Title: | An R package for qualitative biclustering in support of gene co-expression analyses |
---|---|
Description: | The core function of this R package is to provide the implementation of the well-cited and well-reviewed QUBIC algorithm, aiming to deliver an effective and efficient biclustering capability. This package also includes the following related functions: (i) a qualitative representation of the input gene expression data, through a well-designed discretization way considering the underlying data property, which can be directly used in other biclustering programs; (ii) visualization of identified biclusters using heatmap in support of overall expression pattern analysis; (iii) bicluster-based co-expression network elucidation and visualization, where different correlation coefficient scores between a pair of genes are provided; and (iv) a generalize output format of biclusters and corresponding network can be freely downloaded so that a user can easily do following comprehensive functional enrichment analysis (e.g. DAVID) and advanced network visualization (e.g. Cytoscape). |
Authors: | Yu Zhang [aut, cre], Qin Ma [aut] |
Maintainer: | Yu Zhang <[email protected]> |
License: | CC BY-NC-ND 4.0 + file LICENSE |
Version: | 1.35.0 |
Built: | 2024-12-07 05:58:00 UTC |
Source: | https://github.com/bioc/QUBIC |
Class BCQU
define a QUalitative BIClustering calcuator.
BCQU
qudiscretize
qunetwork
qunet2xml
biclust
QUBIC
is a biclustering package, with source code upgrading from C code to C++ code.
The updated source code can avoid memory allocation error and is much efficient than the original one.
Based on our preliminary analysis, it can save 40% running time on a plant microarray data.
Whenever using this package, please cite as
Yu Zhang, Juan Xie, Jinyu Yang, Anne Fennell, Chi Zhang, Qin Ma;
QUBIC: a bioconductor package for qualitative biclustering analysis of gene co-expression data.
Bioinformatics, 2017; 33 (3): 450-452.
doi: 10.1093/bioinformatics/btw635
BCQUD
performs a QUalitative BIClustering for a discret matrix.
## S4 method for signature 'matrix,BCQU' biclust(x, method = BCQU(), r = 1, q = 0.06, c = 0.95, o = 100, f = 1, k = max(ncol(x) %/% 20, 2), type = 'default', P = FALSE, C = FALSE, verbose = TRUE, weight = NULL, seedbicluster = NULL) ## S4 method for signature 'matrix,BCQUD' biclust(x, method = BCQUD(), c = 0.95, o = 100, f = 1, k = max(ncol(x) %/% 20, 2), type = 'default', P = FALSE, C = FALSE, verbose = TRUE, weight = NULL, seedbicluster = NULL) qubiclust_d(x, c = 0.95, o = 100, f = 1, k = max(ncol(x) %/% 20, 2), type = 'default', P = FALSE, C = FALSE, verbose = TRUE, weight = NULL, seedbicluster = NULL) qubiclust(x, r = 1L, q = 0.06, c = 0.95, o = 100, f = 1, k = max(ncol(x) %/% 20, 2), type = 'default', P = FALSE, C = FALSE, verbose = TRUE, weight = NULL, seedbicluster = NULL)
## S4 method for signature 'matrix,BCQU' biclust(x, method = BCQU(), r = 1, q = 0.06, c = 0.95, o = 100, f = 1, k = max(ncol(x) %/% 20, 2), type = 'default', P = FALSE, C = FALSE, verbose = TRUE, weight = NULL, seedbicluster = NULL) ## S4 method for signature 'matrix,BCQUD' biclust(x, method = BCQUD(), c = 0.95, o = 100, f = 1, k = max(ncol(x) %/% 20, 2), type = 'default', P = FALSE, C = FALSE, verbose = TRUE, weight = NULL, seedbicluster = NULL) qubiclust_d(x, c = 0.95, o = 100, f = 1, k = max(ncol(x) %/% 20, 2), type = 'default', P = FALSE, C = FALSE, verbose = TRUE, weight = NULL, seedbicluster = NULL) qubiclust(x, r = 1L, q = 0.06, c = 0.95, o = 100, f = 1, k = max(ncol(x) %/% 20, 2), type = 'default', P = FALSE, C = FALSE, verbose = TRUE, weight = NULL, seedbicluster = NULL)
x |
the input data matrix, which could be the normalized gene expression matrix or its qualitative representation from Qdiscretization or other discretization ways.
