Title: | A reweighted Lasso-Cox by integrating gene interaction information |
---|---|
Description: | RLassoCox is a package that implements the RLasso-Cox model proposed by Wei Liu. The RLasso-Cox model integrates gene interaction information into the Lasso-Cox model for accurate survival prediction and survival biomarker discovery. It is based on the hypothesis that topologically important genes in the gene interaction network tend to have stable expression changes. The RLasso-Cox model uses random walk to evaluate the topological weight of genes, and then highlights topologically important genes to improve the generalization ability of the Lasso-Cox model. The RLasso-Cox model has the advantage of identifying small gene sets with high prognostic performance on independent datasets, which may play an important role in identifying robust survival biomarkers for various cancer types. |
Authors: | Wei Liu [cre, aut] |
Maintainer: | Wei Liu <[email protected]> |
License: | Artistic-2.0 |
Version: | 1.15.0 |
Built: | 2024-11-19 04:10:39 UTC |
Source: | https://github.com/bioc/RLassoCox |
RLassoCox is a package that implements the RLasso-Cox model proposed by Wei Liu. The RLasso-Cox model integrates gene interaction information into the Lasso-Cox model for accurate survival prediction and survival biomarker discovery. It is based on the hypothesis that topologically important genes in the gene interaction network tend to have stable expression changes. The RLasso-Cox model uses random walk to evaluate the topological weight of genes, and then highlights topologically important genes to improve the generalization ability of the Lasso-Cox model. The RLasso-Cox model has the advantage of identifying small gene sets with high prognostic performance on independent datasets, which may play an important role in identifying robust survival biomarkers for various cancer types.
The DESCRIPTION file:
Package: | RLassoCox |
Type: | Package |
Title: | A reweighted Lasso-Cox by integrating gene interaction information |
Version: | 1.15.0 |
Date: | 2020-10-21 |
Authors@R: | c(person(given = "Wei", family = "Liu", email = "[email protected]", role = c("cre", "aut"),comment = c(ORCID = "0000-0002-5496-3641"))) |
Depends: | R (>= 4.1), glmnet |
Imports: | Matrix, igraph, survival, stats |
Description: | RLassoCox is a package that implements the RLasso-Cox model proposed by Wei Liu. The RLasso-Cox model integrates gene interaction information into the Lasso-Cox model for accurate survival prediction and survival biomarker discovery. It is based on the hypothesis that topologically important genes in the gene interaction network tend to have stable expression changes. The RLasso-Cox model uses random walk to evaluate the topological weight of genes, and then highlights topologically important genes to improve the generalization ability of the Lasso-Cox model. The RLasso-Cox model has the advantage of identifying small gene sets with high prognostic performance on independent datasets, which may play an important role in identifying robust survival biomarkers for various cancer types. |
License: | Artistic-2.0 |
biocViews: | Survival, Regression, GeneExpression, GenePrediction, Network |
BugReports: | https://github.com/weiliu123/RLassoCox/issues |
BiocType: | Software |
Suggests: | knitr |
VignetteBuilder: | knitr |
Config/pak/sysreqs: | libglpk-dev libxml2-dev |
Repository: | https://bioc.r-universe.dev |
RemoteUrl: | https://github.com/bioc/RLassoCox |
RemoteRef: | HEAD |
RemoteSha: | 9f0003eb903429f42429632ae254f922eaa28252 |
Author: | Wei Liu [cre, aut] (<https://orcid.org/0000-0002-5496-3641>) |
Maintainer: | Wei Liu <[email protected]> |
Index of help topics:
RLassoCox Reweighted Lasso-Cox model RLassoCox-package A reweighted Lasso-Cox by integrating gene interaction information cvRLassoCox Cross-validation for the RLasso-Cox model dGMMirGraph The KEGG network mRNA_matrix The expression data predict.RLassoCox Make predictions from a RLasso-Cox model predict.cvRLassoCox Make predictions from a cross-validated RLasso-Cox model rw Directed Random Walk survData Survival data
Very simple to use. Accepts x,y data for the RLasso-Cox model, and makes predictions for new samples.
RLassoCox
A rewighted Lasso-Cox model for survival prediction and
biomarker discovery.
predict.RLassoCox
This function predicts the risk of new samples
from a fitted RLasso-Cox
model.
cvRLassoCox
Does k-fold cross-validation for the RLasso-Cox model,
produces a plot, and returns a value for lambda
predict.cvRLassoCox
This function makes predictions from a
cross-validated RLasso-Cox model, using the optimal value chosen for lambda.
