Package: RAIDS (via r-universe)

June 30, 2024
Type Package

Title Accurate Inference of Genetic Ancestry from Cancer Sequences

Description This package implements specialized algorithms that enable
genetic ancestry inference from various cancer sequences
sources (RNA, Exome and Whole-Genome sequences). This package
also implements a simulation algorithm that generates synthetic
cancer-derived data. This code and analysis pipeline was
designed and developed for the following publication: Belleau,
P et al. Genetic Ancestry Inference from Cancer-Derived
Molecular Data across Genomic and Transcriptomic Platforms.
Cancer Res 1 January 2023; 83 (1): 49-58.

Version 1.3.0

License Apache License (>= 2)

Encoding UTF-8

NeedsCompilation no

VignetteBuilder knitr

Depends R (>=4.2.0), gdsfmt, SNPRelate, stats, utils, GENESIS

Imports S4Vectors, GenomicRanges, ensembldb, BSgenome, AnnotationDbi,
methods, class, pROC, IRanges, AnnotationFilter, rlang,
VariantAnnotation, MatrixGenerics,

Suggests testthat, knitr, rmarkdown, BiocStyle, withr, GenomelnfoDb,
BSgenome.Hsapiens.UCSC.hg38, EnsDb.Hsapiens.v86
BugReports https://github.com/KrasnitzLab/RAIDS/issues

URL https://krasnitzlab.github.io/RAIDS/

biocViews Genetics, Software, Sequencing, WholeGenome,
PrincipalComponent, Genetic Variability, DimensionReduction

Roxygen list(markdown = TRUE)
RoxygenNote 7.2.3

Repository https://bioc.r-universe.dev
RemoteUrl https://github.com/bioc/RAIDS


https://github.com/KrasnitzLab/RAIDS/issues
https://krasnitzlab.github.io/RAIDS/

2 Contents

RemoteRef HEAD

RemoteSha 8c31b43b8656bfbf888c0c9627083eaca70cf7eb

Contents
RAIDS-package . . . . . . . . . . e e e 3
add1KG2SampleGDS . . . . . . .. 4
addGeneBlockGDSRefAnnot . . . . . . . . . ... 5
addRef2GDSIKG . . . . . . . . . e 7
addStudylKg . . . . . . e 9
computeAncestryFromSyntheticFile . . . . . . ... .. ... ... ... 0. 10
computeKNNRefSample . . . . . . ... ... .. .. . 15
computeKNNRefSynthetic . . . . . . ... ... ... L 17
computetPCAMultiSynthetic . . . . . . . . . ... ... L 19
computetPCARefSample . . . . . . .. .. ... 21
computePoolSyntheticAncestryGr . . . . . . .. ... oL oo 22
computeSyntheticROC . . . . . . ... .. ... 25
createStudy2GDSIKG . . . . . . e 27
demoKnownSuperPoplKG . . . . . . . . ... .. 29
demoPCAIKG . . . . . . . . . e 31
demoPCASyntheticProfiles . . . . . . . . . ... ... 32
demoPedigreeEx1 . . . . . . . ... 34
estimateAllelicFraction . . . . . . . . . ... L 36
generateGDSIKG . . . . . . . L e 39
generateMapSnvSel . . . . . L L. 41
generatePhaseIKG2GDS . . . . . . . . . . L 42
getRefIKGPop . . . . . . . o e 44
groupChrlKGSNV . . . . o 45
identifyRelative . . . . . . . ... 47
matKNNSynthetic. . . . . . ... .. 49
pedSynthetic . . . . . . . L e e 50
prepPedlKG . . . . . . e e 52
prepSynthetic . . . . . . .. 53
pruningSample . . . .. L L 55
runExomeAncestry . . . . ... L e 58
runRNAANcestry . . . . . . . . . e 62
selectlIKGPop . . . . . . . . e 65
snpPositionDemo . . . . . . . ... L e e 67
snvListVCF . . . . o o e 69
splitSelectByPop . . . . . . . . L 70
syntheticGeno . . . . . . . . . .. 71

Index 74



RAIDS-package 3

RAIDS-package RAIDS: Accurate Inference of Genetic Ancestry from Cancer Se-
quences

Description

The RAIDS package implements specialized algorithms that enable ancestry inference from various
cancer data sources (RNA, Exome and Whole-Genome sequencing).

Details
The RAIDS package also implements simulation algorithm that generates synthetic cancer-derived
data.
This code and analysis pipeline was designed and developed for the following publication:

Pascal Belleau, Astrid Deschénes, Nyasha Chambwe, David A. Tuveson, Alexander Krasnitz; Ge-
netic Ancestry Inference from Cancer-Derived Molecular Data across Genomic and Transcriptomic
Platforms. Cancer Res 1 January 2023; 83 (1): 49-58. https://doi.org/10.1158/0008-5472.CAN-
22-0682

Value

RAIDS

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Maintainer: Pascal Belleau pascal_belleau @hotmail.com

References

Pascal Belleau, Astrid Deschénes, Nyasha Chambwe, David A. Tuveson, Alexander Krasnitz; Ge-
netic Ancestry Inference from Cancer-Derived Molecular Data across Genomic and Transcriptomic
Platforms. Cancer Res 1 January 2023; 83 (1): 49-58. https://doi.org/10.1158/0008-5472.CAN-
22-0682

See Also

* runExomeAncestry This function runs most steps leading to the ancestry inference call on a
specific exome profile.

* runExomeAncestry This function runs most steps leading to the ancestry inference call on a
specific RNA profile.

» estimateAllelicFraction This function estimates the allelic fraction of the pruned SNVs

for a specific sample and add the information to the associated GDS Sample file. The allelic
fraction estimation method is adapted to the type of study (DNA or RNA).

» computeSyntheticROC This function calculate the AUROC of the inferences for specific val-
ues of D and K using the inferred ancestry results from the synthetic profiles.


mailto:pascal_belleau@hotmail.com

4 add1KG2SampleGDS

* generateMapSnvSel The function applies a cut-off filter to the SNV information file to retain
only the SNV that have a frequency superior or equal to the specified cut-off in at least one
super population.

add1KG2SampleGDS Add the genotype information for the list of pruned SNVs into the Pro-
file GDS file

Description

The function extracts the information about the pruned SNVs from the 1KG GDS file and adds
entries related to the pruned SNVs in the Profile GDS file. The nodes are added to the Profile GDS
file: sample.id’, ’snp.id’, *snp.chromosome’, ’snp.position’, ’snp.index’, ’genotype’ and ’lap’.

Usage
add1KG2SampleGDS (gdsReference, fileProfileGDS, currentProfile, studyID)

Arguments

gdsReference an object of class gds.class (a GDS file), the opened 1KG GDS file.

fileProfileGDS a character string representing the path and file name of the Profile GDS file.
The Profile GDS file must exist.

currentProfile acharacter string corresponding to the sample identifier associated to the cur-
rent list of pruned SNVs.

studyID a character string corresponding to the study identifier associated to the current
list of pruned SNVs.
Value

The function returns 0L when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

## Required library for GDS
library(SNPRelate)

## Path to the demo 1KG GDS file is located in this package
dataDir <- system.file("extdata/tests"”, package="RAIDS")
fileGDS <- file.path(dataDir, "ex1_good_small_1KG.gds")

## The data.frame containing the information about the study
## The 3 mandatory columns: "studyID", "study.desc”, "study.platform”
## The entries should be strings, not factors (stringsAsFactors=FALSE)



addGeneBlockGDSRefAnnot 5

studyDF <- data.frame(study.id="MYDATA",
study.desc="Description”,
study.platform="PLATFORM",
stringsAsFactors=FALSE)

## Temporary Profile file
fileProfile <- file.path(tempdir(), "ex2.gds")

## Copy required file
file.copy(file.path(dataDir, "ex1_demo_with_pruning.gds"),
fileProfile)

## Open 1KG file
gds1KG <- snpgdsOpen(fileGDS)

## Compute the list of pruned SNVs for a specific profile 'ex1'
## and save it in the Profile GDS file 'ex2.gds'
add1KG2SampleGDS (gdsReference=gds1KG,

fileProfileGDS=fileProfile,

currentProfile=c("ex1"),

studyID=studyDF$study.id)

## Close the 1KG GDS file (important)
closefn.gds(gds1KG)

## Check content of Profile GDS file

## The 'pruned.study' entry should be present
content <- openfn.gds(fileProfile)

content

## Close the Profile GDS file (important)
closefn.gds(content)

## Remove Profile GDS file (created for demo purpose)
unlink(fileProfile, force=TRUE)

addGeneBlockGDSRefAnnot

Append information associated to blocks, as indexes, into the Popula-
tion Reference SNV Annotation GDS file

Description

The function appends the information about the blocks into the Population Reference SNV Anno-
tation GDS file. The information is extracted from the Population Reference GDS file.



6 addGeneBlockGDSRefAnnot

Usage

addGeneBlockGDSRefAnnot (
gdsReference,
gdsRefAnnotFile,
winSize = 10000,
ensDb,
suffixBlockName

Arguments

gdsReference an object of class gds.class (a GDS file), the opened Reference GDS file.
gdsRefAnnotFile
a character string representing the file name corresponding the Reference SNV

Annotation GDS file. The function will open it in write mode and close it after.
The file must exist.

winSize a single positive integer representing the size of the window to use to group
the SNVs when the SNVs are in a non-coding region. Default: 10000L.

ensDb An object with the ensembl genome annotation Default: EnsDb.Hsapiens.v86.

suffixBlockName

a character string that identify the source of the block and that will be added to
the block description into the Reference SNV Annotation GDS file, as example:
Ensembl.Hsapiens.v86.

Value

The integer OL when the function is successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

## Required library
library(SNPRelate)

## Path to the demo pedigree file is located in this package
dataDir <- system.file("extdata"”, package="RAIDS")

fileAnnotGDS <- file.path(tempdir(), "ex1_good_small_1KG_Ann_GDS.gds")

## Required library
if (requireNamespace("EnsDb.Hsapiens.v86", quietly=TRUE)) {

file.copy(file.path(dataDir, "tests”,
"ex1_NoBlockGene.1KG_Annot_GDS.gds"), fileAnnotGDS)

## Making a "short cut” on the ensDb object



addRef2GDS1KG 7

edb <- EnsDb.Hsapiens.v86::EnsDb.Hsapiens.v86

## GDS Reference file
fileReferenceGDS <- file.path(dataDir, "tests”,
"ex1_good_small_1KG.gds")

## Open the reference GDS file (demo version)
gds1KG <- snpgdsOpen(fileReferenceGDS)

## Append information associated to blocks
addGeneBlockGDSRefAnnot (gdsReference=gds1KG,
gdsRefAnnotFile=fileAnnotGDS,
ensDb=edb,
suffixBlockName="EnsDb.Hsapiens.v86")

gdsAnnot1KG <- openfn.gds(fileAnnotGDS)
print(gdsAnnot1KG)
print(read.gdsn(index.gdsn(gdsAnnot1KG, "block.annot")))

## Close GDS files
closefn.gds(gds1KG)
closefn.gds(gdsAnnot1KG)

## Remove temporary file
unlink(fileAnnotGDS, force=TRUE)

3
addRef2GDS1KG Add the information about the unrelated patients to the Reference GDS
file
Description

This function adds the information about the unrelated patients to the Reference GDS file. More
specifically, it creates the field sample.ref which as the value 1 when the sample is unrelated and
the value @ otherwise. The sample.ref is filled based on the information present in the input RDS
file.

Usage
addRef2GDST1KG(fileNameGDS, filePart)

Arguments

fileNameGDS a character string representing the path and file name of the GDS file that
contains the Reference information. The Reference GDS file must contain the



8 addRef2GDS1KG

SNP information, the genotyping information and the pedigree information from
Reference dataset. The extension of the file must be ’.gds’.

filePart a character string representing the path and file name of the RDS file that
contains the information about the Reference patients that are unrelated. The
extension of the file must be *.rds’. The file must exists.

Value

The integer OL when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

## Locate RDS with unrelated/related status for 1KG samples
dataDir <- system.file("extdata"”, package="RAIDS")
rdsFilePath <- file.path(dataDir, "unrelatedPatientsInfo_Demo.rds")

## Create a temporary GDS file in an test directory
dataDir <- system.file("extdata/tests"”, package="RAIDS")
gdsFilePath <- file.path(dataDir, "GDS_TEMP_201.gds")

## Create and open the GDS file

tmpGDS <- createfn.gds(filename=gdsFilePath)

## Create "sample.id” node (the node must be present)
sampleIDs <- c("HGO@104", "HGO@109", "HGOO110")

add. gdsn(node=tmpGDS, name="sample.id"”, val=samplelDs)

## Create "snp.id"” node (the node must be present)
snpIDs <- c("s1", "s2", "s3", "s4", "s5", "s6")
add. gdsn(node=tmpGDS, name="snp.id", val=snpIDs)

## Create "snp.position” node (the node must be present)
snpPositions <- c(16102, 51478, 51897, 51927, 54489, 54707)
add. gdsn(node=tmpGDS, name="snp.position”, val=snpPositions)

## Create "snp.chromosome” node (the node must be present)
snpPositions <- c(1, 1, 1, 1, 1, 1)
add. gdsn(node=tmpGDS, name="snp.chromosome"”, val=snpPositions)

## Create "genotype” node (the node must be present)
genotype <- matrix(rep(1, 18), ncol = 3)
add. gdsn(node=tmpGDS, name="genotype", val=genotype)

## Close GDS file
closefn.gds(tmpGDS)

## Create "sample.ref” node in GDS file using RDS information
addRef2GDS1KG(fileNameGDS=gdsFilePath, filePart=rdsFilePath)



addStudy1Kg 9

## Read sample reference data.frame

fileGDS <- openfn.gds(gdsFilePath, readonly=TRUE)
read.gdsn(index.gdsn(node=fileGDS, path="sample.ref"))
closefn.gds(gdsfile=fileGDS)

## Delete the temporary GDS file
unlink(x=gdsFilePath, force=TRUE)

addStudy1Kg Append information about the 1KG samples into the Profile GDS file

Description

The information about the samples present in the 1KG GDS file is added into the GDS Sample file.
Only the information about the unrelated samples from the 1000 Genome Study are copied into
the GDS Sample file. The information is only added to the GDS Sample file when the 1KG Study
is not already present in the GDS Sample file. The sample information for all selected samples is
appended to the GDS Sample file "study.annot" node. The study information is appended to the
GDS Sample file "study.list" node.

Usage
addStudy1Kg(gdsReference, fileProfileGDS, verbose = FALSE)

Arguments

gdsReference an object of class gds.class (a GDS file), the opened 1KG GDS file.

fileProfileGDS a character string representing the path and file name of the GDS Sample file.
The GDS Sample file must exist.

verbose a logical indicating if messages should be printed to show how the different
steps in the function. Default: FALSE.
Value

The integer 0L when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

## Required library for GDS
library(gdsfmt)

## Get the temp folder
tempDir <- tempdir()



10

computeAncestryFromSyntheticFile

## Create a temporary 1KG GDS file and add needed information
fileNamel1KG <- file.path(tempDir, "GDS_TEMP_addStudylKg_1KG.gds")
gds1KG <- createfn.gds(filename=fileNamelKG)

add.gdsn(gds1KG, "sample.id”, c("HTT101", "HTT102", "HTT103"))

samples <- data.frame(sex=c(1, 1, 2), pop.group=c("GBR", "GIH", "GBR"),
superPop=c("EUR”, "SAS”, "EUR"), batch=rep(@, 3),
stringsAsFactors = FALSE)

add.gdsn(gds1KG, "sample.annot”, samples)
add.gdsn(gds1KG, "sample.ref”, c(1,0, 1))
sync.gds(gds1KG)

## Create a temporary Profile GDS file
fileNameProfile <- file.path(tempDir, "GDS_TEMP_addStudylKg_Sample.gds")
gdsProfile <- createfn.gds(fileNameProfile)

study.list <- data.frame(study.id=c("HTT Study"),
study.desc=c("Important Study"),
study.platform=c("Panel”), stringsAsFactors=FALSE)

add.gdsn(gdsProfile, "study.list”, study.list)

study.annot <- data.frame(data.id=c("TOTO1"), case.id=c("TOTO1"),
sample. type=c("Study"”), diagnosis=c("Study"),
source=rep("IGSR"), study.id=c("Study"),
stringsAsFactors=FALSE)

add.gdsn(gdsProfile, "study.annot”, study.annot)
sync.gds(gdsProfile)
closefn.gds(gdsProfile)

## Append information about the 1KG samples into the Profile GDS file

## The Profile GDS file will contain 'study.list' and 'study.annot' entries

addStudy1Kg(gdsReference=gds1KG, fileProfileGDS=fileNameProfile,
verbose=TRUE)

closefn.gds(gds1KG)

unlink(fileNameProfile, recursive=TRUE, force=TRUE)
unlink(fileName1KG, recursive=TRUE, force=TRUE)
unlink(tempDir)

computeAncestryFromSyntheticFile
Select the optimal K and D parameters using the synthetic data and
infer the ancestry of a specific profile




computeAncestryFromSyntheticFile

Description

11

The function select the optimal K and D parameters for a specific profile. The results on the syn-
thetic data are used for the parameter selection. Once the optimal parameters are selected, the

ancestry is inferred for the specific profile.