(for example: a qualitative representation of gene expression data) |
r |
Affect the granularity of the biclusters. The range of possible ranks.
A user can start with a small value of |
q |
Affect the granularity of the biclusters. The percentage of the regulating conditions for each gene.
The choice of |
c |
The required consistency level of a bicluster. The default value of |
o |
The number of output biclusters. |
f |
Control parameter, to control the level of overlaps between to-be-identified biclusters.
The filter cut-off for data post-processing. For overlaps among to-be-identified biclusters.
Its default value is set to |
k |
The minimum column width of the block, minimum |
type |
The constrain type. |
P |
The flag to enlarge current bicluster using a p-value contrain,
which is defined based on its significance of expression consistency comparing to some simulated submatrix. Default: |
C |
The flag to set the lower bound of the condition number in a bicluster as 5% of the total condition number in the input data.
Only suggested to use when the input data has a few conditions (e.g. less than |
verbose |
If ' |
weight |
Alternative weight matrix provided by user, will append to default weight. |
seedbicluster |
Seed provided by user, normally should be a result of function |
method |
|
For a given representing matrix of a microarray data set, we construct a weighted graph G with genes represented as vertices, edges connecting every pair of genes, and the weight of each edge being the similarity level between the two corresponding (entire) rows. Clearly, the higher a weight, the more similar two corresponding rows are. Intuitively, genes in a bicluster should induce a heavier subgraph of G because under a subset of the conditions, these genes have highly similar expression patterns that should make the weight of each involved edge heavier, comparing to the edges in the background. But it should be noted that some heavy subgraph may not necessarily correspond to a bicluster, i.e. genes from a heavy subgraph may not necessarily have similar expression patterns because different edges in a subgraph may have heavier weights under completely different subsets of conditions. It should also be noted that recognizing all heavy subgraphs in a weighted graph itself is computationally intractable because identification of maximum cliques in a graph is a special case of this, and the maximum clique problem is a well known intractable problem (NP-hard). So in our solution, we do not directly solve the problem of finding heavy subgraphs in a graph. Instead, we built our biclustering algorithm based on this graph representation of a microarray gene expression data, and tackle the biclustering problem as follows. We find all feasible biclusters (I,J) in the given data set such that min{|I|, |J|} is as large as possible, where I and J are subsets of genes and conditions, respectively.
Returns an Biclust object, which contains bicluster candidates
BCQU
: Performs a QUalitative BIClustering.
BCQUD
: Performs a QUalitative BIClustering for a discret matrix.
qubiclust_d
: Performs a QUalitative BIClustering for a discret matrix.
qubiclust
: Performs a QUalitative BIClustering.
Yu Zhang, Juan Xie, Jinyu Yang, Anne Fennell, Chi Zhang, Qin Ma; QUBIC: a bioconductor package for qualitative biclustering analysis of gene co-expression data. Bioinformatics, 2017; 33 (3): 450-452.
