data.Level_3"), destDir = "data7") downloadTCGA(cancerTypes = cancerType, dataSet = paste0("Merge_mirnaseq__illuminahiseq_mirnaseq__", "bcgsc_ca__Level_3__miR_gene_expression__data.Level_3"), destDir = "data7") # Shorten path of subdirectory with BRCA miRNASeq data list.files(path = "data7", full.names = TRUE) %>% sapply(function(path){ if (grepl(pattern = "illuminaga", path)){ file.rename(from = grep(pattern = "illuminaga", path, value = TRUE), to = file.path("data7",paste0(cancerType, ".miRNASeq.illuminaga"))) } else if (grepl(pattern = "illuminahiseq", path)){ file.rename(from = grep(pattern = "illuminahiseq", path, value = TRUE), to = file.path("data7",paste0(cancerType, ".miRNASeq.illuminahiseq"))) } }) # Remove manifest.txt file list.files(path = "data6", full.names = TRUE, recursive = TRUE, pattern = "MANIFEST") %>% file.remove() # Read BRCA miRNASeq data path <- list.files(path = "data7", full.names = TRUE, recursive = TRUE) path_illuminaga <- grep("illuminaga", path, fixed = TRUE, value = TRUE) path_illuminahiseq <- grep("illuminahiseq", path, fixed = TRUE, value = TRUE) BRCA.miRNASeq.illuminaga <- readTCGA(path_illuminaga, dataType = "miRNASeq") BRCA.miRNASeq.illuminahiseq <- readTCGA(path_illuminahiseq, dataType = "miRNASeq") BRCA.miRNASeq.illuminaga <- cbind(machine = "Illumina Genome Analyzer", BRCA.miRNASeq.illuminaga) BRCA.miRNASeq.illuminahiseq <- cbind(machine = "Illumina HiSeq 2000", BRCA.miRNASeq.illuminahiseq) BRCA.miRNASeq <- rbind(BRCA.miRNASeq.illuminaga, BRCA.miRNASeq.illuminahiseq) ############## ##### isoforms ############## # Directory in which untarred data will be stored dir.create('data8') # Download ACC isoforms data and store it in data8 folder cancerType = "ACC" downloadTCGA(cancerTypes = cancerType, dataSet = paste0("Merge_rnaseqv2__illuminahiseq_rnaseqv2__unc", "_edu__Level_3__RSEM_isoforms_normalized__data.Level_3"), destDir = "data8") # Shorten path of subdirectory with ACC isoforms data list.files(path = "data8", full.names = TRUE) %>% file.rename(from = ., to = file.path("data8",paste0(cancerType, ".isoforms"))) # Remove manifest.txt file list.files(path = "data6", full.names = TRUE, recursive = TRUE, pattern = "MANIFEST") %>% file.remove() # Read ACC isoforms data path <- list.files(path = "data8", full.names = TRUE, recursive = TRUE) ACC.isoforms <- readTCGA(path, dataType = "isoforms") ## End(Not run)
Extracts survival information from clicnial datasets from TCGA project.
survivalTCGA( ..., extract.cols = NULL, extract.names = FALSE, barcode.name = "patient.bcr_patient_barcode", event.name = "patient.vital_status", days.to.followup.name = "patient.days_to_last_followup", days.to.death.name = "patient.days_to_death" )
survivalTCGA( ..., extract.cols = NULL, extract.names = FALSE, barcode.name = "patient.bcr_patient_barcode", event.name = "patient.vital_status", days.to.followup.name = "patient.days_to_last_followup", days.to.death.name = "patient.days_to_death" )
... |
A data.frame or data.frames from TCGA study containing clinical informations. See clinical. |
extract.cols |
A character specifing the names of extra columns to be extracted with survival information. |
extract.names |
Logical, whether to extract names of passed data.frames in |
barcode.name |
A character with the name of |
event.name |
A character with the name of |
days.to.followup.name |
A character with the name of |
days.to.death.name |
A character with the name of |
A data.frame containing information about times and censoring for specific bcr_patient_barcode
.
The name passed in barcode.name
is changed to bcr_patient_barcode
.
If you have any problems, issues or think that something is missing or is not clear please post an issue on https://github.com/RTCGA/RTCGA/issues.
Input data.frames should contain columns patient.bcr_patient_barcode
,
patient.vital_status
, patient.days_to_last_followup
, patient.days_to_death
or theyir previous
equivalents.
It is recommended to use datasets from clinical.
Marcin Kosinski, [email protected]
Marcin Kosinski, [email protected]
RTCGA website http://rtcga.github.io/RTCGA/articles/Visualizations.html.
