Title: | Statistical analysis of phenotypic data |
---|---|
Description: | Package contains methods for statistical analysis of phenotypic data. |
Authors: | Natalja Kurbatova, Natasha Karp, Jeremy Mason, Hamed Haselimashhadi |
Maintainer: | Hamed Haselimashhadi <[email protected]> |
License: | file LICENSE |
Version: | 2.43.0 |
Built: | 2024-10-31 03:29:18 UTC |
Source: | https://github.com/bioc/PhenStat |
Method analysedDataset
returns subset of the original dataset
that was analysed
This function returns the analysed dataset.
signature(obj = "PhenTestResult")
# Mixed Model framework file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") result <- PhenStat:::testDataset(test, depVariable="Lean.Mass") head(PhenStat:::analysedDataset(obj = result))
# Mixed Model framework file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") result <- PhenStat:::testDataset(test, depVariable="Lean.Mass") head(PhenStat:::analysedDataset(obj = result))
Method analysedDatasetPhenList
returns subset of the original dataset
that will be analysed
The function returns the analysed dataset.
signature(obj = "PhenList")
Method analysedSubset
returns name of the subset that was analysed by RR or FE frameworks
The function returns name of the subset that was analysed by RR or FE frameworks.
signature(obj = "htestPhenStat")
Method analysisResults
returns analysis results
The function returns the analysis result.
signature(obj = "PhenTestResult")
# Mixed Model framework file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") result <- PhenStat:::testDataset(test, depVariable="Lean.Mass") r = PhenStat:::analysisResults(obj = result)
# Mixed Model framework file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") result <- PhenStat:::testDataset(test, depVariable="Lean.Mass") r = PhenStat:::analysisResults(obj = result)
Method batchIn
returns TRUE/FALSE values depending on the batch column presence/absence in the dataset
TRUE/FALSE
signature(obj = "PhenList")
signature(obj = "PhenTestResult")
Graph function for the Mixed Model framework's results. Creates a box plot with residue versus batch split by genotype.
boxplotResidualBatch(phenTestResult,outputMessages=TRUE)
boxplotResidualBatch(phenTestResult,outputMessages=TRUE)
phenTestResult |
instance of the |
outputMessages |
flag: "FALSE" value to suppress output messages; "TRUE" value to show output messages; default value TRUE |
Empty.
Natalja Kurbatova, Natasha Karp, Jeremy Mason
Karp N, Melvin D, Sanger Mouse Genetics Project, Mott R (2012): Robust and Sensitive Analysis of Mouse Knockout Phenotypes. PLoS ONE 7(12): e52410. doi:10.1371/journal.pone.0052410
West B, Welch K, Galecki A (2007): Linear Mixed Models: A practical guide using statistical software New York: Chapman & Hall/CRC 353 p.
file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") result <- PhenStat:::testDataset(test, depVariable="Lean.Mass") PhenStat:::boxplotResidualBatch(result)
file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") result <- PhenStat:::testDataset(test, depVariable="Lean.Mass") PhenStat:::boxplotResidualBatch(result)
Graph function for the phenotypic dataset. Creates a box plot split by sex and genotype.
boxplotSexGenotype(phenList, depVariable=NULL, graphingName=NULL, outputMessages=TRUE)
boxplotSexGenotype(phenList, depVariable=NULL, graphingName=NULL, outputMessages=TRUE)
phenList |
instance of the |
depVariable |
a character string defining the dependent variable of interest; mandatory argument |
graphingName |
a character string defining the name to be used on the graph for the dependent variable; mandatory argument |
outputMessages |
flag: "FALSE" value to suppress output messages; "TRUE" value to show output messages; default value TRUE |
Empty.