Wei Liu [cre, aut] (<https://orcid.org/0000-0002-5496-3641>)
Maintainer: Wei Liu <[email protected]>
Integration of gene interaction information into a reweighted Lasso-Cox model for accurate survival prediction. To be published.
library("survival") library("igraph") library("glmnet") library("Matrix") data(dGMMirGraph) data(mRNA_matrix) data(survData) trainSmpl.Idx <- sample(1:dim(mRNA_matrix)[1], floor(2/3*dim(mRNA_matrix)[1])) testSmpl.Idx <- setdiff(1:dim(mRNA_matrix)[1], trainSmpl.Idx) trainSmpl <- mRNA_matrix[trainSmpl.Idx ,] testSmpl <- mRNA_matrix[testSmpl.Idx ,] res <- RLassoCox(x=trainSmpl, y=survData[trainSmpl.Idx ,], globalGraph=dGMMirGraph) lp <- predict(object = res, newx = testSmpl) cv.res <- cvRLassoCox(x=trainSmpl, y=survData[trainSmpl.Idx ,], globalGraph=dGMMirGraph, nfolds = 5) cv.lp <- predict(object = cv.res, newx = testSmpl, s = "lambda.min")
library("survival") library("igraph") library("glmnet") library("Matrix") data(dGMMirGraph) data(mRNA_matrix) data(survData) trainSmpl.Idx <- sample(1:dim(mRNA_matrix)[1], floor(2/3*dim(mRNA_matrix)[1])) testSmpl.Idx <- setdiff(1:dim(mRNA_matrix)[1], trainSmpl.Idx) trainSmpl <- mRNA_matrix[trainSmpl.Idx ,] testSmpl <- mRNA_matrix[testSmpl.Idx ,] res <- RLassoCox(x=trainSmpl, y=survData[trainSmpl.Idx ,], globalGraph=dGMMirGraph) lp <- predict(object = res, newx = testSmpl) cv.res <- cvRLassoCox(x=trainSmpl, y=survData[trainSmpl.Idx ,], globalGraph=dGMMirGraph, nfolds = 5) cv.lp <- predict(object = cv.res, newx = testSmpl, s = "lambda.min")
Does k-fold cross-validation for the RLasso-Cox model, produces a plot, and returns a value for lambda
cvRLassoCox(x, y, globalGraph = NULL, nfolds = 10, Gamma = 0.3, DEBUG = TRUE, standardize = TRUE, ...)
cvRLassoCox(x, y, globalGraph = NULL, nfolds = 10, Gamma = 0.3, DEBUG = TRUE, standardize = TRUE, ...)
x |
a n x p matrix of gene expression measurements with n samples and p genes. |
y |
a n x 2 matrix of survival data. The two columns represent disease status 'status' and survival time 'time' respectively. |
globalGraph |
An |
nfolds |
number of folds - default is 10. |
Gamma |
A numeric value. The restart probability in directed random walk. Default
is |
DEBUG |
Logical. Should debugging information be shown. |
standardize |
Logical flag for |
... |
Arguments to be passed to |
glmnetRes |
An object of class "cv.glmnet" |
PT |
The topological weights of genes |
Wei Liu
Integration of gene interaction information into a reweighted Lasso-Cox model for accurate survival prediction. To be published.
library("survival") library("igraph") library("glmnet") library("Matrix") data(dGMMirGraph) data(mRNA_matrix) data(survData) trainSmpl.Idx <- sample(1:dim(mRNA_matrix)[1], floor(2/3*dim(mRNA_matrix)[1])) testSmpl.Idx <- setdiff(1:dim(mRNA_matrix)[1], trainSmpl.Idx) trainSmpl <- mRNA_matrix[trainSmpl.Idx ,] testSmpl <- mRNA_matrix[testSmpl.Idx ,] cv.res <- cvRLassoCox(x=trainSmpl, y=survData[trainSmpl.Idx ,], globalGraph=dGMMirGraph, nfolds = 5)
library("survival") library("igraph") library("glmnet") library("Matrix") data(dGMMirGraph) data(mRNA_matrix) data(survData) trainSmpl.Idx <- sample(1:dim(mRNA_matrix)[1], floor(2/3*dim(mRNA_matrix)[1])) testSmpl.Idx <- setdiff(1:dim(mRNA_matrix)[1], trainSmpl.Idx) trainSmpl <- mRNA_matrix[trainSmpl.Idx ,] testSmpl <- mRNA_matrix[testSmpl.Idx ,] cv.res <- cvRLassoCox(x=trainSmpl, y=survData[trainSmpl.Idx ,], globalGraph=dGMMirGraph, nfolds = 5)
The KEGG network constructed by the R package iSubpathwayMiner
.
data("dGMMirGraph")
data("dGMMirGraph")
An igraph
R object.