BCQU-class
qudiscretize
qunetwork
qunet2xml
biclust
# Random matrix with one embedded bicluster test <- matrix(rnorm(5000), 100, 50) test[11:20, 11:20] <- rnorm(100, 3, 0.3) res <- biclust::biclust(test, method = BCQU()) summary(res) show(res) names(attributes(res)) ## Not run: # Load microarray matrix data(BicatYeast) # Display number of column and row of BicatYeast ncol(BicatYeast) nrow(BicatYeast) # Bicluster on microarray matrix system.time(res <- biclust::biclust(BicatYeast, method = BCQU())) # Show bicluster info res # Show the first bicluster biclust::bicluster(BicatYeast, res, 1) # Get the 4th bicluster bic4 <- biclust::bicluster(BicatYeast, res, 4)[[1]] # or bic4 <- biclust::bicluster(BicatYeast, res)[[4]] # Show rownames of the 4th bicluster rownames(bic4) # Show colnames of the 4th bicluster colnames(bic4) ## End(Not run) ## Not run: # Bicluster on selected of genes data(EisenYeast) genes <- c("YHR051W", "YKL181W", "YHR124W", "YHL020C", "YGR072W", "YGR145W", "YGR218W", "YGL041C", "YOR202W", "YCR005C") # same result as res <- biclust::biclust(EisenYeast[1:10,], method=BCQU()) res <- biclust::biclust(EisenYeast[genes, ], method = BCQU()) res ## End(Not run) ## Not run: # Get bicluster by row name = 249364_at biclust::bicluster(BicatYeast, res, which(res@RowxNumber[which(rownames(BicatYeast) == "249364_at"), ])) ## End(Not run) ## Not run: # Get bicluster by col name = cold_roots_6h biclust::bicluster(BicatYeast, res, which(res@NumberxCol[, which(colnames(BicatYeast) == "cold_roots_6h")])) ## End(Not run) ## Not run: # Draw a single bicluster using drawHeatmap {bicust} data(BicatYeast) res <- biclust::biclust(BicatYeast, BCQU(), verbose = FALSE) # Draw heatmap of the first cluster biclust::drawHeatmap(BicatYeast, res, 1) ## End(Not run) ## Not run: # Draw a single bicluster using heatmap {stats} data(BicatYeast) res <- biclust::biclust(BicatYeast, BCQU(), verbose = FALSE) bic10 <- biclust::bicluster(BicatYeast, res, 10)[[1]] # Draw heatmap of the 10th cluster using heatmap {stats} heatmap(as.matrix(t(bic10)), Rowv = NA, Colv = NA, scale = 'none') # Draw heatmap of the 10th cluster using plot_heatmap {phyloseq} if (requireNamespace('phyloseq')) phyloseq::plot_heatmap(otu_table(bic10, taxa_are_rows = TRUE)) ## End(Not run) ## Not run: # Draw a single bicluster with original data background and color options data(BicatYeast) res <- biclust::biclust(BicatYeast, BCQU(), verbose = FALSE) palette <- colorRampPalette(c('red', 'yellow', 'green'))(n = 100) # Draw heatmap of the first cluster with color biclust::drawHeatmap(BicatYeast, res, 1, FALSE, beamercolor = TRUE, paleta = palette) ## End(Not run) ## Not run: # Draw some overlapped biclusters data(BicatYeast) res <- biclust::biclust(BicatYeast, BCQU(), verbose = FALSE) biclusternumber(res, 1) biclusternumber(res, 3) # Draw overlapping heatmap biclust::heatmapBC(x = BicatYeast, bicResult = res, number = c(1, 3), local = TRUE) ## End(Not run) ## Not run: # Draw all the biclusters data(BicatYeast) res <- biclust::biclust(BicatYeast, BCQU(), verbose = FALSE) # Draw the first bicluster on heatmap biclust::heatmapBC(x = BicatYeast, bicResult = res, number = 1) # Draw all the biclusters, not working well. # Overlap plotting only works for two neighbor bicluster defined by the order in the number slot. biclust::heatmapBC(x = BicatYeast, bicResult = res, number = 0) ## End(Not run) # Biclustering of discretized yeast microarray data data(BicatYeast) disc<-qudiscretize(BicatYeast[1:10,1:10]) biclust::biclust(disc, method=BCQUD())
# Random matrix with one embedded bicluster test <- matrix(rnorm(5000), 100, 50) test[11:20, 11:20] <- rnorm(100, 3, 0.3) res <- biclust::biclust(test, method = BCQU()) summary(res) show(res) names(attributes(res)) ## Not run: # Load microarray matrix data(BicatYeast) # Display number of column and row of BicatYeast ncol(BicatYeast) nrow(BicatYeast) # Bicluster on