Natalja Kurbatova, Natasha Karp, Jeremy Mason
Karp N, Melvin D, Sanger Mouse Genetics Project, Mott R (2012): Robust and Sensitive Analysis of Mouse Knockout Phenotypes. PLoS ONE 7(12): e52410. doi:10.1371/journal.pone.0052410
West B, Welch K, Galecki A (2007): Linear Mixed Models: A practical guide using statistical software New York: Chapman & Hall/CRC 353 p.
file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") # box plot for dataset with two sexes: males and females PhenStat:::boxplotSexGenotype(test, depVariable="Bone.Mineral.Content", graphingName="BMC") file <- system.file("extdata", "test4.csv", package="PhenStat") test_1sex <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Mysm1/+") # box plot for females only dataset PhenStat:::boxplotSexGenotype(test_1sex, depVariable="Lean.Mass", graphingName="Lean Mass (g)")
file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") # box plot for dataset with two sexes: males and females PhenStat:::boxplotSexGenotype(test, depVariable="Bone.Mineral.Content", graphingName="BMC") file <- system.file("extdata", "test4.csv", package="PhenStat") test_1sex <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Mysm1/+") # box plot for females only dataset PhenStat:::boxplotSexGenotype(test_1sex, depVariable="Lean.Mass", graphingName="Lean Mass (g)")
NB! Function is deprecated, please use scatterplotSexGenotypeBatch function instead. Graph function for the phenotypic dataset. Creates a box plot split by sex, genotype and batch.
Note: the batches are not ordered with time but allow assessment of how the treatment groups lie relative to the normal control variation.
boxplotSexGenotypeBatch(phenList, depVariable=NULL, graphingName=NULL, outputMessages=TRUE)
boxplotSexGenotypeBatch(phenList, depVariable=NULL, graphingName=NULL, outputMessages=TRUE)
phenList |
instance of the |
depVariable |
a character string defining the dependent variable of interest; mandatory argument |
graphingName |
a character string defining the name to be used on the graph for the dependent variable; mandatory argument |
outputMessages |
flag: "FALSE" value to suppress output messages; "TRUE" value to show output messages; default value TRUE |
Empty.
Natalja Kurbatova, Natasha Karp, Jeremy Mason
Karp N, Melvin D, Sanger Mouse Genetics Project, Mott R (2012): Robust and Sensitive Analysis of Mouse Knockout Phenotypes. PLoS ONE 7(12): e52410. doi:10.1371/journal.pone.0052410
West B, Welch K, Galecki A (2007): Linear Mixed Models: A practical guide using statistical software New York: Chapman & Hall/CRC 353 p.
file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") # box plot for dataset with two sexes: males and females PhenStat:::boxplotSexGenotypeBatch(test, depVariable="Bone.Mineral.Content", graphingName="BMC" ) file <- system.file("extdata", "test4.csv", package="PhenStat") test_1sex <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Mysm1/+") # box plot for females only dataset PhenStat:::boxplotSexGenotypeBatch(test_1sex,depVariable="Lean.Mass", graphingName="Lean Mass")
file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") # box plot for dataset with two sexes: males and females PhenStat:::boxplotSexGenotypeBatch(test, depVariable="Bone.Mineral.Content", graphingName="BMC" ) file <- system.file("extdata", "test4.csv", package="PhenStat") test_1sex <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Mysm1/+") # box plot for females only dataset PhenStat:::boxplotSexGenotypeBatch(test_1sex,depVariable="Lean.Mass", graphingName="Lean Mass")
Graph function for the phenotypic dataset. Creates a box plot split by sex and genotype after accounting for batch.
boxplotSexGenotypeBatchAdjusted( phenList, depVariable=NULL, graphingName=NULL, outputMessages=TRUE)
boxplotSexGenotypeBatchAdjusted( phenList, depVariable=NULL, graphingName=NULL, outputMessages=TRUE)
phenList |
instance of the |
depVariable |
a character string defining the dependent variable of interest; mandatory argument |
graphingName |
a character string defining the name to be used on the graph for the dependent variable; mandatory argument |
outputMessages |
flag: "FALSE" value to suppress output messages; "TRUE" value to show output messages; default value TRUE |
Empty.