Usage

computeAncestryFromSyntheticFile(
gdsReference,

gdsProfile,
listFiles,

currentProfile,

spRef,
studyIDSyn,
np = 1L,

listCatPop = c("EAS", "EUR", "AFR", "AMR", "SAS"),
fieldPopIn1KG = "superPop”,

fieldPopInfAnc = "SuperPop”,

kList = seq(2, 15, 1),

pcaList = seq(2, 15, 1),

algorithm =

c("exact"”, "randomized"),

eigenCount = 32L,

missingRate

NaN,

verbose = FALSE

Arguments

gdsReference
gdsProfile
listFiles

currentProfile

spRef

studyIDSyn

np
listCatPop

fieldPopIniKG

an object of class gds.class (a GDS file), the opened 1KG GDS file.
an object of class gds. class (a GDS file), the opened Profile GDS file.

a vector of character strings representing the name of files that contain the
results of ancestry inference done on the synthetic profiles for multiple values
of D and K. The files must exist.

a character string representing the profile identifier of the current profile on
which ancestry will be inferred.

a vector of character strings representing the known super population ances-
try for the 1KG profiles. The 1KG profile identifiers are used as names for the
vector.

a character string corresponding to the study identifier. The study identifier
must be present in the GDS Sample file.

a single positive integer representing the number of threads. Default: 1L.

a vector of character string representing the list of possible ancestry assigna-
tions. Default: ("EAS", "EUR", "AFR", "AMR", "SAS").

a character string representing the name of the column that contains the known
ancestry for the reference profiles in the Reference GDS file.



12

computeAncestryFromSyntheticFile

fieldPopInfAnc a character string representing the name of the column that will contain the
inferred ancestry for the specified profiles. Default: "SuperPop”.

kList a vector of integer representing the list of values tested for the K parame-
ter. The K parameter represents the number of neighbors used in the K-nearest
neighbor analysis. If NULL, the value seq(2,15, 1) is assigned. Default: seq(2,15,1).

pcalList a vector of integer representing the list of values tested for the D parameter.
The D parameter represents the number of dimensions used in the PCA analysis.
If NULL, the value seq(2,15,1) is assigned. Default: seq(2,15,1).

algorithm a character string representing the algorithm used to calculate the PCA. The 2
choices are "exact" (traditional exact calculation) and "randomized" (fast PCA
with randomized algorithm introduced in Galinsky et al. 2016). Default: "exact”.

eigenCount a single integer indicating the number of eigenvectors that will be in the out-
put of the snpgdsPCA function; if eigenCount’ <= 0, then all eigenvectors are
returned. Default: 32L.

missingRate a numeric value representing the threshold missing rate at with the SNVs are
discarded; the SN'Vs are retained in the snpgdsPCA with "<= missingRate" only;
if NaN, no missing threshold. Default: NaN.

verbose a logical indicating if messages should be printed to show how the different
steps in the function. Default: FALSE.

Value

a list containing 4 entries:

* pcaSample a list containing the information related to the eigenvectors. The 1ist contains
those 3 entries:

— sample.id a character string representing the unique identifier of the current profile.

— eigenvector.ref a matrix of numeric containing the eigenvectors for the reference
profiles.

— eigenvector a matrix of numeric containing the eigenvectors for the current profile
projected on the PCA from the reference profiles.

* paraSample a list containing the results with different D and K values that lead to optimal
parameter selection. The 1ist contains those entries:

— dfPCA a data. frame containing statistical results on all combined synthetic results done
with a fixed value of D (the number of dimensions). The data.frame contains those
columns:

% D a numeric representing the value of D (the number of dimensions).

+ median a numeric representing the median of the minimum AUROC obtained (within
super populations) for all combination of the fixed D value and all tested K values.

* mad a numeric representing the MAD of the minimum AUROC obtained (within
super populations) for all combination of the fixed D value and all tested K values.

% upQuartile a numeric representing the upper quartile of the minimum AUROC
obtained (within super populations) for all combination of the fixed D value and all
tested K values.

# k a numeric representing the optimal K value (the number of neighbors) for a fixed D
value.



computeAncestryFromSyntheticFile 13

— dfPop a data. frame containing statistical results on all combined synthetic results done
with different values of D (the number of dimensions) and K (the number of neighbors).
The data. frame contains those columns:

+ D a numeric representing the value of D (the number of dimensions).
# K a numeric representing the value of K (the number of neighbors).

% AUROC.min a numeric representing the minimum accuracy obtained by grouping all
the synthetic results by super-populations, for the specified values of D and K.

% AUROC a numeric representing the accuracy obtained by grouping all the synthetic
results for the specified values of D and K.

# Accu.CM a numeric representing the value of accuracy of the confusion matrix ob-
tained by grouping all the synthetic results for the specified values of D and K.

— dfAUROC a data. frame the summary of the results by super-population. The data. frame
contains those columns:

* pcaD a numeric representing the value of D (the number of dimensions).
# K a numeric representing the value of K (the number of neighbors).
* Call a character string representing the super-population.

% L a numeric representing the lower value of the 95% confidence interval for the
AUROC obtained for the fixed values of super-population, D and K.

*

AUR a numeric representing the AUROC obtained for the fixed values of super-
population, D and K.

* H a numeric representing the higher value of the 95% confidence interval for the
AUROC obtained for the fixed values of super-population, D and K.
— D anumeric representing the optimal D value (the number of dimensions) for the specific
profile.

— K a numeric representing the optimal K value (the number of neighbors) for the specific
profile.

— listD a numeric representing the optimal D values (the number of dimensions) for the
specific profile. More than one D is possible.

* KNNSample a list containing the inferred ancestry using different D and K values. The list
contains those entries:
— sample.id a character string representing the unique identifier of the current profile.
— matkNN a data.frame containing the inferred ancestry for different values of K and D.
The data. frame contains those columns:
* sample.id a character string representing the unique identifier of the current pro-
file.
% D anumeric representing the value of D (the number of dimensions) used to infer the
ancestry.
% K a numeric representing the value of K (the number of neighbors) used to infer the
ancestry.
% SuperPop a character string representing the inferred ancestry for the specified D
and K values.

* Ancestry adata.frame containing the inferred ancestry for the current profile. The data. frame
contains those columns:

— sample.id a character string representing the unique identifier of the current profile.



14 computeAncestryFromSyntheticFile

— D a numeric representing the value of D (the number of dimensions) used to infer the
ancestry.

— K a numeric representing the value of K (the number of neighbors) used to infer the
ancestry.

— SuperPop a character string representing the inferred ancestry.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

References

Galinsky KJ, Bhatia G, Loh PR, Georgiev S, Mukherjee S, Patterson NJ, Price AL. Fast Principal-
Component Analysis Reveals Convergent Evolution of ADHI1B in Europe and East Asia. Am J
Hum Genet. 2016 Mar 3;98(3):456-72. doi: 10.1016/j.ajhg.2015.12.022. Epub 2016 Feb 25.

Examples

## Required library
library(gdsfmt)

## Load the known ancestry for the demo 1KG reference profiles
data(demoKnownSuperPop1KG)

## The Reference GDS file
path1KG <- system.file("extdata/tests"”, package="RAIDS")

## Open the Reference GDS file
gdsRef <- snpgdsOpen(file.path(path1KG, "ex1_good_small_1KG.gds"))

## Path to the demo synthetic results files

## List of the KNN result files from PCA run on synthetic data

dataDirRes <- system.file("extdata/demoAncestryCall/ex1", package="RAIDS")
listFilesName <- dir(file.path(dataDirRes), ".rds")

listFiles <- file.path(file.path(dataDirRes) , listFilesName)

# The name of the synthetic study
studyID <- "MYDATA.Synthetic”

## Path to the demo Profile GDS file is located in this package
dataDir <- system.file("extdata/demoAncestryCall”, package="RAIDS")

## Open the Profile GDS file
gdsProfile <- snpgdsOpen(file.path(dataDir, "ex1.gds"))

## Run the ancestry inference on one profile called 'ex1'

## The values of K and D used for the inference are selected using the

## synthetic results

resCall <- computeAncestryFromSyntheticFile(gdsReference=gdsRef,
gdsProfile=gdsProfile,
listFiles=listFiles,



computeKNNRetSample 15

currentProfile=c("ex1"),
spRef=demoKnownSuperPop1KG,
studyIDSyn=studyID, np=1L)

## The ancestry called with the optimal D and K values

resCall$Ancestry

## Close the GDS files (important)
closefn.gds(gdsProfile)
closefn.gds(gdsRef)

computeKNNRefSample Run a k-nearest neighbors analysis on one specific profile

Description

The function runs k-nearest neighbors analysis on a one specific profile. The function uses the ’knn’

package.

Usage

computeKNNRefSample(
listEigenvector,
listCatPop = c("EAS", "EUR"”, "AFR", "AMR”, "SAS"),

spRef,

fieldPopInfAnc = "SuperPop”,
kList = seq(2, 15, 1),
pcaList = seq(2, 15, 1)

Arguments

listEigenvector

listCatPop

spRef

fieldPopInfAnc

a list with 3 entries: *sample.id’, "eigenvector.ref” and "eigenvector’. The list
represents the PCA done on the 1KG reference profiles and one specific profile
projected onto it. The ’sample.id’ entry must contain only one identifier (one
profile).

a vector of character string representing the list of possible ancestry assigna-
tions. Default: c("EAS”, "EUR", "AFR", "AMR", "SAS").

vector of character strings representing the known super population ancestry
for the 1KG profiles. The 1KG profile identifiers are used as names for the
vector.

a character string representing the name of the column that will contain the
inferred ancestry for the specified profile. Default: "SuperPop”.



16 computeKNNRefSample

kList a vector of integer representing the list of values tested for the K parame-
ter. The K parameter represents the number of neighbors used in the K-nearest
neighbor analysis. If NULL, the value seq(2,15, 1) is assigned. Default: seq(2,15,1).

pcalList a vector of integer representing the list of values tested for the D parameter.
The D parameter represents the number of dimensions used in the PCA analysis.
If NULL, the value seq(2, 15, 1) is assigned. Default: seq(2, 15, 1).

Value

a list containing 4 entries:

* sample.id a vector of character strings representing the identifier of the profile analysed.

* matkNN a data.frame containing the super population inference for the profile for different
values of PCA dimensions D and k-neighbors values K. The fourth column title corresponds to
the fieldPopInfAnc parameter. The data. frame contains 4 columns:

sample. id a character string representing the identifier of the profile analysed.

D a numeric strings representing the value of the PCA dimension used to infer the ances-
try.
K a numeric strings representing the value of the k-neighbors used to infer the ancestry..

fieldPopInfAnc a character string representing the inferred ancestry.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

## Load the demo PCA on the synthetic profiles projected on the
## demo 1KG reference PCA
data(demoPCASyntheticProfiles)

## Load the known ancestry for the demo 1KG reference profiles
data(demoKnownSuperPop1KG)

## The PCA with 1 profile projected on the 1KG reference PCA
## Only one profile is retained

pca <- demoPCASyntheticProfiles

pca$sample.id <- pca$sample.id[1]

pca$eigenvector <- pca$eigenvector[1, , drop=FALSE]

## Projects profile on 1KG PCA

results <- computeKNNRefSample(listEigenvector=pca,
listCatPop=c("EAS", "EUR", "AFR", "AMR", "SAS"),
spRef=demoKnownSuperPop1KG, fieldPopInfAnc="SuperPop”,
kList=seq(1@, 15, 1), pcaList=seq(10@, 15, 1))

## The assigned ancestry to the profile for different values of K and D
head(results$matkNN)



computeKNNRetSynthetic 17

computeKNNRefSynthetic

Run a k-nearest neighbors analysis on a subset of the synthetic dataset

Description

The function runs k-nearest neighbors analysis on a subset of the synthetic data set. The function
uses the "knn’ package.

Usage
computeKNNRefSynthetic(
gdsProfile,
listEigenvector,
listCatPop = c(”EAS", "EUR", "AFR”, "AMR", "SAS"),
studyIDSyn,
spRef,

fieldPopInfAnc = "SuperPop”,

kList = seq(2

, 15, 1),

pcaList = seq(2, 15, 1)

Arguments

gdsProfile
listEigenvector

listCatPop

studyIDSyn

spRef

fieldPopInfAnc

kList

pcalList

an object of class SNPRelate: : SNPGDSFileClass, the opened Profile GDS file.

a list with 3 entries: ’sample.id’, "eigenvector.ref’ and "eigenvector’. The list
represents the PCA done on the 1KG reference profiles and the synthetic profiles
projected onto it.

a vector of character string representing the list of possible ancestry assigna-
tions. Default: c("EAS", "EUR", "AFR", "AMR", "SAS").

a character string corresponding to the study identifier. The study identifier
must be present in the Profile GDS file.

vector of character strings representing the known super population ancestry
for the 1KG profiles. The 1KG profile identifiers are used as names for the
vector.

a character string representing the name of the column that will contain the
inferred ancestry for the specified data set. Default: "SuperPop”.

a vector of integer representing the list of values tested for the K parame-
ter. The K parameter represents the number of neighbors used in the K-nearest
neighbors analysis. If NULL, the value seq(2, 15, 1) is assigned. Default:
seq(2, 15, 1).

a vector of integer representing the list of values tested for the D parameter.
The D parameter represents the number of dimensions used in the PCA analysis.
If NULL, the value seq(2, 15, 1) is assigned. Default: seq(2, 15, 1).



18 computeKNNRetSynthetic

Value

a list containing 4 entries:

* sample.idavector of character strings representing the identifiers of the synthetic profiles
analysed.

* samplelKg a vector of character strings representing the identifiers of the 1KG reference
profiles used to generate the synthetic profiles.

* sp a vector of character strings representing the known super population ancestry of the
1KG reference profiles used to generate the synthetic profiles.

* matkKNN a data.frame containing the super population inference for each synthetic profiles
for different values of PCA dimensions D and k-neighbors values K. The fourth column title
corresponds to the fieldPopInfAnc parameter. The data. frame contains 4 columns:

— sample.id a character string representing the identifier of the synthetic profile anal-
ysed.

D a numeric strings representing the value of the PCA dimension used to infer the super
population.