There are 7159 nodes and 39930 edges in dGMMirGraph
. Each node in
the graph represents a gene/miRNA/metabolite. The KEGG network is used to
evaluate the topological importance of genes by the random walk method.
data(dGMMirGraph)
data(dGMMirGraph)
An example of GBM expression data. We acknowledge the TCGA Research Network for generating the GBM datasets.
data("mRNA_matrix")
data("mRNA_matrix")
The format is: num [1:314, 1:4853] 0.562167 0.022435 -0.000102 -0.719444 0.620269 ... - attr(*, "dimnames")=List of 2 ..$ : chr [1:314] "TCGA-02-0001" "TCGA-02-0003" "TCGA-02-0006" ..$ : chr [1:4853] "90993" "4313" "26248" "57680" ...
data(mRNA_matrix)
data(mRNA_matrix)
This function makes predictions from a cross-validated RLasso-Cox model, using the optimal value chosen for lambda.
## S3 method for class 'cvRLassoCox' predict(object, newx, ...)
## S3 method for class 'cvRLassoCox' predict(object, newx, ...)
object |
cross-validated RLasso-Cox model |
newx |
A matrix with new samples to predict. |
... |
Arguments to be passed to |
Predicted results of new patients in newx
.
library("survival") library("igraph") library("glmnet") library("Matrix") data(dGMMirGraph) data(mRNA_matrix) data(survData) trainSmpl.Idx <- sample(1:dim(mRNA_matrix)[1], floor(2/3*dim(mRNA_matrix)[1])) testSmpl.Idx <- setdiff(1:dim(mRNA_matrix)[1], trainSmpl.Idx) trainSmpl <- mRNA_matrix[trainSmpl.Idx ,] testSmpl <- mRNA_matrix[testSmpl.Idx ,] cv.res <- cvRLassoCox(x=trainSmpl, y=survData[trainSmpl.Idx ,], globalGraph=dGMMirGraph, nfolds = 5) lp <- predict(object = cv.res, newx = testSmpl, s = "lambda.min")
library("survival") library("igraph") library("glmnet") library("Matrix") data(dGMMirGraph) data(mRNA_matrix) data(survData) trainSmpl.Idx <- sample(1:dim(mRNA_matrix)[1], floor(2/3*dim(mRNA_matrix)[1])) testSmpl.Idx <- setdiff(1:dim(mRNA_matrix)[1], trainSmpl.Idx) trainSmpl <- mRNA_matrix[trainSmpl.Idx ,] testSmpl <- mRNA_matrix[testSmpl.Idx ,] cv.res <- cvRLassoCox(x=trainSmpl, y=survData[trainSmpl.Idx ,], globalGraph=dGMMirGraph, nfolds = 5) lp <- predict(object = cv.res, newx = testSmpl, s = "lambda.min")
This function predicts the risk of new samples from a fitted RLasso-Cox
model.
## S3 method for class 'RLassoCox' predict(object, newx, ...)
## S3 method for class 'RLassoCox' predict(object, newx, ...)
object |
Fitted |
newx |
A matrix with new samples to predict. |
... |
Arguments to be passed to |
Predicted results of new patients in newx
.