Natalja Kurbatova, Natasha Karp, Jeremy Mason
Karp N, Melvin D, Sanger Mouse Genetics Project, Mott R (2012): Robust and Sensitive Analysis of Mouse Knockout Phenotypes. PLoS ONE 7(12): e52410. doi:10.1371/journal.pone.0052410
West B, Welch K, Galecki A (2007): Linear Mixed Models: A practical guide using statistical software New York: Chapman & Hall/CRC 353 p.
file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") # box plot for dataset with two sexes: males and females PhenStat:::boxplotSexGenotypeBatchAdjusted(test, depVariable="Bone.Mineral.Content", graphingName="BMC" )
file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") # box plot for dataset with two sexes: males and females PhenStat:::boxplotSexGenotypeBatchAdjusted(test, depVariable="Bone.Mineral.Content", graphingName="BMC" )
Graph function for the phenotypic dataset. Creates a box plot split by sex and genotype. Is based on PhenTestResult object.
boxplotSexGenotypeResult(phenTestResult, graphingName=NULL, outputMessages=TRUE)
boxplotSexGenotypeResult(phenTestResult, graphingName=NULL, outputMessages=TRUE)
phenTestResult |
instance of the |
graphingName |
a character string defining the name to be used on the graph for the dependent variable; mandatory argument |
outputMessages |
flag: "FALSE" value to suppress output messages; "TRUE" value to show output messages; default value TRUE |
Empty.
Natalja Kurbatova, Natasha Karp, Jeremy Mason
Karp N, Melvin D, Sanger Mouse Genetics Project, Mott R (2012): Robust and Sensitive Analysis of Mouse Knockout Phenotypes. PLoS ONE 7(12): e52410. doi:10.1371/journal.pone.0052410
West B, Welch K, Galecki A (2007): Linear Mixed Models: A practical guide using statistical software New York: Chapman & Hall/CRC 353 p.
file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") result <- PhenStat:::testDataset(test, depVariable="Lean.Mass") # box plot for dataset with two sexes: males and females PhenStat:::boxplotSexGenotypeResult(result, graphingName="BMC") file <- system.file("extdata", "test4.csv", package="PhenStat") test_1sex <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Mysm1/+") result_1sex <- PhenStat:::testDataset(test_1sex, depVariable="Lean.Mass") # box plot for females only dataset PhenStat:::boxplotSexGenotypeResult(result_1sex, graphingName="Lean Mass (g)")
file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") result <- PhenStat:::testDataset(test, depVariable="Lean.Mass") # box plot for dataset with two sexes: males and females PhenStat:::boxplotSexGenotypeResult(result, graphingName="BMC") file <- system.file("extdata", "test4.csv", package="PhenStat") test_1sex <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Mysm1/+") result_1sex <- PhenStat:::testDataset(test_1sex, depVariable="Lean.Mass") # box plot for females only dataset PhenStat:::boxplotSexGenotypeResult(result_1sex, graphingName="Lean Mass (g)")
Graph function for the phenotypic dataset. Creates a box plot split by sex and genotype after accounting for batch and weight.
boxplotSexGenotypeWeightBatchAdjusted( phenList, depVariable=NULL, graphingName=NULL, outputMessages=TRUE)
boxplotSexGenotypeWeightBatchAdjusted( phenList, depVariable=NULL, graphingName=NULL, outputMessages=TRUE)
phenList |
instance of the |
depVariable |
a character string defining the dependent variable of interest; mandatory argument |
graphingName |
a character string defining the name to be used on the graph for the dependent variable; mandatory argument |
outputMessages |
flag: "FALSE" value to suppress output messages; "TRUE" value to show output messages; default value TRUE |
Empty.
Natalja Kurbatova, Natasha Karp, Jeremy Mason
Karp N, Melvin D, Sanger Mouse Genetics Project, Mott R (2012): Robust and Sensitive Analysis of Mouse Knockout Phenotypes. PLoS ONE 7(12): e52410. doi:10.1371/journal.pone.0052410
West B, Welch K, Galecki A (2007): Linear Mixed Models: A practical guide using statistical software New York: Chapman & Hall/CRC 353 p.
file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") # box plot for dataset with two sexes: males and females PhenStat:::boxplotSexGenotypeWeightBatchAdjusted(test, depVariable="Bone.Mineral.Content", graphingName="BMC" )
file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") # box plot for dataset with two sexes: males and females PhenStat:::boxplotSexGenotypeWeightBatchAdjusted(test, depVariable="Bone.Mineral.Content", graphingName="BMC" )
Graph function for the Fisher Exact Test framework's results. Creates stacked bar plot(s) to compare proportions seen in a categorical variable between different genotypes. Graphs are created for all data and also for each sex individually.
categoricalBarplot(phenTestResult, outputMessages=TRUE)
categoricalBarplot(phenTestResult, outputMessages=TRUE)
phenTestResult |
instance of the |
outputMessages |
flag: "FALSE" value to suppress output messages; "TRUE" value to show output messages; default value TRUE |
Empty.