K a numeric strings representing the value of the k-neighbors used to infer the super
population.

fieldPopInfAnc value a character string representing the inferred ancestry.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

## Required library
library(gdsfmt)

## Load the demo PCA on the synthetic profiles projected on the
## demo 1KG reference PCA
data(demoPCASyntheticProfiles)

## Load the known ancestry for the demo 1KG reference profiles
data(demoKnownSuperPop1KG)

## Path to the demo Profile GDS file is located in this package
dataDir <- system.file("extdata/demoKNNSynthetic"”, package="RAIDS")

## Open the Profile GDS file
gdsProfile <- snpgdsOpen(file.path(dataDir, "ex1.gds"))

# The name of the synthetic study
studyID <- "MYDATA.Synthetic"

## Projects synthetic profiles on 1KG PCA

results <- computeKNNRefSynthetic(gdsProfile=gdsProfile,
listEigenvector=demoPCASyntheticProfiles,
listCatPop=c("EAS", "EUR", "AFR", "AMR", "SAS"), studyIDSyn=studyID,



computePCAMultiSynthetic 19

spRef=demoKnownSuperPop1KG)

## The inferred ancestry for the synthetic profiles for different values
## of D and K
head(results$matkNN)

## Close Profile GDS file (important)
closefn.gds(gdsProfile)

computePCAMultiSynthetic

Project synthetic profiles onto existing principal component axes gen-
erated using the reference 1KG profiles

Description

The function projects the synthetic profiles onto existing principal component axes generated using
the reference 1KG profiles. The reference profiles used to generate the synthetic profiles have
previously been removed from the set of reference profiles.

Usage
computePCAMultiSynthetic(
gdsProfile,
listPCA,
sampleRef,
studyIDSyn,
verbose = FALSE
)
Arguments
gdsProfile an object of class gds.class (a GDS file), an opened Profile GDS file.
1istPCA a list containing the PCA object generated with the 1KG reference profiles
(excluding the ones used to generate the synthetic data set) in an entry called
"pca.unrel”.
sampleRef a vector of character strings representing the identifiers of the 1KG reference
profiles that have been used to generate the synthetic profiles that are going to be
analysed here. The sub-continental identifiers are used as names for the vector.
studyIDSyn a character string corresponding to the study identifier. The study identifier
must be present in the Profile GDS file.
verbose a logical indicating if messages should be printed to show how the different

steps in the function. Default: FALSE.



20 computePCAMultiSynthetic

Value
a list containing 3 entries:

» sample.id a vector of character strings representing the identifiers of the synthetic profiles
that have been projected onto the 1IKG PCA.

* eigenvector.ref a matrix of numeric with the eigenvectors of the 1KG reference profiles used
to generate the PCA.

* eigenvector amatrix of numeric with the eigenvectors of the synthetic profiles projected onto
the 1KG PCA.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

## Required library
library(gdsfmt)

## Loading demo PCA on subset of 1KG reference dataset
data(demoPCATKG)

## Path to the demo Profile GDS file is located in this package
dataDir <- system.file("extdata/demoKNNSynthetic"”, package="RAIDS")

# The name of the synthetic study
studyID <- "MYDATA.Synthetic"”

samplesRM <- c("HG0Q246", "HG@@325", "HGOO611”, "HGO1173", "HG02165",
"HGO1112", "HG@1615", "HGO1968", "HG02658", "HGO1850", "HGO2013",
"HG02465", "HGO2974", "HGO3814", "HGO3445", "HGO3689", "HG03789",
“NA12751", "NA19107", "NA18548", "NA19075", "NA19475", "NA19712",
“NA19731", "NA20528", "NA20908")

names(samplesRM) <- c(”GBR”, "FIN", "CHS”,"PUR", "CDX", "CLM", "IBS",
"PEL"”, "PJL", "KHV", "ACB”, "GWD", "ESN”, "BEB”, "MSL”, "STU", "ITU",
"CEU”, "YRI", "CHB", "JPT", "LWK", "ASW", "MXL", "TSI", "GIH")

## Open the Profile GDS file
gdsProfile <- snpgdsOpen(file.path(dataDir, "ex1.gds"))

## Projects synthetic profiles on 1KG PCA

results <- computePCAMultiSynthetic(gdsProfile=gdsProfile,
1istPCA=demoPCA1KG,
sampleRef=samplesRM, studyIDSyn=studyID, verbose=FALSE)

## The eigenvectors for the synthetic profiles
head(results$eigenvector)

## Close Profile GDS file (important)
closefn.gds(gdsProfile)



computePCARefSample 21

computePCARefSample Project specified profile onto PCA axes generated using known refer-
ence profiles

Description

This function generates a PCA using the know reference profiles. Them, it projects the specified
profile onto the PCA axes.

Usage
computePCARefSample(
gdsProfile,
currentProfile,
studyIDRef = "Ref.1KG",
np = 1L,
algorithm = c("exact”, "randomized"),

eigenCount = 32L,
missingRate = NaN,
verbose = FALSE

)
Arguments
gdsProfile an object of class gds.class, an opened Profile GDS file.
currentProfile asingle character string representing the profile identifier.
studyIDRef a single character string representing the study identifier.
np a single positive integer representing the number of CPU that will be used.
Default: 1L.
algorithm a character string representing the algorithm used to calculate the PCA. The 2

choices are "exact" (traditional exact calculation) and "randomized" (fast PCA
with randomized algorithm introduced in Galinsky et al. 2016). Default: "exact".

eigenCount a single integer indicating the number of eigenvectors that will be in the out-
put of the snpgdsPCA function; if ’eigen.cnt’ <= 0, then all eigenvectors are
returned. Default: 32L.

missingRate a numeric value representing the threshold missing rate at with the SNVs are
discarded; the SN'Vs are retained in the snpgdsPCA with "<= missingRate" only;
if NaN, no missing threshold. Default: NaN.

verbose a logical indicating if messages should be printed to show how the different
steps in the function. Default: FALSE.

Value

a list containing 3 entries:



22 computePoolSyntheticAncestryGr

* sample.id a character string representing the unique identifier of the analyzed profile.

* eigenvector.ref a matrix of numeric representing the eigenvectors of the reference pro-
files.

* eigenvector amatrix of numeric representing the eigenvectors of the analyzed profile.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

References

Galinsky KJ, Bhatia G, Loh PR, Georgiev S, Mukherjee S, Patterson NJ, Price AL. Fast Principal-
Component Analysis Reveals Convergent Evolution of ADHI1B in Europe and East Asia. Am J
Hum Genet. 2016 Mar 3;98(3):456-72. doi: 10.1016/j.ajhg.2015.12.022. Epub 2016 Feb 25.

Examples

## Required library
library(gdsfmt)

## Path to the demo Profile GDS file is located in this package
dataDir <- system.file("extdata/demoAncestryCall”, package="RAIDS")

## Open the Profile GDS file
gdsProfile <- snpgdsOpen(file.path(dataDir, "ex1.gds"))

## Project a profile onto a PCA generated using reference profiles

## The reference profiles come from 1KG

resPCA <- computePCARefSample(gdsProfile=gdsProfile,
currentProfile=c("ex1"), studyIDRef="Ref.1KG", np=1L, verbose=FALSE)

resPCA$sample.id

resPCA$eigenvector

## Close the GDS files (important)
closefn.gds(gdsProfile)

computePoolSyntheticAncestryGr
Run a PCA analysis and a K-nearest neighbors analysis on a small
set of synthetic data using all 1KG profiles except the ones used to
generate the synthetic profiles




computePoolSyntheticAncestryGr 23

Description

The function runs a PCA analysis using 1 synthetic profile from each sub-continental population.
The reference profiles used to create those synthetic profiles are first removed from the list of 1IKG
reference profiles that generates the reference PCA. Then, the retained synthetic profiles are pro-
jected on the 1KG PCA space. Finally, a K-nearest neighbors analysis using a range of K and D
values is done.

Usage

computePoolSyntheticAncestryGr(
gdsProfile,
sampleRM,
spRef,
studyIDSyn,
np = 1L,
listCatPop = c("EAS", "EUR", "AFR", "AMR", "SAS"),
fieldPopInfAnc = "SuperPop"”,
kList = seq(2, 15, 1),
pcaList = seq(2, 15, 1),
algorithm = c("exact”, "randomized"),
eigenCount = 32L,
missingRate = 0.025,
verbose = FALSE

)
Arguments

gdsProfile an object of class SNPRelate: : SNPGDSFileClass, the opened Profile GDS file.

sampleRM a vector of character strings representing the identifiers of the 1KG reference
profiles that should not be used to create the reference PCA. There should be
one per sub-continental population. Those profiles are removed because those
have been used to generate the synthetic profiles that are going to be analysed
here. The sub-continental identifiers are used as names for the vector.

spRef vector of character strings representing the known super population ancestry
for the 1KG profiles. The 1KG profile identifiers are used as names for the
vector.

studyIDSyn a character string corresponding to the study identifier. The study identifier
must be present in the Profile GDS file.

np a single positive integer representing the number of threads. Default: 1L.

listCatPop a vector of character string representing the list of possible ancestry assigna-

tions. Default: ("EAS”, "EUR", "AFR", "AMR”, "SAS").

fieldPopInfAnc a character string representing the name of the column that will contain the
inferred ancestry for the specified dataset. Default: "SuperPop”.

kList a vector of integer representing the list of values tested for the K parame-
ter. The K parameter represents the number of neighbors used in the K-nearest
neighbor analysis. If NULL, the value seq(2,15, 1) is assigned. Default: seq(2,15,1).



24 computePoolSyntheticAncestryGr

pcalList a vector of integer representing the list of values tested for the D parameter.
The D parameter represents the number of dimensions used in the PCA analysis.
If NULL, the value seq(2,15, 1) is assigned. Default: seq(2,15,1).

algorithm a character string representing the algorithm used to calculate the PCA. The 2
choices are "exact" (traditional exact calculation) and "randomized" (fast PCA
with randomized algorithm introduced in Galinsky et al. 2016). Default: "exact".

eigenCount a single integer indicating the number of eigenvectors that will be in the out-
put of the snpgdsPCA function; if eigenCount’ <= 0, then all eigenvectors are
returned. Default: 32L.

missingRate a numeric value representing the threshold missing rate at with the SNVs are
discarded; the SNVs are retained in the snpgdsPCA function with "<= missin-
gRate" only; if NaN, no missing threshold. Default: @.025.

verbose a logical indicating if message information should be printed. Default: FALSE.

Value

a list containing the following entries:

» sample.ida vector of character strings representing the identifiers of the synthetic profiles.

» samplelKga vector of character strings representing the identifiers of the reference 1KG
profiles used to generate the synthetic profiles.

* spa vector of character strings representing the known ancestry for the reference 1KG
profiles used to generate the synthetic profiles.

* matKNNa data. frame containing 4 columns. The first column ’sample.id’ contains the name
of the synthetic profile. The second column ’D’ represents the dimension D used to infer
the ancestry. The third column "K’ represents the number of neighbors K used to infer the
ancestry. The fourth column ’SuperPop’ contains the inferred ancestry.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

References

Galinsky KJ, Bhatia G, Loh PR, Georgiev S, Mukherjee S, Patterson NJ, Price AL. Fast Principal-
Component Analysis Reveals Convergent Evolution of ADH1B in Europe and East Asia. AmJ
Hum Genet. 2016 Mar 3;98(3):456-72. doi: 10.1016/j.ajhg.2015.12.022. Epub 2016 Feb 25.

Examples

## Required library
library(gdsfmt)

## Load the known ancestry for the demo 1KG reference profiles
data(demoKnownSuperPop1KG)

# The name of the synthetic study



computeSyntheticROC 25

studyID <- "MYDATA.Synthetic”

samplesRM <- c("HG0@246", "HG@©325", "HGOO611”, "HGO1173", "HG02165",
"HGO1112", "HG@1615", "HGO1968", "HG02658", "HGO1850", "HGO2013",
"HGO2465", "HGO2974", "HGO3814", "HGO3445", "HGO3689", "HG03789",
"NA12751", "NA19107", "NA18548", "NA19075", "NA19475", "NA19712",
"NA19731", "NA20528", "NA20908")

names(samplesRM) <- c(”GBR”, "FIN", "CHS”,"PUR", "CDX", "CLM", "IBS",
"PEL”, "PJL", "KHV", "ACB”, "GWD", "ESN”, "BEB”, "MSL”, "STU", "ITU",
"CEU”, "YRI", "CHB", "JPT", "LWK", "ASW", "MXL", "TSI", "GIH")

## Path to the demo Profile GDS file is located in this package
dataDir <- system.file("extdata/demoKNNSynthetic"”, package="RAIDS")

## Open the Profile GDS file
gdsProfile <- snpgdsOpen(file.path(dataDir, "ex1.gds"))

## Run a PCA analysis and a K-nearest neighbors analysis on a small set

## of synthetic data

results <- computePoolSyntheticAncestryGr(gdsProfile=gdsProfile,
sampleRM=samplesRM, studyIDSyn=studyID, np=1L,
spRef=demoKnownSuperPopi1KG,
kList=seq(10,15,1), pcalList=seq(10,15,1), eigenCount=15L)

## The ancestry inference for the synthetic data using
## different K and D values
head(results$matkNN)

## Close Profile GDS file (important)
closefn.gds(gdsProfile)

computeSyntheticROC Calculate the AUROC of the inferences for specific values of D and K
using the inferred ancestry results from the synthetic profiles.

Description

The function calculates the AUROC of the inferences for specific values of D and K using the
inferred ancestry results from the synthetic profiles. The calculations are done on each super-
population separately as well as on all the results together.

Usage

computeSyntheticROC(
matkKNN,
matkKNNAncestryColumn,
pedCall,
pedCallAncestryColumn,
listCall = c("EAS”, "EUR", "AFR”, "AMR", "SAS")



26 computeSyntheticROC
Arguments
matkKNN a data.frame containing the inferred ancestry results for fixed values of D
and K. On of the column names of the data.frame must correspond to the
matKNNAncestryColumn argument.
matKNNAncestryColumn
a character string representing the name of the column that contains the in-
ferred ancestry for the specified synthetic profiles. The column must be present
in the matKNN argument.
pedCall a data.frame containing the information about the super-population informa-
tion from the 1KG GDS file for profiles used to generate the synthetic profiles.
The data. frame must contained a column named as the pedCallAncestryColumn
argument. The row names must correspond to the sample identifiers (manda-
tory).
pedCallAncestryColumn
a character string representing the name of the column that contains the known
ancestry for the reference profiles in the Reference GDS file. The column must
be present in the pedCall argument.
listCall a vector of character strings representing the list of all possible ancestry
assignations. Default: c("EAS", "EUR", "AFR", "AMR", "SAS").
Value
list containing 3 entries:
* matAUROC.Al1l a data.frame containing the AUROC for all the ancestry results.
* matAUROC.Call adata. frame containing the AUROC information for each super-population.
e 1istROC.Call a list containing the output from the roc function for each super-population.
Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

## Loading demo dataset containing pedigree information for synthetic
## profiles and known ancestry of the profiles used to generate the
## synthetic profiles

data(pedSynthetic)

## Loading demo dataset containing the inferred ancestry results
## for the synthetic data
data(matkKNNSynthetic)

## The inferred ancestry results for the synthetic data using
## values of D=6 and K=5
matkKNN <- matKNNSynthetic[matKNNSynthetic$K == 6 & matKNNSynthetic$D == 5, ]

## Compile statistics from the
## synthetic profiles for fixed values of D and K



createStudy2GDS1KG 27

results <- RAIDS:::computeSyntheticROC(matKNN=matKNN,
matKNNAncestryColumn="SuperPop”,
pedCall=pedSynthetic, pedCallAncestryColumn="superPop”,
listCall=c("EAS", "EUR", "AFR”, "AMR", "SAS"))

results$matAUROC.ALl
results$matAUROC.Call
results$listROC.Call

createStudy2GDST1KG Create the Profile GDS file(s) for one or multiple specific profiles using
the information from a RDS Sample description file and the 1IKG GDS

file

Description

The function uses the information for the Reference GDS file and the RDS Sample Description file
to create the Profile GDS file. One Profile GDS file is created per profile. One Profile GDS file will
be created for each entry present in the 1istProfiles parameter.