Wei Liu
library("survival") library("igraph") library("glmnet") library("Matrix") data(dGMMirGraph) data(mRNA_matrix) data(survData) trainSmpl.Idx <- sample(1:dim(mRNA_matrix)[1], floor(2/3*dim(mRNA_matrix)[1])) testSmpl.Idx <- setdiff(1:dim(mRNA_matrix)[1], trainSmpl.Idx) trainSmpl <- mRNA_matrix[trainSmpl.Idx ,] testSmpl <- mRNA_matrix[testSmpl.Idx ,] res <- RLassoCox(x=trainSmpl, y=survData[trainSmpl.Idx ,], globalGraph=dGMMirGraph) lp <- predict(object = res, newx = testSmpl)
library("survival") library("igraph") library("glmnet") library("Matrix") data(dGMMirGraph) data(mRNA_matrix) data(survData) trainSmpl.Idx <- sample(1:dim(mRNA_matrix)[1], floor(2/3*dim(mRNA_matrix)[1])) testSmpl.Idx <- setdiff(1:dim(mRNA_matrix)[1], trainSmpl.Idx) trainSmpl <- mRNA_matrix[trainSmpl.Idx ,] testSmpl <- mRNA_matrix[testSmpl.Idx ,] res <- RLassoCox(x=trainSmpl, y=survData[trainSmpl.Idx ,], globalGraph=dGMMirGraph) lp <- predict(object = res, newx = testSmpl)
A rewighted Lasso-Cox model for survival prediction and biomarker discovery.
RLassoCox(x, y, globalGraph = NULL, Gamma = 0.3, DEBUG = TRUE, standardize = TRUE, ...)
RLassoCox(x, y, globalGraph = NULL, Gamma = 0.3, DEBUG = TRUE, standardize = TRUE, ...)
x |
a n x p matrix of gene expression measurements with n samples and p genes. |
y |
a n x 2 matrix of survival data. The two columns represent disease status 'status' and survival time 'time' respectively. |
globalGraph |
An |
Gamma |
A numeric value. The restart probability in directed random walk. Default
is |
DEBUG |
Logical. Should debugging information be shown. |
standardize |
Logical flag for |
... |
Arguments to be passed to |
RLassoCox integrates gene interaction information into the Lasso-Cox model for accurate survial prediction and biomarker discovery.
glmnetRes |
An object of class "glmnet" |
PT |
The topological weights of genes |
Wei Liu
Integration of gene interaction information into a reweighted Lasso-Cox model for accurate survival prediction. To be published.
library("survival") library("igraph") library("glmnet") library("Matrix") data(dGMMirGraph) data(mRNA_matrix) data(survData) trainSmpl.Idx <- sample(1:dim(mRNA_matrix)[1], floor(2/3*dim(mRNA_matrix)[1])) testSmpl.Idx <- setdiff(1:dim(mRNA_matrix)[1], trainSmpl.Idx) trainSmpl <- mRNA_matrix[trainSmpl.Idx ,] testSmpl <- mRNA_matrix[testSmpl.Idx ,] res <- RLassoCox(x=trainSmpl, y=survData[trainSmpl.Idx ,], globalGraph=dGMMirGraph)
library("survival") library("igraph") library("glmnet") library("Matrix") data(dGMMirGraph) data(mRNA_matrix) data(survData) trainSmpl.Idx <- sample(1:dim(mRNA_matrix)[1], floor(2/3*dim(mRNA_matrix)[1])) testSmpl.Idx <- setdiff(1:dim(mRNA_matrix)[1], trainSmpl.Idx) trainSmpl <- mRNA_matrix[trainSmpl.Idx ,] testSmpl <- mRNA_matrix[testSmpl.Idx ,] res <- RLassoCox(x=trainSmpl, y=survData[trainSmpl.Idx ,], globalGraph=dGMMirGraph)
The directed random walk algorithm proposed by Liu et al (2013).
rw(W, p0, gamma)
rw(W, p0, gamma)
W |
The adjacency matrix of the gene interaction network. |
p0 |
A vector containing the initial weights of genes in the gene interaction network. |
gamma |
A numeric value. The restart probability in directed random walk. |
This function implements the directed random walk algorithm proposed by Liu et al (2013). It evaluates the topological weight of each gene according to its topological importance in the gene interaction network. The genes that close to many other genes that have large weights will receive larger weights. The final weights reflect the topological importances of genes in the gene interaction network.
A matrix containing the topological weights of nodes in igraphM
.
Wei Liu <[email protected]>
Liu, W., et al., Topologically inferring risk-active pathways toward precise cancer classification by directed random walk. Bioinformatics, 2013. 29(17): p. 2169-77.
The survival data of patients in mRNA_matrix
.
data("survData")
data("survData")
A data frame with 314 observations on the following 2 variables.
status
a logical vector
time
a numeric vector
data(survData)
data(survData)