microarray matrix system.time(res <- biclust::biclust(BicatYeast, method = BCQU())) # Show bicluster info res # Show the first bicluster biclust::bicluster(BicatYeast, res, 1) # Get the 4th bicluster bic4 <- biclust::bicluster(BicatYeast, res, 4)[[1]] # or bic4 <- biclust::bicluster(BicatYeast, res)[[4]] # Show rownames of the 4th bicluster rownames(bic4) # Show colnames of the 4th bicluster colnames(bic4) ## End(Not run) ## Not run: # Bicluster on selected of genes data(EisenYeast) genes <- c("YHR051W", "YKL181W", "YHR124W", "YHL020C", "YGR072W", "YGR145W", "YGR218W", "YGL041C", "YOR202W", "YCR005C") # same result as res <- biclust::biclust(EisenYeast[1:10,], method=BCQU()) res <- biclust::biclust(EisenYeast[genes, ], method = BCQU()) res ## End(Not run) ## Not run: # Get bicluster by row name = 249364_at biclust::bicluster(BicatYeast, res, which(res@RowxNumber[which(rownames(BicatYeast) == "249364_at"), ])) ## End(Not run) ## Not run: # Get bicluster by col name = cold_roots_6h biclust::bicluster(BicatYeast, res, which(res@NumberxCol[, which(colnames(BicatYeast) == "cold_roots_6h")])) ## End(Not run) ## Not run: # Draw a single bicluster using drawHeatmap {bicust} data(BicatYeast) res <- biclust::biclust(BicatYeast, BCQU(), verbose = FALSE) # Draw heatmap of the first cluster biclust::drawHeatmap(BicatYeast, res, 1) ## End(Not run) ## Not run: # Draw a single bicluster using heatmap {stats} data(BicatYeast) res <- biclust::biclust(BicatYeast, BCQU(), verbose = FALSE) bic10 <- biclust::bicluster(BicatYeast, res, 10)[[1]] # Draw heatmap of the 10th cluster using heatmap {stats} heatmap(as.matrix(t(bic10)), Rowv = NA, Colv = NA, scale = 'none') # Draw heatmap of the 10th cluster using plot_heatmap {phyloseq} if (requireNamespace('phyloseq')) phyloseq::plot_heatmap(otu_table(bic10, taxa_are_rows = TRUE)) ## End(Not run) ## Not run: # Draw a single bicluster with original data background and color options data(BicatYeast) res <- biclust::biclust(BicatYeast, BCQU(), verbose = FALSE) palette <- colorRampPalette(c('red', 'yellow', 'green'))(n = 100) # Draw heatmap of the first cluster with color biclust::drawHeatmap(BicatYeast, res, 1, FALSE, beamercolor = TRUE, paleta = palette) ## End(Not run) ## Not run: # Draw some overlapped biclusters data(BicatYeast) res <- biclust::biclust(BicatYeast, BCQU(), verbose = FALSE) biclusternumber(res, 1) biclusternumber(res, 3) # Draw overlapping heatmap biclust::heatmapBC(x = BicatYeast, bicResult = res, number = c(1, 3), local = TRUE) ## End(Not run) ## Not run: # Draw all the biclusters data(BicatYeast) res <- biclust::biclust(BicatYeast, BCQU(), verbose = FALSE) # Draw the first bicluster on heatmap biclust::heatmapBC(x = BicatYeast, bicResult = res, number = 1) # Draw all the biclusters, not working well. # Overlap plotting only works for two neighbor bicluster defined by the order in the number slot. biclust::heatmapBC(x = BicatYeast, bicResult = res, number = 0) ## End(Not run) # Biclustering of discretized yeast microarray data data(BicatYeast) disc<-qudiscretize(BicatYeast[1:10,1:10]) biclust::biclust(disc, method=BCQUD())
qudiscretize
delivers a discrete matrix. It is useful if we just want to get a discretized matrix.
qudiscretize(x, r = 1L, q = 0.06)
qudiscretize(x, r = 1L, q = 0.06)
x |
the input data matrix, which could be the normalized gene expression matrix or its qualitative representation from Qdiscretization or other discretization ways.
(for example: a qualitative representation of gene expression data) |
r |
Affect the granularity of the biclusters. The range of possible ranks.
A user can start with a small value of |
q |
Affect the granularity of the biclusters. The percentage of the regulating conditions for each gene.
The choice of |
qudiscretize
convert a given gene expression matrix to a discrete matrix.
It's implimented in C++, providing a increase in speed over the C equivalent.