Natalja Kurbatova, Natasha Karp, Jeremy Mason
Karp N, Melvin D, Sanger Mouse Genetics Project, Mott R (2012): Robust and Sensitive Analysis of Mouse Knockout Phenotypes. PLoS ONE 7(12): e52410. doi:10.1371/journal.pone.0052410
West B, Welch K, Galecki A (2007): Linear Mixed Models: A practical guide using statistical software New York: Chapman & Hall/CRC 353 p.
file <- system.file("extdata", "test_categorical.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Aff3/Aff3") result <- PhenStat:::testDataset(test, depVariable="Thoracic.Processes", method="FE") PhenStat:::categoricalBarplot(result)
file <- system.file("extdata", "test_categorical.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Aff3/Aff3") result <- PhenStat:::testDataset(test, depVariable="Thoracic.Processes", method="FE") PhenStat:::categoricalBarplot(result)
Checks dataset for the minimum required info:
1. Column names should present
2. Genotype column should present
3. Sex column should present
4. Two data points for each Genotype/Sex combination
5. Number of Genotype levels should be 2
6. Number of Sex levels should be 1 or 2
7. Sex levels have to be "Female" and/or "Male"
8. Records with reference genotype should be in the dataset
9. Records with test genotype should be in the dataset
Perform the following additional checks:
- presence of Weight column,
- presence of Batch column (Assay.Date).
Warning given in case of missed data indicating that you can only fit a glm or to use MM equation "withoutWeight".
Function checkDataset
is called from PhenList
function.
checkDataset(dataset, testGenotype, refGenotype="+/+", outputMessages=TRUE, dataset.clean=TRUE)
checkDataset(dataset, testGenotype, refGenotype="+/+", outputMessages=TRUE, dataset.clean=TRUE)
dataset |
data frame created from file or from another source; mandatory argument |
testGenotype |
defines the test genotype to be compared to the reference genotype; mandatory argument |
refGenotype |
defines the reference genotype; assigned default value is "+/+" |
outputMessages |
flag: "FALSE" value to suppress output messages; "TRUE" value to show output messages; assigned default value is TRUE |
dataset.clean |
flag: "FALSE" value for no modification of the dataset; "TRUE" value to clean dataset if needed; assigned default value is TRUE |
Returns an instance of the PhenList
class.
Natalja Kurbatova, Natasha Karp, Jeremy Mason
Karp N, Melvin D, Sanger Mouse Genetics Project, Mott R (2012): Robust and Sensitive Analysis of Mouse Knockout Phenotypes. PLoS ONE 7(12): e52410. doi:10.1371/journal.pone.0052410
West B, Welch K, Galecki A (2007): Linear Mixed Models: A practical guide using statistical software New York: Chapman & Hall/CRC 353 p.
# "checkDataset" is called internally from "PhenList" function file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc")
# "checkDataset" is called internally from "PhenList" function file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc")
Returns a classification tag to assign a sexual dimorphism assessment of the phenotypic change.
classificationTag(phenTestResult, userMode = "summaryOutput", phenotypeThreshold = 0.01, outputMessages=TRUE)
classificationTag(phenTestResult, userMode = "summaryOutput", phenotypeThreshold = 0.01, outputMessages=TRUE)
phenTestResult |
instance of the |
userMode |
flag: "vectorOuput" a sexual dimorphic classification is assigned with a proviso of later assessing the overall statistical significance; "summaryOutput" the phenotypeThreshold is used to assess the overall statistical significance and then if significant the sexual dimorphic classification determined; defaults to summaryOutput |
phenotypeThreshold |
a numerical value defining the threshold to use in classificationTag in determining whether the genotype effect is classed as significant or not; default value 0.01 |
outputMessages |
flag: "FALSE" value to suppress output messages; "TRUE" value to show output messages ; default value TRUE |
Returns a classification tag to assign a sexual dimorphism assessment of the phenotypic change.