Other RTCGA:
RTCGA-package
,
boxplotTCGA()
,
checkTCGA()
,
convertTCGA()
,
datasetsTCGA
,
downloadTCGA()
,
expressionsTCGA()
,
heatmapTCGA()
,
infoTCGA()
,
installTCGA()
,
kmTCGA()
,
mutationsTCGA()
,
pcaTCGA()
,
readTCGA()
,
theme_RTCGA()
## Extracting Survival Data library(RTCGA.clinical) survivalTCGA(BRCA.clinical, OV.clinical, extract.cols = "admin.disease_code") -> BRCAOV.survInfo ## Kaplan-Meier Survival Curves kmTCGA(BRCAOV.survInfo, explanatory.names = "admin.disease_code", pval = TRUE) kmTCGA(BRCAOV.survInfo, explanatory.names = "admin.disease_code", main = "", xlim = c(0,4000)) # first munge data, then extract survival info library(dplyr) BRCA.clinical %>% filter(patient.drugs.drug.therapy_types.therapy_type %in% c("chemotherapy", "hormone therapy")) %>% rename(therapy = patient.drugs.drug.therapy_types.therapy_type) %>% survivalTCGA(extract.cols = c("therapy")) -> BRCA.survInfo.chemo # first extract survival info, then munge data survivalTCGA(BRCA.clinical, extract.cols = c("patient.drugs.drug.therapy_types.therapy_type")) %>% filter(patient.drugs.drug.therapy_types.therapy_type %in% c("chemotherapy", "hormone therapy")) %>% rename(therapy = patient.drugs.drug.therapy_types.therapy_type) -> BRCA.survInfo.chemo kmTCGA(BRCA.survInfo.chemo, explanatory.names = "therapy", xlim = c(0, 3000), conf.int = FALSE)
## Extracting Survival Data library(RTCGA.clinical) survivalTCGA(BRCA.clinical, OV.clinical, extract.cols = "admin.disease_code") -> BRCAOV.survInfo ## Kaplan-Meier Survival Curves kmTCGA(BRCAOV.survInfo, explanatory.names = "admin.disease_code", pval = TRUE) kmTCGA(BRCAOV.survInfo, explanatory.names = "admin.disease_code", main = "", xlim = c(0,4000)) # first munge data, then extract survival info library(dplyr) BRCA.clinical %>% filter(patient.drugs.drug.therapy_types.therapy_type %in% c("chemotherapy", "hormone therapy")) %>% rename(therapy = patient.drugs.drug.therapy_types.therapy_type) %>% survivalTCGA(extract.cols = c("therapy")) -> BRCA.survInfo.chemo # first extract survival info, then munge data survivalTCGA(BRCA.clinical, extract.cols = c("patient.drugs.drug.therapy_types.therapy_type")) %>% filter(patient.drugs.drug.therapy_types.therapy_type %in% c("chemotherapy", "hormone therapy")) %>% rename(therapy = patient.drugs.drug.therapy_types.therapy_type) -> BRCA.survInfo.chemo kmTCGA(BRCA.survInfo.chemo, explanatory.names = "therapy", xlim = c(0, 3000), conf.int = FALSE)
Additional RTCGA theme for ggtheme, based on theme_pander.
theme_RTCGA(base_size = 11, base_family = "", ...)
theme_RTCGA(base_size = 11, base_family = "", ...)
base_size |
base font size |
base_family |
base font family |
... |
Further arguments passed to theme_pander. |
If you have any problems, issues or think that something is missing or is not clear please post an issue on https://github.com/RTCGA/RTCGA/issues.
Marcin Kosinski, [email protected]
RTCGA website http://rtcga.github.io/RTCGA/articles/Visualizations.html.
Other RTCGA:
RTCGA-package
,
boxplotTCGA()
,
checkTCGA()
,
convertTCGA()
,
datasetsTCGA
,
downloadTCGA()
,
expressionsTCGA()
,
heatmapTCGA()
,
infoTCGA()
,
installTCGA()
,
kmTCGA()
,
mutationsTCGA()
,
pcaTCGA()
,
readTCGA()
,
survivalTCGA()
library(RTCGA.clinical) survivalTCGA(BRCA.clinical, OV.clinical, extract.cols = "admin.disease_code") -> BRCAOV.survInfo kmTCGA(BRCAOV.survInfo, explanatory.names = "admin.disease_code", xlim = c(0,4000))
library(RTCGA.clinical) survivalTCGA(BRCA.clinical, OV.clinical, extract.cols = "admin.disease_code") -> BRCAOV.survInfo kmTCGA(BRCAOV.survInfo, explanatory.names = "admin.disease_code", xlim = c(0,4000))