A qualitative discrete matrix
# Qualitative discretize yeast microarray data data(BicatYeast) qudiscretize(BicatYeast[1:7, 1:5])
# Qualitative discretize yeast microarray data data(BicatYeast) qudiscretize(BicatYeast[1:7, 1:5])
This function can visualize the identifed biclusters using heatmap in support of overall expression pattern analysis,either for a single bicluster or two biclusters.
quheatmap(x, bicResult, number = 1, showlabel = FALSE, col = c("#313695", "#4575B4", "#74ADD1", "#ABD9E9", "#E0F3F8", "#FFFFBF", "#FEE090", "#FDAE61", "#F46D43", "#D73027", "#A50026"), ...)
quheatmap(x, bicResult, number = 1, showlabel = FALSE, col = c("#313695", "#4575B4", "#74ADD1", "#ABD9E9", "#E0F3F8", "#FFFFBF", "#FEE090", "#FDAE61", "#F46D43", "#D73027", "#A50026"), ...)
x |
The data matrix |
bicResult |
biclust::BiclustResult object |
number |
which bicluster to be plotted |
showlabel |
If TRUE, show the xlabel and ylabel |
col |
default: c("#313695", "#4575B4", "#74ADD1", "#ABD9E9", "#E0F3F8", "#FFFFBF", "#FEE090", "#FDAE61", "#F46D43", "#D73027", "#A50026") |
... |
Additional options in |
# Load microarray matrix data(BicatYeast) res <- biclust::biclust(BicatYeast, method=BCQU(), verbose = FALSE) # Draw heatmap for the 2th identified bicluster par(mar = c(5, 4, 3, 5) + 0.1, mgp = c(0, 1, 0), cex.lab = 1.1, cex.axis = 0.5, cex.main = 1.1) quheatmap(x = BicatYeast, res, number = 2, showlabel = TRUE) # Draw heatmap for the 2th and 3th identified biclusters. par(mar = c(5, 5, 5, 5), cex.lab = 1.1, cex.axis = 0.5, cex.main = 1.1) quheatmap(x = BicatYeast, res, number = c(2, 3), showlabel = TRUE)
# Load microarray matrix data(BicatYeast) res <- biclust::biclust(BicatYeast, method=BCQU(), verbose = FALSE) # Draw heatmap for the 2th identified bicluster par(mar = c(5, 4, 3, 5) + 0.1, mgp = c(0, 1, 0), cex.lab = 1.1, cex.axis = 0.5, cex.main = 1.1) quheatmap(x = BicatYeast, res, number = 2, showlabel = TRUE) # Draw heatmap for the 2th and 3th identified biclusters. par(mar = c(5, 5, 5, 5), cex.lab = 1.1, cex.axis = 0.5, cex.main = 1.1) quheatmap(x = BicatYeast, res, number = c(2, 3), showlabel = TRUE)
This function can convert the constructed co-expression networks into XGMML format, which can be used to do further network analysis in Cytoscape, Biomax and JNets.
qunet2xml(net, minimum = 0.6, color = cbind(grDevices::rainbow(length(net[[2]]) - 1), "gray"))
qunet2xml(net, minimum = 0.6, color = cbind(grDevices::rainbow(length(net[[2]]) - 1), "gray"))
net |
Result of |
minimum |
cutoff, default: 0.6 |
color |
default: cbind(grDevices::rainbow(length(net[[2]]) - 1), 'gray') |
Text of XGMML
# Load microarray matrix data(BicatYeast) res <- biclust::biclust(BicatYeast[1:50, ], method=BCQU(), verbose = FALSE) # Get all biclusters net <- qunetwork(BicatYeast[1:50, ], res, group = c(4, 13), method = 'spearman') # Save the network to a XGMML file sink('tempnetworkresult.gr') qunet2xml(net, minimum = 0.6, color = cbind(grDevices::rainbow(length(net[[2]]) - 1), 'gray')) sink() # You can use Cytoscape, Biomax or JNets open file named tempnetworkresult.gr
# Load microarray matrix data(BicatYeast) res <- biclust::biclust(BicatYeast[1:50, ], method=BCQU(), verbose = FALSE) # Get all biclusters net <- qunetwork(BicatYeast[1:50, ], res, group = c(4, 13), method = 'spearman') # Save the network to a XGMML file sink('tempnetworkresult.gr') qunet2xml(net, minimum = 0.6, color = cbind(grDevices::rainbow(length(net[[2]]) - 1), 'gray')) sink() # You can use Cytoscape, Biomax or JNets open file named tempnetworkresult.gr
This function can automatically create co-expression networks along with their visualization based on identified biclusters in QUBIC. Three correlation methods, Pearson, Kendall and Spearman, are available for a user, facilitating different preferences in practical usage.
