Package 'RAREsim'

Title: Simulation of Rare Variant Genetic Data
Description: Haplotype simulations of rare variant genetic data that emulates real data can be performed with RAREsim. RAREsim uses the expected number of variants in MAC bins - either as provided by default parameters or estimated from target data - and an abundance of rare variants as simulated HAPGEN2 to probabilistically prune variants. RAREsim produces haplotypes that emulate real sequencing data with respect to the total number of variants, allele frequency spectrum, haplotype structure, and variant annotation.
Authors: Megan Null [aut], Ryan Barnard [cre]
Maintainer: Ryan Barnard <[email protected]>
License: GPL-3
Version: 1.11.0
Built: 2024-12-27 04:13:23 UTC
Source: https://github.com/bioc/RAREsim

Help Index


afs function - Calculates proportion of variants per rare MAC bins

Description

The afs function calculates the proportion of variants in minor allele count (MAC) bins given parameters, as described in RAREsim.

Usage

afs(alpha = NULL, beta = NULL, b = NULL, mac_bins, pop = NULL)

Arguments

alpha

AFS function parameter alpha, does not need to be specified if default parameters are used

beta

AFS function parameter beta, does not need to be specified if default parameters are used

b

AFS function parameter b, does not need to be specified if default parameters are used

mac_bins

The rare MAC bins to use, with Lower and Upper boundaries defined

pop

The population: AFR, EAS, NFE or SAS - specified when using default parameters

Details

The default parameters will be used if an ancestrial population is specified: pop = 'AFR', 'EAS', 'NFE', or 'SAS'. Otherwise, the parameters alpha, beta, and b need to be provided. Alpha, beta, and b can be estimated from target data using the *Fit_afs* function. The MAC bins should be exhaustive, non-overlapping bins of rare allele counts with column names Lower and Upper.

Value

data frame with the MAC bins provided and proportion of variants in each bin

Examples

data('afs_afr')
 mac <- afs_afr[,c(1:2)]
 afs(mac_bins = mac, pop = 'AFR')
 afs(alpha = 1.594622, beta =  -0.2846474, b  = 0.297495, mac_bins = mac)

African/African American target data from gnomAD v2.1 (Karczewski, 2020)

Description

African/African American target data from gnomAD v2.1 (Karczewski, 2020)

Usage

data(afs_afr)

Format

A data frame for the Non-Finnish European AFS target data. The first two columns define the MAC Bin boundaries. The third column is the proportion of variants in that bin.

Details

Used to fit the afs function with *fit_afs*


Combines Number of Variants and AFS functions

Description

This function combines the Number of Variants and AFS functions to produces the expected number of variants per Kb in each MAC bin

Usage

expected_variants(Total_num_var, mac_bin_prop)

Arguments

Total_num_var

estimated total number of variants in the region of interest

mac_bin_prop

The MAC bins to use, with three columns: Lower, Upper, and Prop. Lower and Upper define the MAC bins boundaries and Prop is the proportion of variants in each respective bin. Only define for rare variants

Value

data frame with the MAC bins and expected variants

Examples

data('afs_afr')
 mac <- afs_afr[,c(1:2)]
 expected_variants(Total_num_var = 19.029*nvariant(pop='AFR', N = 8128),
 mac_bin_prop = afs(mac_bins = mac, pop = 'AFR'))

Given target data, fit the AFS function

Description

This function takes AFS target data and estimates parameters for the AFS function A dataframe specifying the rare MAC bins and the observed proportion of variants is used to fit the data The proportion of rare variants (p_rv) is by default the sum of the rare allele count bins. The proportion be manually specified if desired

Usage

fit_afs(Observed_bin_props, p_rv = NULL)

Arguments

Observed_bin_props

data frame with 3 columns, Lower, Upper (of MAC bins) and proportion of variants in that MAC bin

p_rv

proportion of rare variants - default is the sum of the rare MAC bin proportions

Value

list of parameters - alpha, beta, and b as well as fitted proportions

Examples

data("afs_afr")
fit_afs(Observed_bin_props = afs_afr)

Given target data, fit the Number of Variants function

Description

This function takes Number of Variants target data and estimates parameters for the Number of Variants function. A dataframe specifying the number of variants per Kb at various sample sizes is required to fit the data

Usage

fit_nvariant(Observed_variants_per_kb)

Arguments

Observed_variants_per_kb

A data frame with the first column sample size and the second variants per Kb, both numeric

Value

Vector of parameters - phi and omega

Examples

data("nvariant_afr")
fit_nvariant(nvariant_afr)

Number of Variants function

Description

The Number of Variants (nvariant) function calculates the number of variants per kilobase, as described in RAREsim. N is the number of individuals. The Number of Variants function changes with N. The default parameters will be used if an ancestrial population is specified: (AFR, EAS, NFE, or SAS) is specified. Otherwise, the parameters phi and omega need to be provided. Phi and omega can be estimated from target data using the Fit_nvariant function.

Usage

nvariant(phi = NULL, omega = NULL, N, pop = NULL)

Arguments

phi

parameter phi

omega

parameter omega

N

sample size in number of individuals

pop

population - only needs to be specified if using default parameters

Value

the number of variants per kb

Examples

nvariant(N = 8128, pop = 'AFR')
nvariant(phi = 0.1638108, omega = 0.6248848, N = 8128)

African target data for the Number of Variants function from gnomADv2.1 (Karczewski, 2020)

Description

African target data for the Number of Variants function from gnomADv2.1 (Karczewski, 2020)

Usage

data(nvariant_afr)

Format

Number of Variants target data. First column is sample size and second column is number of variants per Kb