If you are working interactively with the data, the argument "userMode" set to the value "summaryOutput" will use the "phenotypeThreshold" argument's value to assess statistical significance of the genotype effect and if significant then assign a sexual dimorphic classification. Alternatively, if the "userMode" set to the value "vectorMode", a sexual dimorphic classification will be returned with the MM framework where later you can globally assess whether the variable had a significant genotype effect. With the FE framework and the vectorMode, a NA is returned as the type of the effect cannot be assessed without assessing the statistical significance of the genotype effect.
Natalja Kurbatova, Natasha Karp, Jeremy Mason
Karp N, Melvin D, Sanger Mouse Genetics Project, Mott R (2012): Robust and Sensitive Analysis of Mouse Knockout Phenotypes. PLoS ONE 7(12): e52410. doi:10.1371/journal.pone.0052410
West B, Welch K, Galecki A (2007): Linear Mixed Models: A practical guide using statistical software New York: Chapman & Hall/CRC 353 p.
file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") result <- PhenStat:::testDataset(test, depVariable="Lean.Mass") PhenStat:::classificationTag(result, userMode="summaryOutput", phenotypeThreshold=0.001) PhenStat:::classificationTag(result, userMode="vectorOutput")
file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") result <- PhenStat:::testDataset(test, depVariable="Lean.Mass") PhenStat:::classificationTag(result, userMode="summaryOutput", phenotypeThreshold=0.001) PhenStat:::classificationTag(result, userMode="vectorOutput")
Method comparison
returns name of the comparison that was performed by RR framework:
"High vs Normal/Low" or "Low vs Normal/High"
returns name of the comparison that was performed by RR framework.
signature(obj = "htestPhenStat")
Method dataset
returns data frame stored in the object
returns data frame stored in the object
signature(obj = "PhenList")
This is an internal function run within LR framework. It completes the final stage of the LR framework, which builds the final model and estimates effects. As an internal function, it doesn't include extensive error testing of inputs. Please use cautiously if calling directly.
Works with PhenTestResult
object created by startLRModel
function.
The creation of LR final model is based on the significance of different fixed effects, depVariable and equation values
stored in PhenTestResult
object.
finalLRModel(phenTestResult, outputMessages = TRUE)
finalLRModel(phenTestResult, outputMessages = TRUE)
phenTestResult |
instance of the |
outputMessages |
flag: "FALSE" value to suppress output messages; "TRUE" value to show output messages; default value TRUE |
Returns results stored in instance of the PhenTestResult
class
Natalja Kurbatova, Natasha Karp, Jeremy Mason
Karp N, Melvin D, Sanger Mouse Genetics Project, Mott R (2012): Robust and Sensitive Analysis of Mouse Knockout Phenotypes. PLoS ONE 7(12): e52410. doi:10.1371/journal.pone.0052410
West B, Welch K, Galecki A (2007): Linear Mixed Models: A practical guide using statistical software New York: Chapman & Hall/CRC 353 p.
PhenTestResult
and testDataset
file <- system.file("extdata", "testLR.csv", package="PhenStat") testLR <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Mock") testLR2 <- PhenStat:::LRDataset(testLR,"V2") # when "testDataset" function's argument "callAll" is set to FALSE # only "startLRModel" function is called - the first step of LR framework resultLR <- PhenStat:::testDataset(testLR2, depVariable="V2", callAll=FALSE, method="LR") # print out formula that has been created PhenStat:::analysisResults(resultLR)$model.formula.genotype # print out batch effect's significance PhenStat:::analysisResults(resultLR)$model.effect.batch resultLR <- PhenStat:::finalLRModel(resultLR)
file <- system.file("extdata", "testLR.csv", package="PhenStat") testLR <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Mock") testLR2 <- PhenStat:::LRDataset(testLR,"V2") # when "testDataset" function's argument "callAll" is set to FALSE # only "startLRModel" function is called - the first step of LR framework resultLR <- PhenStat:::testDataset(testLR2, depVariable="V2", callAll=FALSE, method="LR") # print out formula that has been created PhenStat:::analysisResults(resultLR)$model.formula.genotype # print out batch effect's significance PhenStat:::analysisResults(resultLR)$model.effect.batch resultLR <- PhenStat:::finalLRModel(resultLR)
This is an internal function run within MM framework. It completes the final stage of the MM framework, which builds the final model and estimates effects. As an internal function, it doesn't include extensive error testing of inputs. Please use cautiously if calling directly.
