For users interested in the general aspect of any
RNAmodR
based package please have a look at the main vignette of the package.
This vignette is aimed at developers and researchers, who want to use
the functionality of the RNAmodR
package to develop a new
modification strategy based on high throughput sequencing data.
Two classes have to be considered to establish a new analysis
pipeline using RNAmodR
. These are the
SequenceData
and the Modifier
class.
SequenceData
classFirst, the SequenceData
class has to be considered.
Several classes are already implemented, which are:
End5SequenceData
End3SequenceData
EndSequenceData
ProtectedEndSequenceData
CoverageSequenceData
PileupSequenceData
NormEnd5SequenceData
NormEnd3SequenceData
If these cannot be reused, a new class can be implemented quite
easily. First the DataFrame class, the Data class and a constructor has
to defined. The only value, which has to be provided, is a default
minQuality
integer value and some basic information.
setClass(Class = "ExampleSequenceDataFrame",
contains = "SequenceDFrame")
ExampleSequenceDataFrame <- function(df, ranges, sequence, replicate,
condition, bamfiles, seqinfo){
RNAmodR:::.SequenceDataFrame("Example",df, ranges, sequence, replicate,
condition, bamfiles, seqinfo)
}
setClass(Class = "ExampleSequenceData",
contains = "SequenceData",
slots = c(unlistData = "ExampleSequenceDataFrame"),
prototype = list(unlistData = ExampleSequenceDataFrame(),
unlistType = "ExampleSequenceDataFrame",
minQuality = 5L,
dataDescription = "Example data"))
ExampleSequenceData <- function(bamfiles, annotation, sequences, seqinfo, ...){
RNAmodR:::SequenceData("Example", bamfiles = bamfiles,
annotation = annotation, sequences = sequences,
seqinfo = seqinfo, ...)
}
Second, the getData
function has to be implemented. This
is used to load the data from a bam file and must return a named list
IntegerList
, NumericList
or
CompressedSplitDataFrameList
per file.
setMethod("getData",
signature = c(x = "ExampleSequenceData",
bamfiles = "BamFileList",
grl = "GRangesList",
sequences = "XStringSet",
param = "ScanBamParam"),
definition = function(x, bamfiles, grl, sequences, param, args){
###
}
)
Third, the aggregate
function has to be implemented.
This function is used to aggregate data over replicates for all or one
of the conditions. The resulting data is passed on to the
Modifier
class.
Modifier
classA new Modifier
class is probably the main class, which
needs to be implemented. Three variable have to be set. mod
must be a single element from the
Modstrings::shortName(Modstrings::ModRNAString())
.
score
is the default score, which is used for several
function. A column with this name should be returned from the
aggregate
function. dataType
defines the
SequenceData
class to be used. dataType
can
contain multiple names of a SequenceData
class, which are
then combined to form a SequenceDataSet
.
setClass("ModExample",
contains = c("RNAModifier"),
prototype = list(mod = "X",
score = "score",
dataType = "ExampleSequenceData"))
ModExample <- function(x, annotation, sequences, seqinfo, ...){
RNAmodR:::Modifier("ModExample", x = x, annotation = annotation,
sequences = sequences, seqinfo = seqinfo, ...)
}
dataType
can also be a list
of
character
vectors, which leads then to the creation of
SequenceDataList
. However, for now this is a hypothetical
case and should only be used, if the detection of a modification
requires bam files from two or more different methods to be used to
detect one modification.
The settings<-
function can be amended to save
specifc settings ( .norm_example_args
must be defined
seperatly to normalize input arguments in any way one sees fit).
setReplaceMethod(f = "settings",
signature = signature(x = "ModExample"),
definition = function(x, value){
x <- callNextMethod()
# validate special setting here
x@settings[names(value)] <- unname(.norm_example_args(value))
x
})
The aggregateData
function is used to take the
aggregated data from the SequenceData
object and to
calculate the specific scores, which are then stored in the
aggregate
slot.
setMethod(f = "aggregateData",
signature = signature(x = "ModExample"),
definition =
function(x, force = FALSE){
# Some data with element per transcript
}
)
The findMod
function takes the aggregate data and
searches for modifications, which are then returned as a GRanges object
and stored in the modifications
slot.
setMethod("findMod",
signature = c(x = "ModExample"),
function(x){
# an element per modification found.
}
)
ModifierSet
classThe ModifierSet
class is implemented very easily by
defining the class and the constructor. The functionality is defined by
the Modifier
class.
Additional functions, which need to be implemented, are
getDataTrack
for the new SequenceData
and new
Modifier
classes and
plotData
/plotDataByCoord
for the new
Modifier
and ModifierSet
classes.
name
defines a transcript name found in
names(ranges(x))
and type
is the data type
typically found as a column in the aggregate
slot.
setMethod(
f = "getDataTrack",
signature = signature(x = "ExampleSequenceData"),
definition = function(x, name, ...) {
###
}
)
setMethod(
f = "getDataTrack",
signature = signature(x = "ModExample"),
definition = function(x, name, type, ...) {
}
)
setMethod(
f = "plotDataByCoord",
signature = signature(x = "ModExample", coord = "GRanges"),
definition = function(x, coord, type = "score", window.size = 15L, ...) {
}
)
setMethod(
f = "plotData",
signature = signature(x = "ModExample"),
definition = function(x, name, from, to, type = "score", ...) {
}
)
setMethod(
f = "plotDataByCoord",
signature = signature(x = "ModSetExample", coord = "GRanges"),
definition = function(x, coord, type = "score", window.size = 15L, ...) {
}
)
setMethod(
f = "plotData",
signature = signature(x = "ModSetExample"),
definition = function(x, name, from, to, type = "score", ...) {
}
)
If unsure, how to modify these functions, have a look a the code in
the Modifier-Inosine-viz.R
file of this package.