Usage

createStudy2GDSTKG(
pathGeno = file.path("data”, "sampleGeno"),
filePedRDS = NULL,
pedStudy = NULL,
fileNameGDS,
batch = 1,
studyDF,
listProfiles = NULL,
pathProfileGDS = NULL,

genoSource = c("snp-pileup”, "generic", "VCF"),
verbose = FALSE
)
Arguments
pathGeno a character string representing the path to the directory containing the VCF
output of SNP-pileup for each sample. The SNP-pileup files must be com-
pressed (gz files) and have the name identifiers of the samples. A sample with
"Name.ID" identifier would have an associated file called if genoSource is "VCF",
then "Name.ID.vcf.gz", if genoSource is "generic", then "Name.ID.generic.txt.gz"
if genoSource is "snp-pileup”, then "Name.ID.txt.gz".
filePedRDS a character string representing the path to the RDS file that contains the infor-

mation about the sample to analyse. The RDS file must include a data.frame
with those mandatory columns: "Name.ID", "Case.ID", "Sample.Type", "Diag-
nosis", "Source". All columns must be in character strings. The data.frame



28 createStudy2GDS 1KG

must contain the information for all the samples passed in the listSamples
parameter. Only filePedRDS or pedStudy can be defined.

pedStudy a data.frame with those mandatory columns: "Name.ID", "Case.ID", "Sam-
ple.Type", "Diagnosis", "Source". All columns must be in character strings
(no factor). The data.frame must contain the information for all the samples
passed in the 1istSamples parameter. Only filePedRDS or pedStudy can be
defined.

fileNameGDS a character string representing the file name of the Reference GDS file. The
file must exist.

batch a single positive integer representing the current identifier for the batch. Be-
ware, this field is not stored anymore. Default: 1.

studyDF a data. frame containing the information about the study associated to the anal-
ysed sample(s). The data. frame must have those 3 columns: "study.id", "study.desc",
"study.platform". All columns must be in character strings (no factor).

listProfiles a vector of character string corresponding to the profile identifiers that will
have a Profile GDS file created. The profile identifiers must be present in the
"Name.ID" column of the Profile RDS file passed to the filePedRDS parameter.
If NULL, all profiles present in the filePedRDS are selected. Default: NULL.

pathProfileGDS acharacter string representing the path to the directory where the Profile GDS
files will be created. Default: NULL.

genoSource a character string with two possible values: ’snp-pileup’, ’generic’ or "VCF’.
It specifies if the genotype files are generated by snp-pileup (Facets) or are a
generic format CSV file with at least those columns: *Chromosome’, *Position’,
Ref’, "Alt’, ’Count’, ’FilelR’ and ’FilelA’. The *Count’ is the depth at the
specified position; "FileR’ is the depth of the reference allele and "File1 A’ is the
depth of the specific alternative allele. Finally the file can be a VCF file with at
least those genotype fields: GT, AD, DP.

verbose a logical indicating if message information should be printed. Default: FALSE.

Value

The function returns 0L when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

## Path to the demo 1KG GDS file is located in this package
dataDir <- system.file("extdata/tests”, package="RAIDS")
fileGDS <- file.path(dataDir, "ex1_good_small_1KG.gds")

## The data.frame containing the information about the study

## The 3 mandatory columns: "study.id”, "study.desc”, "study.platform”
## The entries should be strings, not factors (stringsAsFactors=FALSE)
studyDF <- data.frame(study.id = "MYDATA",



demoKnownSuperPopl KG 29

study.desc = "Description”,
study.platform = "PLATFORM",
stringsAsFactors = FALSE)

## The data.frame containing the information about the samples
## The entries should be strings, not factors (stringsAsFactors=FALSE)
samplePED <- data.frame(Name.ID=c("ex1", "ex2"),
Case.ID=c("Patient_h11", "Patient_h12"),
Diagnosis=rep("Cancer”, 2),
Sample.Type=rep("Primary Tumor", 2),
Source=rep("Databank B", 2), stringsAsFactors=FALSE)
rownames (samplePED) <- samplePED$Name.ID

## Create the Profile GDS File for samples in 'listSamples' vector
## (in this case, samples "ex1")
## The Profile GDS file is created in the pathProfileGDS directory
result <- createStudy2GDS1KG(pathGeno=dataDir,
pedStudy=samplePED, fileNameGDS=fileGDS,
studyDF=studyDF, listProfiles=c("ex1"),
pathProfileGDS=tempdir(),
genoSource="snp-pileup”,
verbose=FALSE)

## The function returns OL when successful
result

## The Profile GDS file 'ex1l.gds' has been created in the
## specified directory
list.files(tempdir())

## Remove Profile GDS file (created for demo purpose)
unlink(file.path(tempdir(), "ex1.gds"), force=TRUE)

demoKnownSuperPop1KG  The known super population ancestry of the demo I1KG reference pro-

files.

Description

The object is a vector.

Usage
data(demoKnownSuperPop1KG)

Format

The vector containing the know super population ancestry for the demo 1KG reference profiles.



30 demoKnownSuperPop 1 KG

Details

This object can be used to test the computeKNNRefSynthetic and computePoolSyntheticAncestryGr
functions.

Value

The vector containing the know super population ancestry for the demo 1KG reference profiles.

See Also

» computeKNNRefSynthetic for running a k-nearest neighbors analysis on a subset of the syn-
thetic data set.

* computePoolSyntheticAncestryGr for running a PCA analysis using 1 synthetic profile
from each sub-continental population.

Examples

## Required library
library(gdsfmt)

## Load the demo PCA on the synthetic profiles projected on the
## demo 1KG reference PCA
data(demoPCASyntheticProfiles)

## Load the known ancestry for the demo 1KG reference profiles
data(demoKnownSuperPop1KG)

## Path to the demo Profile GDS file is located in this package
dataDir <- system.file("extdata/demoKNNSynthetic"”, package="RAIDS")

## Open the Profile GDS file
gdsProfile <- snpgdsOpen(file.path(dataDir, "ex1.gds"))

# The name of the synthetic study
studyID <- "MYDATA.Synthetic"”

## Projects synthetic profiles on 1KG PCA

results <- computeKNNRefSynthetic(gdsProfile=gdsProfile,
listEigenvector=demoPCASyntheticProfiles,
listCatPop=c("EAS", "EUR”, "AFR", "AMR”, "SAS"), studyIDSyn=studyID,
spRef=demoKnownSuperPop1KG)

## The inferred ancestry for the synthetic profiles for different values
## of D and K
head(results$matkNN)

## Close Profile GDS file (important)
closefn.gds(gdsProfile)



demoPCA1KG 31

demoPCATKG The PCA results of the demo 1KG reference dataset for demonstration
purpose. Beware that the PCA has been run on a very small subset
of the 1KG reference dataset and should not be used to call ancestry
inference on a real profile.

Description

The objectis a list.

Usage
data(demoPCA1KG)

Format

The list containing the PCA results for a small subset of the reference 1KG dataset. The list
contains 2 entries:

* pruned a vector of SNV identifiers specifying selected SNVs for the PCA analysis.

» pca.unrel a snpgdsPCAClass object containing the eigenvalues as generated by snpgdsPCA
function.

Details

This object can be used to test the computePCAMultiSynthetic function.

Value

The list containing the PCA results for a small subset of the reference 1KG dataset. The list
contains 2 entries:

* pruned a vector of SNV identifiers specifying selected SNVs for the PCA analysis.

» pca.unrel a snpgdsPCAClass object containing the eigenvalues as generated by snpgdsPCA
function.

Examples

## Required library
library(gdsfmt)

## Loading demo PCA on subset of 1KG reference dataset
data(demoPCATKG)

## Path to the demo Profile GDS file is located in this package
dataDir <- system.file("extdata/demoKNNSynthetic"”, package="RAIDS")

# The name of the synthetic study
studyID <- "MYDATA.Synthetic”



32 demoPCASyntheticProfiles

samplesRM <- c("HGQ0246", "HGO©325", "HGOO611", "HGO1173", "HGO2165",
"HG@1112", "HGO1615", "HGO1968", "HGO2658", "HGO1850", "HGO2013",
"HG02465", "HG02974", "HGO3814", "HG@3445", "HGO3689", "HGO3789",
"NA12751", "NA19107", "NA18548", "NA19075", "NA19475", "NA19712",
"NA19731", "NA20528", "NA20908")

names(samplesRM) <- c("GBR", "FIN", "CHS","PUR", "CDX", "CLM", "IBS",
"PEL", "PJL", "KHV", "ACB", "GWD", "ESN", "BEB", "MSL", "STu", "ITU",
"CEU", "YRI", "CHB", "JPT", "LWK", "ASW", "MXL", "TSI", "GIH")

## Open the Profile GDS file
gdsProfile <- snpgdsOpen(file.path(dataDir, "ex1.gds"))

## Projects synthetic profiles on demo 1KG PCA

results <- computePCAMultiSynthetic(gdsProfile=gdsProfile,
1istPCA=demoPCA1KG, sampleRef=samplesRM, studyIDSyn=studyID,
verbose=FALSE)

## The eigenvectors for the synthetic profiles
head(results$eigenvector)

## Close Profile GDS file (important)
closefn.gds(gdsProfile)

demoPCASyntheticProfiles

The PCA result of demo synthetic profiles projected on the demo subset
1KG reference PCA.

Description

The objectis a list.

Usage

data(demoPCASyntheticProfiles)

Format

The 1ist containing the PCA result of demo synthetic profiles projected on the demo subset 1KG
reference PCA. The list contains 3 entries:

» sample.id a character string representing the unique identifier of the synthetic profiles.

* eigenvector.ref a matrix of numeric containing the eigenvectors for the reference profiles.

* eigenvector a matrix of numeric containing the eigenvectors for the current synthetic profiles
projected on the demo PCA 1KG reference profiles.



demoPCASyntheticProfiles 33

Details

This object can be used to test the computeKNNRefSynthetic function.

Value

The list containing the PCA result of demo synthetic profiles projected on the demo subset 1KG
reference PCA. The list contains 3 entries:

» sample.id a character string representing the unique identifier of the synthetic profiles.
* eigenvector.ref a matrix of numeric containing the eigenvectors for the reference profiles.

* eigenvector a matrix of numeric containing the eigenvectors for the current synthetic profiles
projected on the demo PCA 1KG reference profiles.

See Also

» computekKNNRefSynthetic for running a k-nearest neighbors analysis on a subset of the syn-
thetic data set.

Examples

## Required library
library(gdsfmt)

## Load the demo PCA on the synthetic profiles projected on the
## demo 1KG reference PCA
data(demoPCASyntheticProfiles)

## Load the known ancestry for the demo 1KG reference profiles
data(demoKnownSuperPop1KG)

## Path to the demo Profile GDS file is located in this package
dataDir <- system.file("extdata/demoKNNSynthetic"”, package="RAIDS")

## Open the Profile GDS file
gdsProfile <- snpgdsOpen(file.path(dataDir, "ex1.gds"))

# The name of the synthetic study
studyID <- "MYDATA.Synthetic”

## Projects synthetic profiles on 1KG PCA

results <- computeKNNRefSynthetic(gdsProfile=gdsProfile,
listEigenvector=demoPCASyntheticProfiles,
listCatPop=c("EAS"”, "EUR", "AFR", "AMR", "SAS"), studyIDSyn=studyID,
spRef=demoKnownSuperPop1KG)

## The inferred ancestry for the synthetic profiles for different values
## of D and K
head(results$matkNN)

## Close Profile GDS file (important)
closefn.gds(gdsProfile)



34 demoPedigreeEx 1

demoPedigreeEx1 The pedigree information about a demo profile called ’ex1’.

Description

The object is a data. frame.

Usage

data(demoPedigreeEx1)

Format

The data. frame containing the information about a demo profile called ex1’. the data. frame has
5 columns:
* Name.ID a character string representing the unique identifier of the profile.

» Case.ID a character string representing the unique identifier of the case associated to the
profile.

» Sample.Type a character string describing the type of profile.
* Diagnosis a character string describing the diagnosis of the profile.

* Source a character string describing the source of the profile.

Details

This object can be used to test the runExomeAncestry function.

Value

The data. frame containing the information about a demo profile called ex1’. the data. frame has
5 columns:
* Name.ID a character string representing the unique identifier of the profile.

* Case.ID a character string representing the unique identifier of the case associated to the
profile.

Sample.Type a character string describing the type of profile.

» Diagnosis a character string describing the diagnosis of the profile.

Source a character string describing the source of the profile.

See Also

e runExomeAncestry for running runs most steps leading to the ancestry inference call on a
specific exome profile.



demoPedigreeEx 1 35

Examples

## Required library for GDS
library(SNPRelate)

## Path to the demo 1KG GDS file is located in this package
dataDir <- system.file("extdata”, package="RAIDS")

HHHHHHAREEEH AR R A
## Load the information about the profile

HHHHHHHHHEHEHE AR AR AR
data(demoPedigreeEx1)

head(demoPedigreeEx1)

HHHHHHARHEEE R A
## The 1KG GDS file and the 1KG SNV Annotation GDS file

## need to be located in the same directory

## Note that the 1KG GDS file used for this example is a

## simplified version and CANNOT be used for any real analysis
HEHHHHHHHEEHE AR AR
path1KG <- file.path(dataDir, "tests")

fileReferenceGDS <- file.path(path1KG, "ex1_good_small_1KG.gds")
fileAnnotGDS <- file.path(path1KG, "ex1_good_small_1KG_Annot.gds")

S
## The Sample SNP pileup files (one per sample) need

## to be located in the same directory.
S
pathGeno <- file.path(dataDir, "example"”, "snpPileup")

HEHHHHHHEEEE AR HEHHREEEEHHHHH R
## The path where the Profile GDS Files (one per sample)

## will be created need to be specified.

HEHHHHHRHHEE AR HPHHREEEEHHHHHEHHHHHREEEEHEHHEHHRHHEHHRR
pathProfileGDS <- file.path(tempdir(), "out.tmp")

pathOut <- file.path(tempdir(), "res.out")

HHHEHHHEEEEE AR AR A

## A data frame containing general information about the study

## is also required. The data frame must have

## those 3 columns: "studyID", "study.desc”, "study.platform”

HEHHHHHREEHHEEEHEHEHEHAEHRREHBHEEHHRHEHEHRHEEEHEEHEEH AR

studyDF <- data.frame(study.id="MYDATA",
study.desc="Description”,
study.platform="PLATFORM",
stringsAsFactors=FALSE)

HHHEHHAREEEE SRR AR AR
## Fix seed to ensure reproducible results
HHHHHHAHEEE AR AR A



36 estimateAllelicFraction

set.seed(2043)

gds1KG <- snpgdsOpen(fileReferenceGDS)
dataRef <- select1KGPop(gds1KG, nbProfiles=2L)
closefn.gds(gds1KG)

## Required library for this example to run correctly
if (requireNamespace("GenomeInfoDb"”, quietly=TRUE) &&
requireNamespace("BSgenome.Hsapiens.UCSC.hg38", quietly=TRUE)) {

## Chromosome length information
## chr23 is chrX, chr24 is chrY and chrM is 25
chrinfo <- GenomeInfoDb: :seqlengths(BSgenome.Hsapiens.UCSC.hg38: :Hsapiens)[1:25]

runExomeAncestry (pedStudy=demoPedigreeEx1, studyDF=studyDF,
pathProfileGDS=pathProfileGDS,
pathGeno=pathGeno, pathOut=pathOut,
fileReferenceGDS=fileReferenceGDS,
fileReferenceAnnotGDS=fileAnnotGDS,
chrinfo=chrinfo, syntheticRefDF=dataRef,
genoSource="snp-pileup”)

unlink(pathProfileGDS, recursive=TRUE, force=TRUE)
unlink(pathOut, recursive=TRUE, force=TRUE)

estimateAllelicFraction
Estimate the allelic fraction of the pruned SNV for a specific profile

Description

The function estimates the allelic fraction of the SN'Vs for a specific profile and add the information
to the associated Profile GDS file. The allelic fraction estimation method is adapted to the type of
study (DNA or RNA).