qunetwork(x, BicRes, number = 1:BicRes@Number, groups = c(number[[1]]), method = c("pearson", "kendall", "spearman"))
qunetwork(x, BicRes, number = 1:BicRes@Number, groups = c(number[[1]]), method = c("pearson", "kendall", "spearman"))
x |
The data matrix |
BicRes |
biclust::BiclustResult object |
number |
Which bicluster to be plotted |
groups |
An object that indicates which nodes belong together. |
method |
A character string indicating which correlation coefficient (or covariance) is to be computed. One of 'pearson' (default), 'kendall', or 'spearman', can be abbreviated. |
a list contains a weights matrix and groupinfo
# Load microarray matrix data(BicatYeast) res <- biclust::biclust(BicatYeast[1:50, ], method=BCQU(), verbose = FALSE) # Constructing the networks for the 4th and 13th identified biclusters. net <- qunetwork(BicatYeast[1:50, ], res, number = c(4, 13), group = c(4, 13), method = 'spearman') ## Not run: if (requireNamespace('qgraph')) qgraph::qgraph(net[[1]], groups = net[[2]], layout = 'spring', minimum = 0.6, color = cbind(rainbow(length(net[[2]]) - 1),'gray'), edge.label = FALSE) ## End(Not run) ## Not run: #Load microarray matrix data(BicatYeast) res <- biclust::biclust(BicatYeast[1:50, ], method=BCQU(), verbose = FALSE) # Constructing the networks for the 4th and 13th identified biclusters, # using the whole network as a background. net <- qunetwork(BicatYeast[1:50, ], res, group = c(4, 13), method = 'spearman') if (requireNamespace('qgraph')) qgraph::qgraph(net[[1]], groups = net[[2]], layout = 'spring', minimum = 0.6, color = cbind(rainbow(length(net[[2]]) - 1),'gray'), edge.label = FALSE) ## End(Not run)
# Load microarray matrix data(BicatYeast) res <- biclust::biclust(BicatYeast[1:50, ], method=BCQU(), verbose = FALSE) # Constructing the networks for the 4th and 13th identified biclusters. net <- qunetwork(BicatYeast[1:50, ], res, number = c(4, 13), group = c(4, 13), method = 'spearman') ## Not run: if (requireNamespace('qgraph')) qgraph::qgraph(net[[1]], groups = net[[2]], layout = 'spring', minimum = 0.6, color = cbind(rainbow(length(net[[2]]) - 1),'gray'), edge.label = FALSE) ## End(Not run) ## Not run: #Load microarray matrix data(BicatYeast) res <- biclust::biclust(BicatYeast[1:50, ], method=BCQU(), verbose = FALSE) # Constructing the networks for the 4th and 13th identified biclusters, # using the whole network as a background. net <- qunetwork(BicatYeast[1:50, ], res, group = c(4, 13), method = 'spearman') if (requireNamespace('qgraph')) qgraph::qgraph(net[[1]], groups = net[[2]], layout = 'spring', minimum = 0.6, color = cbind(rainbow(length(net[[2]]) - 1),'gray'), edge.label = FALSE) ## End(Not run)
This function can make a report for biclusters.
showinfo(matrix, bic)
showinfo(matrix, bic)
matrix |
microarray matrix |
bic |
array of biclusters |
Text of report
# Load microarray matrix data(BicatYeast) matrix <- BicatYeast[1:50, ]; res1 <- biclust::biclust(matrix, method=BCQU(), verbose = FALSE) res2 <- biclust::biclust(matrix, method=BCCC()) res3 <- biclust::biclust(matrix, method=BCBimax()) # Show the report showinfo(matrix, c(res1, res2, res3))
# Load microarray matrix data(BicatYeast) matrix <- BicatYeast[1:50, ]; res1 <- biclust::biclust(matrix, method=BCQU(), verbose = FALSE) res2 <- biclust::biclust(matrix, method=BCCC()) res3 <- biclust::biclust(matrix, method=BCBimax()) # Show the report showinfo(matrix, c(res1, res2, res3))