As suggested directly above, for a more detailed example have a look
at the ModInosine
class source code found in the
Modifier-Inosine-class.R
and
Modifier-Inosine-viz.R
files of this package.
## R version 4.4.2 (2024-10-31)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.1 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so; LAPACK version 3.12.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: Etc/UTC
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] RNAmodR_1.21.0 Modstrings_1.23.0 RNAmodR.Data_1.20.0
## [4] ExperimentHubData_1.33.0 AnnotationHubData_1.37.0 futile.logger_1.4.3
## [7] ExperimentHub_2.15.0 AnnotationHub_3.15.0 BiocFileCache_2.15.0
## [10] dbplyr_2.5.0 txdbmaker_1.3.1 GenomicFeatures_1.59.1
## [13] AnnotationDbi_1.69.0 Biobase_2.67.0 Rsamtools_2.23.1
## [16] Biostrings_2.75.1 XVector_0.47.0 rtracklayer_1.67.0
## [19] GenomicRanges_1.59.1 GenomeInfoDb_1.43.2 IRanges_2.41.1
## [22] S4Vectors_0.45.2 BiocGenerics_0.53.3 generics_0.1.3
## [25] BiocStyle_2.35.0
##
## loaded via a namespace (and not attached):
## [1] RColorBrewer_1.1-3 rstudioapi_0.17.1
## [3] sys_3.4.3 jsonlite_1.8.9
## [5] magrittr_2.0.3 farver_2.1.2
## [7] rmarkdown_2.29 BiocIO_1.17.1
## [9] zlibbioc_1.52.0 vctrs_0.6.5
## [11] ROCR_1.0-11 memoise_2.0.1
## [13] RCurl_1.98-1.16 base64enc_0.1-3
## [15] htmltools_0.5.8.1 S4Arrays_1.7.1
## [17] BiocBaseUtils_1.9.0 progress_1.2.3
## [19] lambda.r_1.2.4 curl_6.0.1
## [21] SparseArray_1.7.2 Formula_1.2-5
## [23] sass_0.4.9 bslib_0.8.0
## [25] htmlwidgets_1.6.4 plyr_1.8.9
## [27] Gviz_1.51.0 httr2_1.0.7
## [29] futile.options_1.0.1 cachem_1.1.0
## [31] buildtools_1.0.0 GenomicAlignments_1.43.0
## [33] mime_0.12 lifecycle_1.0.4
## [35] pkgconfig_2.0.3 Matrix_1.7-1
## [37] R6_2.5.1 fastmap_1.2.0
## [39] GenomeInfoDbData_1.2.13 BiocCheck_1.43.2
## [41] MatrixGenerics_1.19.0 digest_0.6.37
## [43] colorspace_2.1-1 OrganismDbi_1.49.0
## [45] Hmisc_5.2-0 RSQLite_2.3.8
## [47] labeling_0.4.3 filelock_1.0.3
## [49] colorRamps_2.3.4 fansi_1.0.6
## [51] httr_1.4.7 abind_1.4-8
## [53] compiler_4.4.2 withr_3.0.2
## [55] bit64_4.5.2 backports_1.5.0
## [57] htmlTable_2.4.3 biocViews_1.75.0
## [59] BiocParallel_1.41.0 DBI_1.2.3
## [61] biomaRt_2.63.0 rappdirs_0.3.3
## [63] DelayedArray_0.33.2 rjson_0.2.23
## [65] tools_4.4.2 foreign_0.8-87
## [67] nnet_7.3-19 glue_1.8.0
## [69] restfulr_0.0.15 grid_4.4.2
## [71] stringdist_0.9.12 checkmate_2.3.2
## [73] reshape2_1.4.4 cluster_2.1.6
## [75] gtable_0.3.6 BSgenome_1.75.0
## [77] ensembldb_2.31.0 data.table_1.16.2
## [79] hms_1.1.3 xml2_1.3.6
## [81] utf8_1.2.4 BiocVersion_3.21.1
## [83] pillar_1.9.0 stringr_1.5.1
## [85] dplyr_1.1.4 lattice_0.22-6
## [87] deldir_2.0-4 bit_4.5.0
## [89] biovizBase_1.55.0 tidyselect_1.2.1
## [91] RBGL_1.83.0 maketools_1.3.1
## [93] knitr_1.49 gridExtra_2.3
## [95] ProtGenerics_1.39.0 SummarizedExperiment_1.37.0
## [97] xfun_0.49 matrixStats_1.4.1
## [99] stringi_1.8.4 UCSC.utils_1.3.0
## [101] lazyeval_0.2.2 yaml_2.3.10
## [103] evaluate_1.0.1 codetools_0.2-20
## [105] interp_1.1-6 tibble_3.2.1
## [107] BiocManager_1.30.25 graph_1.85.0
## [109] cli_3.6.3 rpart_4.1.23
## [111] munsell_0.5.1 jquerylib_0.1.4
## [113] Rcpp_1.0.13-1 dichromat_2.0-0.1
## [115] png_0.1-8 XML_3.99-0.17
## [117] RUnit_0.4.33 parallel_4.4.2
## [119] ggplot2_3.5.1 blob_1.2.4
## [121] prettyunits_1.2.0 jpeg_0.1-10
## [123] latticeExtra_0.6-30 AnnotationFilter_1.31.0
## [125] AnnotationForge_1.49.0 bitops_1.0-9
## [127] VariantAnnotation_1.53.0 scales_1.3.0
## [129] purrr_1.0.2 crayon_1.5.3
## [131] rlang_1.1.4 KEGGREST_1.47.0
## [133] formatR_1.14