Usage

estimateAllelicFraction(
gdsReference,
gdsProfile,
currentProfile,
studyID,
chrinfo,
studyType = c("DNA", "RNA"),
minCov = 10L,



estimateAllelicFraction 37

minProb = 0.999,
eProb = 0.001,
cutOffLOH = -5,
cutOffHomoScore = -3,
wAR = 9,

cutOffAR = 3,
gdsRefAnnot = NULL,
blockID = NULL,
verbose = FALSE

Arguments

gdsReference an object of class gds. class (a GDS file), the opened Reference GDS file.

gdsProfile an object of class gds . class (a GDS file), the opened Profile GDS file.

currentProfile acharacter string corresponding to the sample identifier as used in pruningSample
function.

studyID a character string corresponding to the name of the study as used in pruningSample
function.

chrinfo a vector of integer values representing the length of the chromosomes. See

’details’ section.

studyType a character string representing the type of study. The possible choices are:
"DNA" and "RNA". The type of study affects the way the estimation of the
allelic fraction is done. Default: "DNA".

minCov a single positive integer representing the minimum required coverage. Default:
10L.

minProb asingle numeric between 0 and 1 representing the probability that the calculated
genotype call is correct. Default: @.999.

eProb a single numeric between 0 and 1 representing the probability of sequencing
error. Default: 0.001.

cutOffLOH a single numeric representing the cutoff, in log, for the homozygote score to
assign a region as LOH. Default: -5.

cutOffHomoScore

a single numeric representing the cutoff, in log, that the SNVs in a block are
called homozygote by error. Default: -3.

wAR a single positive integer representing the size-1 of the window used to compute
an empty box. Default: 9.

cutOffAR a single numeric representing the cutoff, in log score, that the SNVs in a gene
are allelic fraction different 0.5 Default: 3.

gdsRefAnnot an object of class gds.class (a GDS file), the opened Reference SNV Annota-
tion GDS file. This parameter is RNA specific. Default: NULL.

blockID a character string corresponding to the block identifier in gdsRefAnnot. This
parameter is RNA specific. Default: NULL

verbose a logicial indicating if the function should print message when running. De-
fault: FALSE.



38 estimateAllelicFraction

Details

The chrinfo parameter contains the length of the chromosomes. The length of the chromosomes
can be obtain through the seqlengths library.

As example, for hg38 genome:

if (requireNamespace("GenomeInfoDb", quietly=TRUE) &&
requireNamespace ("BSgenome.Hsapiens.UCSC.hg38", quietly=TRUE)) {
chrinfo <- GenomeInfoDb: :seqlengths(BSgenome.Hsapiens.UCSC.hg38: :Hsapiens)[1:25]

Value

The integer OL when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

## Required library for GDS
library(gdsfmt)

## Path to the demo 1KG GDS file located in this package
dataDir <- system.file("extdata/tests"”, package="RAIDS")
fileGDS <- file.path(dataDir, "ex1_good_small_1KG.gds")

## Profile GDS file for one profile
fileProfile <- file.path(tempdir(), "ex1.gds")

## Copy the Profile GDS file demo that has been pruned and annotated

## into current directory

file.copy(file.path(dataDir, "ex1_demo_with_pruning_and_1KG_annot.gds"),
fileProfile)

## Open the reference GDS file (demo version)
gds1KG <- snpgdsOpen(fileGDS)

## Profile GDS file for one profile
profileGDS <- openfn.gds(fileProfile, readonly=FALSE)

## Required library for this example to run correctly
if (requireNamespace("GenomeInfoDb"”, quietly=TRUE) &&
requireNamespace("BSgenome.Hsapiens.UCSC.hg38", quietly=TRUE)) {

## Chromosome length information
## chr23 is chrX, chr24 is chrY and chrM is 25
chrinfo <- GenomeInfoDb: :seqlengths(BSgenome.Hsapiens.UCSC.hg38: :Hsapiens)[1:25]

## Estimate the allelic fraction of the pruned SNVs



generateGDS1KG 39

estimateAllelicFraction(gdsReference=gds1KG, gdsProfile=profileGDS,
currentProfile="ex1", studyID="MYDATA", chrInfo=chrInfo,
studyType="DNA", minCov=10L, minProb=0.999, eProb=0.001,
cutOffLOH=-5, cutOffHomoScore=-3, wAR=9, cutOffAR=3,
gdsRefAnnot=NULL, blockID=NULL)

## The allelic fraction is saved in the 'lap' node of Profile GDS file
## The 'lap' entry should be present
profileGDS

## Close both GDS files (important)
closefn.gds(profileGDS)
closefn.gds(gds1KG)

## Remove Profile GDS file (created for demo purpose)
unlink(fileProfile, force=TRUE)

}
generateGDS1KG Generate the GDS file that will contain the information from Reference
data set (reference data set)
Description

This function generates the GDS file that will contain the information from Reference. The function

also add the samples information, the SNP information and the genotyping information into the
GDS file.

Usage

generateGDSTKG(
pathGeno = file.path("data”, "sampleGeno"),
filePedRDS,
fileSNVIndex,
fileSNVSelected,
fileNameGDS,
listSamples = NULL,
verbose = FALSE

Arguments

pathGeno a character string representing the path where the 1K genotyping files for
each sample are located. The name of the genotyping files must correspond
to the individual identification (Individual.ID) in the pedigree file. Default:
"./data/sampleGeno”.



40 generateGDS1KG

filePedRDS a character string representing the path and file name of the RDS file that
contains the pedigree information. The file must exist. The file must be a RDS
file.

fileSNVIndex  a character string representing the path and file name of the RDS file that
contains the indexes of the retained SNPs. The file must exist. The file must be
a RDS file.

fileSNVSelected
a character string representing the path and file name of the RDS file that
contains the filtered SNP information. The file must exist. The file must be a
RDS file.

fileNameGDS a character string representing the path and file name of the GDS file that
will be created. The GDS file will contain the SNP information, the genotyping
information and the pedigree information from 1000 Genomes. The extension
of the file must be ’.gds’.

listSamples a vector of character string corresponding to samples (must be the sam-
ple.ids) that will be retained and added to the GDS file. When NULL, all the
samples are retained. Default: NULL.

verbose a logical indicating if the funciton must print messages when running. Default:
FALSE.

Details

More information about GDS file format can be found at the Bioconductor gdsfmt website: https://bioconductor.org/packages

Value

The integer OL when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

## Path to the demo pedigree file is located in this package
dataDir <- system.file("extdata"”, package="RAIDS")

## Path to the CSV genoytype files
pathGeno <- file.path(dataDir, "demoProfileGenotypes")

## The RDS file containing the pedigree information
pedigreeFile <- file.path(dataDir, "PedigreeReferenceDemo.rds")

## The RDS file containing the indexes of the retained SNPs
snpIndexFile <- file.path(dataDir, "listSNPIndexes_Demo.rds")

## The RDS file containing the filtered SNP information
filterSNVFile <- file.path(dataDir, "mapSNVSelected_Demo.rds")



generateMapSnvSel 41

## Temporary Reference GDS file
tempRefGDS <- file.path(tempdir(), "1KG_TEMP.gds")

## Create a temporary Reference GDS file

generateGDS1KG(pathGeno=pathGeno, filePedRDS=pedigreeFile,
fileSNVIndex=snpIndexFile, fileSNVSelected=filterSNVFile,
fileNameGDS=tempRefGDS, listSamples=NULL)

## Remove temporary files
unlink(tempRefGDS, force=TRUE)

generateMapSnvSel Generate the filter SNP information file in RDS format

Description

The function applies a cut-off filter to the SNP information file to retain only the SNP that have a
frequency superior or equal to the specified cut-off in at least one super population. The information
about the retained SNPs is saved in a RDS format file. A RDS file containing the indexes of the
retained SNP is also created.

Usage
generateMapSnvSel (cutOff = 0.01, fileSNV, fileSNPsRDS, fileFREQ)

Arguments
cutOff a single numeric value, the cut-off for the frequency in at least one super popu-
lation. Default: @.01.
fileSNV a character string representing the path and file name of the bulk SNP infor-

mation file from Reference. The file must be in text format. The file must exist.

fileSNPsRDS a character string representing the path and file name of the RDS file that will
contain the indexes of the retained SNPs. The file extension must be ’.rds’.

fileFREQ a character string representing the path and file name of the RDS file that will
contain the filtered SNP information. The file extension must be *.rds’.

Details

The filtered SNP information RDS file (parameter fileFREQ), contains a data.frame with those
columns:

* CHROM a character string representing the chromosome where the SNV is located.

* POS a character string representing the SNV position on the chromosome.

* REF a character string representing the reference DNA base for the SN'V.

* ALT a character string representing the alternative DNA base for the SNV.\



42 generatePhase [ KG2GDS

EAS_AF a character string representing the allele frequency of the EAS super population.
* AFR_AF a character string representing the allele frequency of the AFR super population.
* AMR_AF a character string representing the allele frequency of the AMR super population.
* SAS_AF a character string representing the allele frequency of the SAS super population.

Value

The integer @ when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

## Path to the demo pedigree file is located in this package
dataDir <- system.file("extdata”, package="RAIDS")

## Demo SNV information file used as input
snvFile <- file.path(dataDir, "matFreqSNV_Demo.txt.bz2")

## Temporary output files

## The first file contains the indexes of the retained SNPs
## The second file contains the filtered SNP information
snpIndexFile <- file.path(tempdir(), "1listSNP_TEMP.rds")
filterSNVFile <- file.path(tempdir(), "mapSNVSel_TEMP.rds")

## Create a data.frame containing the information of the retained

## samples (samples with existing genotyping files)

generateMapSnvSel (cutOff=0.01, fileSNV=snvFile,
fileSNPsRDS=snpIndexFile, fileFREQ=filterSNVFile)

## Remove temporary files
unlink(snpIndexFile, force=TRUE)
unlink(filterSNVFile, force=TRUE)

generatePhaselKG2GDS  Adding the phase information into the Reference GDS file

Description

The function is adding the phase information into the Reference Phase GDS file. The phase infor-
mation is extracted from a Reference GDS file and is added into a Reference Phase GDS file. An
entry called ’phase’ is added to the Reference Phase GDS file.



generatePhase IKG2GDS 43

Usage

generatePhase1KG2GDS (
gdsReference,
gdsReferencePhase,
pathGeno,
fileSNPsRDS,
verbose = FALSE

Arguments

gdsReference an object of class gds.class (GDS file), an opened Reference GDS file.
gdsReferencePhase
an object of class gds.class (GDS file), an opened Reference Phase GDS file.

pathGeno a character string representing the path where the 1K genotyping files for
each sample are located. The name of the genotyping files must correspond
to the individual identification (Individual.ID) in the pedigree file. Default:
"./data/sampleGeno”.

fileSNPsRDS a character string representing the path and file name of the RDS file that
contains the indexes of the retained SNPs. The file must exist. The file must be
a RDS file.

verbose a logicial indicating if the function should print messages when running. De-
fault: FALSE.

Value

The function returns 0L when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

## Required package
library(gdsfmt)

## Path to the demo pedigree file is located in this package
dataDir <- system.file("extdata"”, package="RAIDS")

## Path where the demo genotype CSV files are located
pathGeno <- file.path(dataDir, "demoProfileGenotypes")

## The RDS file containing the pedigree information
pedigreeFile <- file.path(dataDir, "PedigreeReferenceDemo.rds")

## The RDS file containing the indexes of the retained SNPs
snpIndexFile <- file.path(dataDir, "listSNPIndexes_Demo.rds")



44 getRef1 KGPop

## The RDS file containing the filtered SNP information
filterSNVFile <- file.path(dataDir, "mapSNVSelected_Demo.rds")

## Temporary Reference GDS file containing reference information
fileReferenceGDS <- file.path(tempdir(), "1KG_TEMP_02.gds")

## Create a temporary Reference GDS file containing information from 1KG

generateGDS1KG(pathGeno=pathGeno, filePedRDS=pedigreeFile,
fileSNVIndex=snpIndexFile, fileSNVSelected=filterSNVFile,
fileNameGDS=fileReferenceGDS, listSamples=NULL)

## Temporary Phase GDS file that will contain the 1KG Phase information
fileRefPhaseGDS <- file.path(tempdir(), "1KG_TEMP_Phase_02.gds")

## Create Reference Phase GDS file
gdsPhase <- createfn.gds(fileRefPhaseGDS)

## Open Reference GDS file
gdsRef <- openfn.gds(fileReferenceGDS)

## Fill temporary Reference Phase GDS file
if (FALSE) {
generatePhase1KG2GDS (gdsReference=gdsRef,
gdsReferencePhase=gdsPhase,
pathGeno=pathGeno, fileSNPsRDS=filterSNVFile,
verbose=FALSE)
3

## Close Reference Phase information file
closefn.gds(gdsPhase)

## Close Reference information file
closefn.gds(gdsRef)

## Remove temporary files
unlink(fileReferenceGDS, force=TRUE)
unlink(fileRefPhaseGDS, force=TRUE)

getRef1KGPop Extract the specified column from the 1KG GDS ’sample.ref’ node for
the reference profiles (real ancestry assignation)

Description

The function extract the specified column for the ’sample.ref’” node present in the Reference GDS
file. The column must be present in the data. frame saved in the ’sample.ref’ node. Only the infor-
mation for the reference profiles is returned. The values represent the known ancestry assignation.



groupChr1KGSNV 45

Usage

getRef1KGPop(gdsReference, popName = "superPop")

Arguments

gdsReference  an object of class gds.class (a GDS file), the opened Reference GDS file.

popName a character string representing the name of the column that will be fetched in
the data. frame present in the Reference GDS "sample.ref" node. The column
must be present in the data. frame. Default: "superPop”.

Value

vector of character strings representing the content of the extracted column for the 1KG GDS
’sample.ref’ node. The values represent the known ancestry assignation. The profile identifiers are
used as names for the vector.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

## Required library
library(gdsfmt)

## Path to the demo pedigree file is located in this package
dataDir <- system.file("extdata"”, package="RAIDS")

## Open existing demo 1K GDS file with "sample.ref” node
nameFileGDS <- file.path(dataDir, "PopulationReferenceDemo.gds")
fileGDS <- snpgdsOpen(nameFileGDS)

## Extract super population information for the 1KG profiles
getRef1KGPop(gdsReference=fileGDS, popName="superPop”)

## Close 1K GDS file
closefn.gds(fileGDS)

groupChri1KGSNV Merge the genotyping files per chromosome into one file

Description

This function merge all the genotyping files associated to one specific sample into one file. That
merged VCF file will be saved in a specified directory and will have the name of the sample. It will
also be compressed (bzip). The function will merge the files for all samples present in the input
directory.



46 groupChrIKGSNV

Usage

groupChr1KGSNV (pathGenoChr, pathOut)

Arguments
pathGenoChr a character string representing the path where the genotyping files for each
sample and chromosome are located. The path must contains sub-directories
(one per chromosome) and the genotyping files must be present in those sub-
directories. The path must exists.
pathOut a character string representing the path where the merged genotyping files for
each sample will be created. The path must exists.
Value

The integer OL when successful or FALSE if not.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

## Path to the demo vcf files in this package
dataDir <- system.file("extdata”, package="RAIDS")
pathGenoTar <- file.path(dataDir, "demoGenoChr"”, "demoGenoChr.tar")

## Path where the chromosomes files will be located
pathGeno <- file.path(tempdir(), "tempGeno")
dir.create(pathGeno, showWarnings=FALSE)

## Untar the file that contains the VCF files for 3 samples split by
## chromosome (one directory per chromosome)
untar(tarfile=pathGenoTar, exdir=pathGeno)

## Path where the output VCF file will be created is
## the same where the split VCF are (pathGeno)

## The files must not exist

if (!file.exists(file.path(pathGeno, "NA12003.csv.bz2")) &&
Ifile.exists(file.path(pathGeno, "NA12004.csv.bz2")) &&
Ifile.exists(file.path(pathGeno, "NA12005.csv.bz2"))) {

## Return @ when successful

## The files "NA12003.csv.bz2", "NA12004.csv.bz2" and

## "NA12005.csv.bz2" should not be present in the current directory
groupChr1KGSNV (pathGenoChr=pathGeno, pathOut=pathGeno)

## Validate that files have been created

file.exists(file.path(pathGeno, "NA12003.csv.bz2"))
file.exists(file.path(pathGeno, "NA12004.csv.bz2"))
file.exists(file.path(pathGeno, "NA12005.csv.bz2"))



identifyRelative 47

}

## Remove temporary directory
unlink(pathGeno, recursive=TRUE, force=TRUE)

identifyRelative Identify genetically unrelated patients in GDS Reference file

Description

The function identify patients that are genetically related in the Reference file. It generates a first
RDS file with the list of unrelated patient. It also generates a second RDS file with the kinship
coefficient between the patients.

Usage

identifyRelative(gds, maf = 0.05, thresh = 2*(-11/2), filelBD, filePart)

Arguments
gds an object of class SNPRelate: : SNPGDSFileClass, the Reference GDS file.
maf a single numeric representing the threshold for the minor allele frequency. Only
the SNPs with ">= maf" will be used. Default: 0. 05.
thresh a single numeric representing the threshold value used to decide if a pair of
individuals is ancestrally divergent. Default: 24 (-11/2).
fileIBD a character string representing the path and file name of the RDS file that
will be created. The RDS file will contain the kinship coefficient between the
patients. The extension of the file must be *.rds’.
filePart a character string representing the path and file name of the RDS file that
will be created. The RDS file will contain the information about the Reference
patients that are unrelated. The file will contains two lists: the list of related
samples, called rels and the list of unrelated samples, called unrels. The
extension of the file must be *.rds’.
Value

NULL invisibly.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz



48 identifyRelative

Examples

## Required package
library(gdsfmt)

## Path to the demo pedigree file is located in this package
dataDir <- system.file("extdata"”, package="RAIDS")

## Open existing demo Reference GDS file
fileGDS <- file.path(dataDir, "PopulationReferenceDemo.gds")
tmpGDS <- snpgdsOpen(fileGDS)

## Temporary output files

## The first RDS file will contain the list of unrelated patients

## The second RDS file will contain the kinship information between patients
patientTmpFile <- "unrelatedPatients_TEMP.rds"

ibdTmpFile <- "ibd_TEMP.rds"

## Different code depending of the withr package availability
if (requireNamespace("withr"”, quietly=TRUE)) {

## Temporary output files

## The first RDS file will contain the list of unrelated patients
## The second RDS file will contain the kinship information

## between patients

patientTmpFileLocal <- withr::local_file(patientTmpFile)
ibdTmpFileLocal <- withr::local_file(ibdTmpFile)

## Identify unrelated patients in demo Reference GDS file
identifyRelative(gds=tmpGDS, maf=0.05, thresh=2*(-11/2),
fileIBD=ibdTmpFileLocal, filePart=patientTmpFilelLocal)

## Close demo Reference GDS file
closefn.gds(tmpGDS)

## Remove temporary files
withr: :deferred_run()

} else {

## Identify unrelated patients in demo Reference GDS file
identifyRelative(gds=tmpGDS, maf=0.05, thresh=2*(-11/2),
fileIBD=ibdTmpFile, filePart=patientTmpFile)

## Close demo Reference GDS file
closefn.gds(tmpGDS)

## Remove temporary files
unlink(patientTmpFile, force=TRUE)
unlink(ibdTmpFile, force=TRUE)



matKNNSynthetic 49

matkKNNSynthetic A small data. frame containing the inferred ancestry on the synthetic

profiles.

Description

The object is a data. frame with 4 columns.

Usage

data(matkKNNSynthetic)

Format

The data. frame containing the information about the synthetic profiles. The data. frame contains
4 columns:

Details

sample.id a character string representing the unique synthetic profile identifier.

D a numeric representing the number of dimensions used to infer the ancestry of the synthetic
profile.

K a numeric representing the number of neighbors used to infer the ancestry of the synthetic
profile.

SuperPop a character string representing the inferred ancestry of the synthetic profile for
the specific D and K values.

This dataset can be used to test the computeSyntheticROC function.

Value

The data. frame containing the information about the synthetic profiles. The data. frame contains
4 columns:

See Also

sample.id a character string representing the unique synthetic profile identifier.

D a numeric representing the number of dimensions used to infer the ancestry of the synthetic
profile.

K a numeric representing the number of neighbors used to infer the ancestry of the synthetic
profile.

SuperPop a character string representing the inferred ancestry of the synthetic profile for
the specific D and K values.

computeSyntheticROC for calculating the AUROC of the inferences for specific values of D
and K using the inferred ancestry results from the synthetic profiles



50 pedSynthetic

Examples

## Loading demo dataset containing pedigree information for synthetic
## profiles
data(pedSynthetic)

## Loading demo dataset containing the inferred ancestry results
## for the synthetic data
data(matKNNSynthetic)

## Retain one K and one D value
matkKNN <- matKNNSynthetic[matKNNSynthetic$D == 5 & matkKNNSynthetic$K == 4, ]

## Compile statistics from the

## synthetic profiles for fixed values of D and K

results <- RAIDS:::computeSyntheticROC(matKNN=matKkNN,
matkKNNAncestryColumn="SuperPop"”,
pedCall=pedSynthetic, pedCallAncestryColumn="superPop”,
listCall=c("EAS", "EUR", "AFR", "AMR", "SAS"))

results$matAUROC.ALl
results$matAUROC.Call
results$listR0OC.Call

pedSynthetic A small data.frame containing the information related to synthetic
profiles. The ancestry of the profiles used to generate the synthetic
profiles must be present.

Description
The object is a data. frame with 7 columns. The row names of the data. frame must be the profile
unique identifiers.

Usage

data(pedSynthetic)

Format

The data.frame containing the information about the synthetic profiles. The row names of the
data. frame correspond to the profile unique identifiers. The data. frame contains 7 columns:
* data.id a character string representing the unique synthetic profile identifier.

e case.id a character string representing the unique profile identifier that was used to gener-
ate the synthetic profile.

* sample. type a character string representing the type of profile.



pedSynthetic 51

Details

diagnosis a character string representing the diagnosis of profile that was used to generate
the synthetic profile.

source a character string representing the source of the synthetic profile.

study. id a character string representing the name of the study to which the synthetic profile
is associated.

superPop a character string representing the super population of the profile that was used
to generate the synthetic profile.

This dataset can be used to test the computeSyntheticROC function.

Value

The data.frame containing the information about the synthetic profiles. The row names of the
data. frame correspond to the profile unique identifiers. The data. frame contains 7 columns:

See Also

data.id a character string representing the unique synthetic profile identifier.

case.id a character string representing the unique profile identifier that was used to gener-
ate the synthetic profile.

sample.type a character string representing the type of profile.

diagnosis a character string representing the diagnosis of profile that was used to generate
the synthetic profile.

source a character string representing the source of the synthetic profile.

study. id a character string representing the name of the study to which the synthetic profile
is associated.

superPop a character string representing the super population of the profile that was used
to generate the synthetic profile.

computeSyntheticROC for calculating the AUROC of the inferences for specific values of D
and K using the inferred ancestry results from the synthetic profiles

Examples

## Loading demo dataset containing pedigree information for synthetic
## profiles
data(pedSynthetic)

## Loading demo dataset containing the inferred ancestry results
## for the synthetic data
data(matKNNSynthetic)

## Retain one K and one D value
matkKNN <- matKNNSynthetic[matKNNSynthetic$D == 5 & matKNNSynthetic$K == 4, ]

## Compile statistics from the



52 prepPed1 KG

## synthetic profiles for fixed values of D and K

results <- RAIDS:::computeSyntheticROC(matKNN=matKNN,
matkKNNAncestryColumn="SuperPop"”,
pedCall=pedSynthetic, pedCallAncestryColumn="superPop”,
listCall=c(”EAS", "EUR", "AFR”, "AMR", "SAS"))

results$matAUROC.A1l
results$matAUROC.Call
results$listR0OC.Call

prepPedl1KG Prepare the pedigree file using pedigree information from Reference

Description

Using the pedigree file from Reference, this function extracts needed information and formats it into
a data.frame so in can be used in following steps of the ancestry inference process. The function
also requires that the genotyping files associated to each sample be available in a specified directory.

Usage
prepPed1KG(filePed, pathGeno = file.path("data", "sampleGeno"), batch = oL)

Arguments

filePed a character string representing the path and file name of the pedigree file (PED
file) that contains the information related to the profiles present in the Reference
GDS file. The PED file must exist.

pathGeno a character string representing the path where the Reference genotyping files
for each profile are located. Only the profiles with associated genotyping files
are retained in the creation of the final data.frame. The name of the genotyp-
ing files must correspond to the individual identification (Individual.ID) in the
pedigree file (PED file). Default: "./data/sampleGeno”.

batch ainteger that uniquely identifies the source of the pedigree information. The
Reference is usually QL. Default: L.

Value

a data. frame containing the needed pedigree information from Reference. The data.frame con-
tains those columns:

» sample.ida character string representing the profile unique ID.

* Name.IDa character string representing the profile name.

* sexa character string representing the sex of the profile.

* pop.groupa character string representing the sub-continental ancestry of the profile.
 superPop a character string representing the continental ancestry of the profile.

* superPop a integer representing the batch of the profile.



prepSynthetic 53

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

## Path to the demo pedigree file is located in this package
dataDir <- system.file("extdata"”, package="RAIDS")

## Path where the demo genotype CSV files are located
pathGeno <- file.path(dataDir, "demoProfileGenotypes")

## Demo pedigree file
pedDemoFile <- file.path(dataDir, "PedigreeDemo.ped")

## Create a data.frame containing the information of the retained
## samples (samples with existing genotyping files)
prepPed1KG(filePed=pedDemoFile, pathGeno=pathGeno, batch=0L)

prepSynthetic Add information related to the synthetic profiles (study and synthetic
reference profiles information) into a Profile GDS file

Description

This function add entries related to synthetic profiles into a Profile GDS file. The entries are related
to two types of information: the synthetic study and the synthetic profiles.

The study information is appended to the Profile GDS file "study.list" node. The "study.platform"
entry is always set to ’Synthetic’.

The profile information, for all selected synthetic profiles, is appended to the Profile GDS file
"study.annot" node. Both the "Source" and the "Sample.Type" entries are always set to ’Synthetic’.

The synthetic profiles are assigned unique names by combining: prefix.data.id.profile.listSampleRef.simulation
number (1 to nbSim)

Usage

prepSynthetic(
fileProfileGDS,
listSampleRef,
profilelD,
studyDF,
nbSim = 1L,
prefix = "",
verbose = FALSE



54 prepSynthetic

Arguments

fileProfileGDS a character string representing the file name of the Profile GDS file contain-
ing the information about the reference profiles used to generate the synthetic
profiles.

listSampleRef a vector of character string representing the identifiers of the selected 1KG
profiles that will be used as reference to generate the synthetic profiles.

profileID acharacter string representing the profile identifier present in the fileProfileGDS
that will be used to generate synthetic profiles.

studyDF a data.frame containing the information about the study associated to the anal-
ysed sample(s). The data.frame must have those 2 columns: "study.id" and
"study.desc". Those 2 columns must be in character strings (no factor). Other
columns can be present, such as "study.platform", but won’t be used.

nbSim a single positive integer representing the number of simulations per combina-
tion of sample and 1KG reference. Default: 1L.

prefix a single character string representing the prefix that is going to be added to
the name of the synthetic profile. The prefix enables the creation of multiple
synthetic profile using the same combination of sample and 1KG reference. De-
fault: "".

verbose a logical indicating if messages should be printed to show how the different
steps in the function. Default: FALSE.
Value

oL when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

## Required library
library(gdsfmt)

## Path to the demo 1KG GDS file is located in this package
dataDir <- system.file("extdata/tests"”, package="RAIDS")

## Temporary Profile GDS file
fileNameGDS <- file.path(tempdir(), "ex1.gds")

## Copy the Profile GDS file demo that has been pruned and annotated
file.copy(file.path(dataDir, "ex1_demo_with_pruning_and_1KG_annot.gds"),
fileNameGDS)

## Information about the synthetic data set

syntheticStudyDF <- data.frame(study.id="MYDATA.Synthetic",
study.desc="MYDATA synthetic data”, study.platform="PLATFORM",
stringsAsFactors=FALSE)



pruningSample 55

## Add information related to the synthetic profiles into the Profile GDS
prepSynthetic(fileProfileGDS=fileNameGDS,
listSampleRef=c("HGO0243", "HGO®150"), profileID="ex1",
studyDF=syntheticStudyDF, nbSim=1L, prefix="synthetic",
verbose=FALSE)

## Open Profile GDS file
profileGDS <- openfn.gds(fileNameGDS)

## The synthetic profiles should be added in the 'study.annot' entry
tail(read.gdsn(index.gdsn(profileGDS, "study.annot")))

## The synthetic study information should be added to
## the 'study.list' entry
tail(read.gdsn(index.gdsn(profileGDS, "study.list")))

## Close GDS file (important)
closefn.gds(profileGDS)

## Remove Profile GDS file (created for demo purpose)
unlink(fileNameGDS, force=TRUE)

pruningSample Compute the list of pruned SNVs for a specific profile using the in-
formation from the Reference GDS file and a linkage disequilibrium
analysis
Description

This function computes the list of pruned SNVs for a specific profile. When a group of SNVs are
in linkage disequilibrium, only one SNV from that group is retained. The linkage disequilibrium
is calculated with the snpgdsLDpruning() function. The initial list of SN'Vs that are passed to the
snpgdsLDpruning() function can be specified by the user.

Usage

pruningSample(
gdsReference,
method = c("corr”, "r",
currentProfile,
studyID,
1istSNP = NULL,
slideWindowMaxBP = 500000L,
thresholdlLD = sqrt(0.1),
np = 1L,
verbose = FALSE,

"dprime”, "composite"”),



56

pruningSample

chr = NULL,
superPopMinAF = NULL,
keepPrunedGDS = TRUE,
pathProfileGDS = NULL,
keepFile = FALSE,

pathPrunedGDS = ".",
outPrefix = "pruned”
)
Arguments
gdsReference an object of class gds.class (a GDS file), the 1 KG GDS file (reference data set).
method a character string that represents the method that will be used to calculate
the linkage disequilibrium in the snpgdsLDpruning() function. The 4 possible
values are: "corr", "r", "dprime" and "composite". Default: "corr”.
currentProfile a character string corresponding to the profile identifier used in LD pruning

st

1i

sl

th

np

ve

ch

Su

ke

pa

ke

done by the snpgdsLDpruning() function. A Profile GDS file corresponding to
the profile identifier must exist and be located in the pathProfileGDS directory.

udyID a character string corresponding to the study identifier used in the snpgdsLDpruning

function. The study identifier must be present in the Profile GDS file.

stSNP a vector of SNVs identifiers specifying selected to be passed the the pruning
function; if NULL, all SNVs are used in the snpgdsLDpruning function. Default:
NULL.

ideWindowMaxBP

a single positive integer that represents the maximum basepairs (bp) in the slid-

ing window. This parameter is used for the LD pruning done in the snpgdsLDpruning

function. Default: 500000L.

resholdLD a single numeric value that represents the LD threshold used in the snpgdsLDpruning

function. Default: sqrt(0.1).

a single positive integer specifying the number of threads to be used. Default:
1L.

rbose alogicial indicating if information is shown during the process in the snpgdsLDpruning

function. Default: FALSE.

r a character string representing the chromosome where the selected SNV should
belong. Only one chromosome can be handled. If NULL, the chromosome is not
used as a filtering criterion. Default: NULL.

perPopMinAF  a single positive numeric representing the minimum allelic frequency used to
select the SN'Vs. If NULL, the allelic frequency is not used as a filtering criterion.
Default: NULL.

epPrunedGDS a logicial indicating if the information about the pruned SNVs should be
added to the GDS Sample file. Default: TRUE.

thProfileGDS a character string representing the directory where the Profile GDS files will
be created. The directory must exist.
epFile a logical indicating if RDS files containing the information about the pruned

SNVs must be created. Default: FALSE.



pruningSample

57

pathPrunedGDS a character string representing an existing directory. The directory must exist.

Default: ".".

outPrefix a character string that represents the prefix of the RDS files that will be gen-
erated. The RDS files are only generated when the parameter keepFile=TRUE.

Default: "pruned”.

Value

The function returns 0L when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

## Required library for GDS
library(gdsfmt)

## Path to the demo Reference GDS file is located in this package
dataDir <- system.file("extdata/tests"”, package="RAIDS")
fileGDS <- file.path(dataDir, "ex1_good_small_1KG.gds")

## The data.frame containing the information about the study
## The 3 mandatory columns: "study.id”, "study.desc”, "study.platform”
## The entries should be strings, not factors (stringsAsFactors=FALSE)
studyDF <- data.frame(study.id = "MYDATA",

study.desc = "Description”,

study.platform = "PLATFORM",

stringsAsFactors = FALSE)

## The data.frame containing the information about the samples
## The entries should be strings, not factors (stringsAsFactors=FALSE)
samplePED <- data.frame(Name.ID = c("ex1", "ex2"),

Case.ID = c("Patient_h11", "Patient_h12"),

Diagnosis = rep(”Cancer”, 2),

Sample.Type = rep("Primary Tumor”, 2),

Source = rep("Databank B", 2), stringsAsFactors = FALSE)
rownames (samplePED) <- samplePED$Name.ID

## Temporary Profile GDS file
profileFile <- file.path(tempdir(), "ex1.gds")

## Copy the Profile GDS file demo that has not been pruned yet
file.copy(file.path(dataDir, "ex1_demo.gds"), profileFile)

## Open 1KG file
gds1KG <- snpgdsOpen(fileGDS)

## Compute the list of pruned SNVs for a specific profile 'ex1'
## and save it in the Profile GDS file 'ex1.gds'
pruningSample(gdsReference=gds1KG, currentProfile=c("ex1"),



58 runExomeAncestry

studyID = studyDF$study.id, pathProfileGDS=tempdir())

## Close the Reference GDS file (important)
closefn.gds(gds1KG)

## Check content of Profile GDS file

## The 'pruned.study' entry should be present
content <- openfn.gds(profileFile)

content

## Close the Profile GDS file (important)
closefn.gds(content)

## Remove Profile GDS file (created for demo purpose)
unlink(profileFile, force=TRUE)

runExomeAncestry Run most steps leading to the ancestry inference call on a specific
exome profile

Description

This function runs most steps leading to the ancestry inference call on a specific exome profile.
First, the function creates the Profile GDS file for the specific profile using the information from a
RDS Sample description file and the Population reference GDS file.

Usage
rungExomeAncestry(
pedStudy,
studyDF,
pathProfileGDS,
pathGeno,
pathOut,
fileReferenceGDS,
fileReferenceAnnotGDS,
chrinfo,
syntheticRefDF,
genoSource = c("snp-pileup”, "generic", "VCF"),
np = 1L,
verbose = FALSE
)
Arguments
pedStudy a data.frame with those mandatory columns: "Name.ID", "Case.ID", "Sam-

ple.Type", "Diagnosis", "Source". All columns must be in character strings



runExomeAncestry 59

(no factor). The data.frame must contain the information for all the samples
passed in the 1istSamples parameter. Only filePedRDS or pedStudy can be
defined.

studyDF a data.frame containing the information about the study associated to the anal-
ysed sample(s). The data. frame must have those 3 columns: "study.id", "study.desc",
"study.platform". All columns must be in character strings (no factor).

pathProfileGDS acharacter string representing the path to the directory where the GDS Profile
files will be created. Default: NULL.

pathGeno a character string representing the path to the directory containing the VCF
output of SNP-pileup for each sample. The SNP-pileup files must be com-
pressed (gz files) and have the name identifiers of the samples. A sample with
"Name.ID" identifier would have an associated file called if genoSource is "VCF",
then "Name.ID.vcf.gz", if genoSource is "generic", then "Name.ID.generic.txt.gz"
if genoSource is "snp-pileup”, then "Name.ID.txt.gz".

pathOut a character string representing the path to the directory where the output files
are created.
fileReferenceGDS

a character string representing the file name of the Reference GDS file. The
file must exist.

fileReferenceAnnotGDS
a character string representing the file name of the Population Reference GDS
Annotation file. The file must exist.

chrinfo a vector of positive integer values representing the length of the chromo-
somes. See ’details’ section.

syntheticRefDF adata.frame containing a subset of reference profiles for each sub-population
present in the Reference GDS file. The data. frame must have those columns:

* sample.id a character string representing the sample identifier.
* pop.group a character string representing the subcontinental population
assigned to the sample.

* superPop a character string representing the super-population assigned to
the sample.

genoSource a character string with two possible values: ’snp-pileup’, *generic’ or *"VCF’.
It specifies if the genotype files are generated by snp-pileup (Facets) or are a
generic format CSV file with at least those columns: *Chromosome’, Position’,
’Ref’, *Alt’, "Count’, ’FilelR’ and ’FilelA’. The 'Count’ is the depth at the
specified position; 'FileR’ is the depth of the reference allele and "File1 A’ is the
depth of the specific alternative allele. Finally the file can be a VCF file with at
least those genotype fields: GT, AD, DP.

np a single positive integer specifying the number of threads to be used. Default:
1L.
verbose a logical indicating if messages should be printed to show how the different

steps in the function. Default: FALSE.

Details

The runExomeAncestry() function generates 3 types of files in the OUTPUT directory.



60 runExomeAncestry

* Ancestry InferenceThe ancestry inference CSV file (".Ancestry.csv" file)
¢ Inference InformatonThe inference information RDS file (".infoCall.rds" file)

* Synthetic InformationThe parameter information RDS files from the synthetic inference ("KNN.synt.*.rds"
files in a sub-directory)

In addition, a sub-directory (named using the profile ID) is also created.

Value

The integer OL when successful. See details section for more information about the generated output
files.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

References

Galinsky KJ, Bhatia G, Loh PR, Georgiev S, Mukherjee S, Patterson NJ, Price AL. Fast Principal-
Component Analysis Reveals Convergent Evolution of ADHI1B in Europe and East Asia. AmJ
Hum Genet. 2016 Mar 3;98(3):456-72. doi: 10.1016/j.ajhg.2015.12.022. Epub 2016 Feb 25.

Examples

## Required library for GDS
library(SNPRelate)

## Path to the demo 1KG GDS file is located in this package
dataDir <- system.file("extdata"”, package="RAIDS")

B R T e a i S e i it i i i e
## Load the information about the profile

HHHEHHHEEEE AR R AR
data(demoPedigreeEx1)

head (demoPedigreeEx1)

HEHHHHHHEEEE A EHHEHHREEREHHHHHEHHEHEREEEEHEEHEEE R
## The 1KG GDS file and the 1KG SNV Annotation GDS file

## need to be located in the same directory

## Note that the 1KG GDS file used for this example is a

## simplified version and CANNOT be used for any real analysis
HHHEHHEEEEE AR AR AR
path1KG <- file.path(dataDir, "tests")

fileReferenceGDS <- file.path(path1KG, "ex1_good_small_1KG.gds")
fileAnnotGDS <- file.path(path1KG, "ex1_good_small_1KG_Annot.gds")

AR AR R AR
## The Sample SNP pileup files (one per sample) need

## to be located in the same directory.

AR AR AR AR



runExomeAncestry

pathGeno <- file.path(dataDir, "example”, "snpPileup")

AR AR R AR
## The path where the Profile GDS Files (one per sample)

## will be created need to be specified.

AR AR AR AR
pathProfileGDS <- file.path(tempdir(), "out.tmp")

pathOut <- file.path(tempdir(), "res.out")

HHHEHHAAHEE A

## A data frame containing general information about the study

## is also required. The data frame must have

## those 3 columns: "studyID", "study.desc”, "study.platform”

AR AR AR AR

studyDF <- data.frame(study.id="MYDATA",
study.desc="Description”,
study.platform="PLATFORM",
stringsAsFactors=FALSE)

HHHHHHAEEEEE AR AR AR
## Fix seed to ensure reproducible results

HHH A AR A A
set.seed(3043)

gds1KG <- snpgdsOpen(fileReferenceGDS)
dataRef <- select1KGPop(gds1KG, nbProfiles=2L)
closefn.gds(gds1KG)

## Required library for this example to run correctly
if (requireNamespace("GenomeInfoDb"”, quietly=TRUE) &&
requireNamespace ("BSgenome.Hsapiens.UCSC.hg38", quietly=TRUE)) {

## Chromosome length information
## chr23 is chrX, chr24 is chrY and chrM is 25
chrinfo <- GenomeInfoDb: :seqlengths(BSgenome.Hsapiens.UCSC.hg38: :Hsapiens)[1:25]

runExomeAncestry(pedStudy=demoPedigreeEx1, studyDF=studyDF,
pathProfileGDS=pathProfileGDS,
pathGeno=pathGeno,
pathOut=pathOut,
fileReferenceGDS=fileReferenceGDS,
fileReferenceAnnotGDS=fileAnnotGDS,
chrinfo=chrinfo,
syntheticRefDF=dataRef,
genoSource="snp-pileup”)

unlink(pathProfileGDS, recursive=TRUE, force=TRUE)
unlink(pathOut, recursive=TRUE, force=TRUE)



62 runRNAAncestry

runRNAAncestry Run most steps leading to the ancestry inference call on a specific RNA
profile

Description

This function runs most steps leading to the ancestry inference call on a specific RNA profile. First,
the function creates the Profile GDS file for the specific profile using the information from a RDS
Sample description file and the Population Reference GDS file.

Usage
runRNAAncestry(
pedStudy,
studyDF,
pathProfileGDS,
pathGeno,
pathOut,
fileReferenceGDS,
fileReferenceAnnotGDS,
chrinfo,
syntheticRefDF,
genoSource = c("snp-pileup”, "generic", "VCF"),
np = 1L,
blockTypelD,
verbose = FALSE
)
Arguments
pedStudy a data.frame with those mandatory columns: "Name.ID", "Case.ID", "Sam-
ple.Type", "Diagnosis", "Source". All columns must be in character strings
(no factor). The data.frame must contain the information for all the samples
passed in the 1istSamples parameter. Only filePedRDS or pedStudy can be
defined.
studyDF a data. frame containing the information about the study associated to the anal-

ysed sample(s). The data. frame must have those 3 columns: "study.id", "study.desc",
"study.platform”. All columns must be in character strings (no factor).

pathProfileGDS a character string representing the path to the directory where the GDS Profile
files will be created. Default: NULL.

pathGeno a character string representing the path to the directory containing the VCF
output of SNP-pileup for each sample. The SNP-pileup files must be com-
pressed (gz files) and have the name identifiers of the samples. A sample with
"Name.ID" identifier would have an associated file called if genoSource is "VCEF",
then "Name.ID.vcf.gz", if genoSource is "generic", then "Name.ID.generic.txt.gz"
if genoSource is "snp-pileup”, then "Name.ID.txt.gz".



runRNAAncestry 63

pathOut a character string representing the path to the directory where the output files
are created.
fileReferenceGDS

a character string representing the file name of the Population Reference GDS
file. The file must exist.
fileReferenceAnnotGDS

a character string representing the file name of the Population Reference GDS
Annotation file. The file must exist.

chrinfo a vector of positive integer values representing the length of the chromo-
somes. See ‘details’ section.

syntheticRefDF a data.frame containing a subset of reference profiles for each sub-population
present in the Reference GDS file. The data. frame must have those columns:
* sample.id a character string representing the sample identifier.

* pop.group a character string representing the subcontinental population
assigned to the sample.

* superPop a character string representing the super-population assigned to
the sample.

genoSource a character string with two possible values: ’snp-pileup’, ’generic’ or "VCF’.
It specifies if the genotype files are generated by snp-pileup (Facets) or are a
generic format CSV file with at least those columns: *’Chromosome’, ’Position’,
Ref’, "Alt’, ’Count’, ’FilelR’ and "FilelA’. The *Count’ is the depth at the
specified position; "FileR’ is the depth of the reference allele and "Filel A’ is the
depth of the specific alternative allele. Finally the file can be a VCF file with at
least those genotype fields: GT, AD, DP.

np a single positive integer specifying the number of threads to be used. Default:
1L.

blockTypeID a character string corresponding to the block type used to extract the block
identifiers. The block type must be present in the GDS Reference Annotation
file.

verbose a logical indicating if messages should be printed to show how the different
steps in the function. Default: FALSE.
Details
The runExomeAncestry() function generates 3 types of files in the OUTPUT directory.

* Ancestry InferenceThe ancestry inference CSV file (".Ancestry.csv" file)
¢ Inference InformatonThe inference information RDS file (".infoCall.rds" file)

 Synthetic InformationThe parameter information RDS files from the synthetic inference ("KNN.synt.*.rds"
files in a sub-directory)

In addition, a sub-directory (named using the profile ID) is also created.

Value

The integer OL when successful. See details section for more information about the generated output
files.



64 runRNAAncestry

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

References

Galinsky KJ, Bhatia G, Loh PR, Georgiev S, Mukherjee S, Patterson NJ, Price AL. Fast Principal-
Component Analysis Reveals Convergent Evolution of ADH1B in Europe and East Asia. AmJ
Hum Genet. 2016 Mar 3;98(3):456-72. doi: 10.1016/j.ajhg.2015.12.022. Epub 2016 Feb 25.

Examples

## Required library for GDS
library(SNPRelate)

## Path to the demo 1KG GDS file is located in this package
dataDir <- system.file("extdata”, package="RAIDS")

HHHHHHARHEEE AR A R
## Load the information about the profile

HEHHHHHHHEEHE AR AR
data(demoPedigreeEx1)

head(demoPedigreeEx1)

HHHEHHARHEE R A
## The 1KG GDS file and the 1KG SNV Annotation GDS file

## need to be located in the same directory

## Note that the 1KG GDS file used for this example is a

## simplified version and CANNOT be used for any real analysis

W HHHHHHHEE AR PR HHH R
path1KG <- file.path(dataDir, "tests")

fileReferenceGDS <- file.path(pathl1KG, "ex1_good_small_1KG.gds")
fileAnnotGDS <- file.path(path1KG, "ex1_good_small_1KG_Annot.gds")

HEHHHHHRHHE AR HEHHREEEEHHHHH RS RHHE R
## The Sample SNP pileup files (one per sample) need

## to be located in the same directory.

HEHHHHHHEEEE A EHHEHHREEEEHHHHHEHHHHEREEEEHEHHEEE R
pathGeno <- file.path(dataDir, "example”, "snpPileup")

HEHHHEHHEEEHHHH R R HHHHEEEEHHHHHEHHHHHREEEHHREHE R
## The path where the Profile GDS Files (one per sample)

## will be created need to be specified.
HEHHHHHREEHHEEEHEHEHEHAEHRRBHBHEEEHRHEHEHREEEHEEHEEH AR
pathProfileGDS <- file.path(tempdir(), "out.tmp")

pathOut <- file.path(tempdir(), "res.out")

AR AR R R
## A data frame containing general information about the study
## is also required. The data frame must have

## those 3 columns: "studyID", "study.desc”, "study.platform”



select1 KGPop 65

HEHHHHHHEHEHEEEHEEH A HHEHEBHEEEEEHHHHEHREEEEHEEHEEH R

studyDF <- data.frame(study.id="MYDATA",
study.desc="Description”,
study.platform="PLATFORM",
stringsAsFactors=FALSE)

HHHEHHAEEEE AR AR AR
## Fix seed to ensure reproducible results

HHHEHHAEEEE AR R AR
set.seed(3043)

gds1KG <- snpgdsOpen(fileReferenceGDS)
dataRef <- select1KGPop(gds1KG, nbProfiles=2L)
closefn.gds(gds1KG)

## Required library for this example to run correctly
if (requireNamespace("GenomeInfoDb"”, quietly=TRUE) &&
requireNamespace("BSgenome.Hsapiens.UCSC.hg38", quietly=TRUE)) {

## Chromosome length information
## chr23 is chrX, chr24 is chrY and chrM is 25
chrinfo <- GenomeInfoDb: :seqlengths(BSgenome.Hsapiens.UCSC.hg38: :Hsapiens)[1:25]

runRNAAncestry(pedStudy=demoPedigreeEx1, studyDF=studyDF,
pathProfileGDS=pathProfileGDS,
pathGeno=pathGeno,
pathOut=pathOut,
fileReferenceGDS=fileReferenceGDS,
fileReferenceAnnotGDS=fileAnnotGDS,
chrInfo=chrinfo,
syntheticRefDF=dataRef,
blockTypeID="GeneS.Ensembl.Hsapiens.v86",
genoSource="snp-pileup"”)

unlink(pathProfileGDS, recursive=TRUE, force=TRUE)
unlink(pathOut, recursive=TRUE, force=TRUE)

3
select1KGPop Random selection of a specific number of reference profiles in each
subcontinental population present in the 1KG GDS file
Description

The function randomly selects a fixed number of reference for each subcontinental population
present in the 1KG GDS file. When a subcontinental population has less samples than the fixed



66

select]1 KGPop

number, all samples from the subcontinental population are selected.

Usage

select1KGPop(gdsReference, nbProfiles)

Arguments

gdsReference
nbProfiles

Value

an object of class gds.class (a GDS file), the opened 1KG GDS file.

a single positive integer representing the number of samples that will be se-
lected for each subcontinental population present in the 1KG GDS file. If the
number of samples in a specific subcontinental population is smaller than the
nbProfiles, the number of samples selected in this subcontinental population
will correspond to the size of this population.

a data. frame containing those columns:

» sample.id a character string representing the sample identifier.

* pop.group a character string representing the subcontinental population assigned to the sam-

ple.

* superPop a character string representing the super-population assigned to the sample.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

## Required library

library(gdsfmt)

## The number of samples needed by subcontinental population
## The number is small for demonstration purpose

nbProfiles <- 5L

## Open 1KG GDS Demo file

## This file only one superpopulation (for demonstration purpose)
dataDir <- system.file("extdata"”, package="RAIDS")

fileGDS <- file.path(dataDir, "PopulationReferenceDemo.gds")
gdsFileOpen <- openfn.gds(fileGDS, readonly=TRUE)

## Extract a selected number of random samples

## for each subcontinental population

## In the 1KG GDS Demo file, there is one subcontinental population
dataR <- select1KGPop(gdsReference=gdsFileOpen, nbProfiles=nbProfiles)

## Close the 1KG GDS Demo file (important)
closefn.gds(gdsFileOpen)



snpPositionDemo 67

snpPositionDemo A small data. frame containing the SNV information.

Description

The object is a data. frame with 17 columns.

Usage

data(snpPositionDemo)

Format

The data. frame containing the information about the synthetic profiles. The data. frame contains
4 columns:

Details

cnt. tot a integer representing the number of reads at the SNV position.

cnt.ref a integer representing the number of reads corresponding to the reference at the
SNV position.

cnt.alt a integer representing the number of reads different than the reference at the SNV
position.

snp.pos a integer representing the position of the SNV on the chromosome.
snp.chr a integer representing the chromosome on which the SNV is located.

normal.geno a integer representing the genotype (O=wild-type reference; 1=heterozygote;
2=homozygote alternative; 3=unkown).

pruned a logical indicated if the SNV is pruned.

snp.index a integer representing the index of the SNV in the reference SNV GDS file.
keep a logical indicated if the genotype exists for the SN'V.

hetero a logical indicated if the SNV is heterozygote.

homo a logical indicated if the SNV is homozygote.

block.id a integer representing the block identifier associated to the current SN'V.
phase a integer representing the block identifier associated to the current SN'V.

lap a numeric representing the lower allelic fraction.

LOH a integer indicating if the SNV is in an LOH region (0=not LOH, 1=in LOH).

imbAR a integer indicating if the SNV is in an imbalanced region (-1=not classified as im-
balanced or LOH, O0=in LOH; 1=tested positive for imbalance in at least 1 window).

freq a numeric representing the frequency of the variant in the the reference.

This dataset can be used to test the calcAFMLRNA and tableBlockAF internal functions.



68 snpPositionDemo

Value

The data. frame containing the information about the synthetic profiles. The data. frame contains
4 columns:
* cnt.tot a integer representing the number of reads at the SNV position.

* cnt.ref a integer representing the number of reads corresponding to the reference at the
SNV position.

e cnt.alt a integer representing the number of reads different than the reference at the SNV
position.

* snp.pos a integer representing the position of the SNV on the chromosome.
* snp.chr a integer representing the chromosome on which the SNV is located.

* normal.geno a integer representing the genotype (0=wild-type reference; 1=heterozygote;
2=homozygote alternative; 3=unkown).

* pruned a logical indicated if the SNV is pruned.

* snp.index a integer representing the index of the SNV in the reference SNV GDS file.
* keep a logical indicated if the genotype exists for the SNV.

* hetero a logical indicated if the SNV is heterozygote.

* homo a logical indicated if the SNV is homozygote.

* block.id a integer representing the block identifier associated to the current SN'V.

* phase a integer representing the block identifier associated to the current SN'V.

* lap a numeric representing the lower allelic fraction.

* LOH a integer indicating if the SNV is in an LOH region (O=not LOH, 1=in LOH).

* imbAR a integer indicating if the SNV is in an imbalanced region (-1=not classified as im-
balanced or LOH, 0=in LOH; 1=tested positive for imbalance in at least 1 window).

* freq a numeric representing the frequency of the variant in the the reference.

Examples

## Loading demo dataset containing SNV information
data(snpPositionDemo)

## Only use a subset of heterozygote SNVs related to one block
subset <- snpPositionDemo[which(snpPositionDemo$block.id == 2750 &
snpPositionDemo$hetero), c("cnt.ref”, "cnt.alt”, "phase”)]

## Compute the log likelihood ratio based on the coverage of
## each allele in a specific block

result <- RAIDS:::calcAFMLRNA(subset)

head(result)



snvListVCF 69

snvListVCF Generate a VCF with the information from the SNPs that pass a cut-off
threshold

Description
This function extract the SNPs that pass a frequency cut-off in at least one super population from a
GDS SNP information file and save the retained SNP information into a VCF file.

Usage

snvListVCF(gdsReference, fileOut, offset = @L, freqCutoff = NULL)

Arguments

gdsReference an object of class gds.class (a GDS file), the IKG GDS file.

fileOut a character string representing the path and file name of the VCF file that will
be created wit the retained SNP information. The file should have the ".vcf"
extension.

offset a single integer that is added to the SNP position to switch from 0-based to

1-based coordinate when needed (or reverse). Default: oL.

freqCutoff a single positive numeric specifying the cut-off to keep a SNP. If NULL, all SNPs
are retained. Default: NULL.
Value

The integer 0L when successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

## Required library
library(gdsfmt)

## Path to the demo pedigree file is located in this package
dataDir <- system.file("extdata”, package="RAIDS")

## Demo 1KG Reference GDS file
fileGDS <- openfn.gds(file.path(dataDir,

"PopulationReferenceDemo.gds"))

## Output VCF file that will be created (temporary)
vcfFile <- file.path(tempdir(), "Demo_TMP_01.vcf")

## Create a VCF file with the SNV dataset present in the GDS file



70 splitSelectByPop

## No cutoff on frequency, so all SNVs are saved
snvListVCF (gdsReference=fileGDS, fileOut=vcfFile, offset=0L,
freqCutoff=NULL)

## Close GDS file (IMPORTANT)
closefn.gds(fileGDS)

## Remove temporary VCF file
unlink(vcfFile, force=TRUE)

splitSelectByPop Group samples per subcontinental population

Description

The function groups the samples per subcontinental population and generates a matrix containing
the sample identifiers and where each column is a subcontinental population.

Usage

splitSelectByPop(dataRef)

Arguments
dataRef a data.frame containing those columns:
» sample.id a character string representing the sample identifier.
* pop.group a character string representing the subcontinental population
assigned to the sample.
* superPop a character string representing the super-population assigned to
the sample.
Value

amatrix containing the sample identifiers and where each column is the name of a subcontinental
population. The number of row corresponds to the number of samples for each subcontinental
population.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz



syntheticGeno 71

Examples

## A data.frame containing samples from 2 subcontinental populations

demo <- data.frame(sample.id=c(”SampleA”, "SampleB", "SampleC"”, "SampleD"),
pop.group=c("TSI", "TSI", "YRI", "YRI"),
superPop=c("EUR", "EUR", "AFR”, "AFR"))

## Generate a matrix populated with the sample identifiers and where
## each row is a subcontinental population
splitSelectByPop(dataRef=demo)

syntheticGeno Generate synthetic profiles for each cancer profile and 1KG reference
profile combination and add them to the Profile GDS file

Description

The functions uses one cancer profile in combination with one 1KG reference profile to generate an
synthetic profile that is saved in the Profile GDS file.

When more than one 1KG reference profiles are specified, the function recursively generates syn-
thetic profiles for each cancer profile + 1KG reference profile combination.

The number of synthetic profiles generated by combination is specified by the number of simulation
requested.

Usage

syntheticGeno(
gdsReference,
gdsRefAnnot,
fileProfileGDS,
profilelD,
listSampleRef,
nbSim = 1L,
prefix = ""
pRecomb = 0.01,
minProb = 0.999,
seqError = 0.001

Arguments

gdsReference an object of class gds.class (a GDS file), the opened 1KG GDS file.

gdsRefAnnot an object of class gds.class (a GDS file), the opened 1KG SNV Annotation
GDS file.

fileProfileGDS acharacter string representing the file name of Profile GDS file containing the
information about the sample. The file must exist.



72

profilelD
listSampleRef

nbSim

prefix

pRecomb

minProb

segError

Value

syntheticGeno

a character string representing the unique identifier of the cancer profile.

a vector of character strings representing the sample identifiers of the 1IKG
selected reference samples.

a single positive integer representing the number of simulations that will be
generated per sample + 1KG reference combination. Default: 1L.
a character string that represent the prefix that will be added to the name of

nn

the synthetic profiles generated by the function. Default: "".

a single positive numeric between 0 and 1 that represents the frequency of phase
switching in the synthetic profiles, Default: @.01.

a single positive numeric between 0 and 1 that represents the probability that
the genotype is correct. Default: @.999.

a single positive numeric between 0 and 1 representing the sequencing error
rate. Default: 0.001.

The integer OL when the function is successful.

Author(s)

Pascal Belleau, Astrid Deschénes and Alexander Krasnitz

Examples

## Required library

library(gdsfmt)

## Path to the demo 1KG GDS file is located in this package
dataDir <- system.file("extdata/tests"”, package="RAIDS")

## Profile GDS file (temporary)
fileNameGDS <- file.path(tempdir(), "ex1.gds")

## Copy the Profile GDS file demo that has been pruned and annotated
file.copy(file.path(dataDir, "ex1_demo_with_pruning_and_1KG_annot.gds"),

fileNameGDS)

## Information about the synthetic data set

syntheticStudyDF <- data.frame(study.id="MYDATA.Synthetic",
study.desc="MYDATA synthetic data”, study.platform="PLATFORM",
stringsAsFactors=FALSE)

## Add information related to the synthetic profiles into the Profile GDS
prepSynthetic(fileProfileGDS=f1ileNameGDS,
listSampleRef=c("HG00243", "HGO@150"), profileID="ex1",
studyDF=syntheticStudyDF, nbSim=1L, prefix="synthTest"”,
verbose=FALSE)

## The 1KG files



syntheticGeno

gds1KG <- snpgdsOpen(file.path(dataDir,
"ex1_good_small_1KG.gds"))

gds1KGAnnot <- openfn.gds(file.path(dataDir,
"ex1_good_small_1KG_Annot.gds"))

## Generate the synthetic profiles and add them into the Profile GDS
syntheticGeno(gdsReference=gds1KG, gdsRefAnnot=gds1KGAnnot,
fileProfileGDS=fileNameGDS, profileID="ex1",
listSampleRef=c("HGO0243", "HGOO150"), nbSim=1,
prefix="synthTest",
pRecomb=0.01, minProb=0.999, seqError=0.001)

## Open Profile GDS file
profileGDS <- openfn.gds(fileNameGDS)

tail(read.gdsn(index.gdsn(profileGDS, "sample.id")))

## Close GDS files (important)
closefn.gds(profileGDS)
closefn.gds(gds1KG)
closefn.gds(gds1KGAnnot)

## Remove Profile GDS file (created for demo purpose)
unlink(fileNameGDS, force=TRUE)

73



Index

+ datasets
demoKnownSuperPop1KG, 29
demoPCA1KG, 31
demoPCASyntheticProfiles, 32
demoPedigreeEx1, 34
matkKNNSynthetic, 49
pedSynthetic, 50
snpPositionDemo, 67

+ package
RAIDS-package, 3

add1KG2SampleGDS, 4
addGeneBlockGDSRefAnnot, 5
addRef2GDS1KG, 7
addStudy1Kg, 9

calcAFMLRNA, 67
computeAncestryFromSyntheticFile, 10
computeKNNRefSample, 15
computeKNNRefSynthetic, 17, 30, 33
computePCAMultiSynthetic, 19, 31
computePCARefSample, 21
computePoolSyntheticAncestryGr, 22, 30
computeSyntheticROC, 3, 25, 49, 51
createStudy2GDS1KG, 27

demoKnownSuperPop1KG, 29
demoPCA1KG, 31
demoPCASyntheticProfiles, 32
demoPedigreeEx1, 34

estimateAllelicFraction, 3, 36

gds.class, 4,6,9,11,19,21,37,43,45, 56,
606, 69, 71

generateGDS1KG, 39

generateMapSnvSel, 4, 41

generatePhase1KG2GDS, 42

getRef1KGPop, 44

groupChr1KGSNVY, 45

74

identifyRelative, 47
matkKNNSynthetic, 49

pedSynthetic, 50
prepPed1KG, 52
prepSynthetic, 53
pruningSample, 37, 55

RAIDS (RAIDS-package), 3
RAIDS-package, 3
runExomeAncestry, 3, 34, 58
runRNAAncestry, 62

select1KGPop, 65

seglengths, 38

snpgdsLDpruning, 55, 56
snpgdsPCA, 12, 21, 24, 31
snpPositionDemo, 67

SNPRelate: :SNPGDSFileClass, 17, 23,47
snvListVCF, 69

splitSelectByPop, 70
syntheticGeno, 71

tableBlockAF, 67



	RAIDS-package
	add1KG2SampleGDS
	addGeneBlockGDSRefAnnot
	addRef2GDS1KG
	addStudy1Kg
	computeAncestryFromSyntheticFile
	computeKNNRefSample
	computeKNNRefSynthetic
	computePCAMultiSynthetic
	computePCARefSample
	computePoolSyntheticAncestryGr
	computeSyntheticROC
	createStudy2GDS1KG
	demoKnownSuperPop1KG
	demoPCA1KG
	demoPCASyntheticProfiles
	demoPedigreeEx1
	estimateAllelicFraction
	generateGDS1KG
	generateMapSnvSel
	generatePhase1KG2GDS
	getRef1KGPop
	groupChr1KGSNV
	identifyRelative
	matKNNSynthetic
	pedSynthetic
	prepPed1KG
	prepSynthetic
	pruningSample
	runExomeAncestry
	runRNAAncestry
	select1KGPop
	snpPositionDemo
	snvListVCF
	splitSelectByPop
	syntheticGeno
	Index