Works with PhenTestResult
object created by startModel
function.
The creation of MM final model is based on the significance of different fixed effects, depVariable and equation values
stored in PhenTestResult
object.
finalModel(phenTestResult, outputMessages = TRUE, modelWeight = NULL)
finalModel(phenTestResult, outputMessages = TRUE, modelWeight = NULL)
phenTestResult |
instance of the |
outputMessages |
flag: "FALSE" value to suppress output messages; "TRUE" value to show output messages; default value TRUE |
modelWeight |
A vector of positive values for weights mainly used for appliying windowing to the data |
Returns results stored in instance of the PhenTestResult
class
Natalja Kurbatova, Natasha Karp, Jeremy Mason
Karp N, Melvin D, Sanger Mouse Genetics Project, Mott R (2012): Robust and Sensitive Analysis of Mouse Knockout Phenotypes. PLoS ONE 7(12): e52410. doi:10.1371/journal.pone.0052410
West B, Welch K, Galecki A (2007): Linear Mixed Models: A practical guide using statistical software New York: Chapman & Hall/CRC 353 p.
PhenTestResult
and testDataset
file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") # when "testDataset" function's argument "callAll" is set to FALSE # only "startModel" function is called - the first step of MM framework result <- PhenStat:::testDataset(test, depVariable="Lean.Mass", equation="withoutWeight", callAll=FALSE) # print out formula that has been created # result$model.formula.genotype # print out batch effect's significance # result$model.effect.batch # change the model # result <- PhenStat:::testDataset(test, # depVariable="Lean.Mass", # equation="withWeight", # callAll=FALSE) # print out new formula #result$model.formula.genotype # run the final model fitting when statisfied with the model result <- PhenStat:::finalModel(result)
file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") # when "testDataset" function's argument "callAll" is set to FALSE # only "startModel" function is called - the first step of MM framework result <- PhenStat:::testDataset(test, depVariable="Lean.Mass", equation="withoutWeight", callAll=FALSE) # print out formula that has been created # result$model.formula.genotype # print out batch effect's significance # result$model.effect.batch # change the model # result <- PhenStat:::testDataset(test, # depVariable="Lean.Mass", # equation="withWeight", # callAll=FALSE) # print out new formula #result$model.formula.genotype # run the final model fitting when statisfied with the model result <- PhenStat:::finalModel(result)
This is an internal function run within TF framework. It completes the final stage of the TF framework, which builds the final model and estimates effects. As an internal function, it doesn't include extensive error testing of inputs. Please use cautiously if calling directly.
Works with PhenTestResult
object created by startTFModel
function.
The creation of TF final model is based on the significance of different fixed effects, depVariable and equation values
stored in PhenTestResult
object.
finalTFModel(phenTestResult, outputMessages = TRUE)
finalTFModel(phenTestResult, outputMessages = TRUE)
phenTestResult |
instance of the |
outputMessages |
flag: "FALSE" value to suppress output messages; "TRUE" value to show output messages; default value TRUE |
Returns results stored in instance of the PhenTestResult
class
Natalja Kurbatova, Natasha Karp, Jeremy Mason
Karp N, Melvin D, Sanger Mouse Genetics Project, Mott R (2012): Robust and Sensitive Analysis of Mouse Knockout Phenotypes. PLoS ONE 7(12): e52410. doi:10.1371/journal.pone.0052410
West B, Welch K, Galecki A (2007): Linear Mixed Models: A practical guide using statistical software New York: Chapman & Hall/CRC 353 p.
PhenTestResult
and testDataset
file <- system.file("extdata", "test7_TFE.csv", package="PhenStat") test <- PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="het", refGenotype = "WT", dataset.colname.sex="sex", dataset.colname.genotype="Genotype", dataset.values.female="f", dataset.values.male= "m", dataset.colname.weight="body.weight", dataset.colname.batch="Date_of_procedure_start") test_TF <- PhenStat:::TFDataset(test,depVariable="Cholesterol") # when "testDataset" function's argument "callAll" is set to FALSE # only "startTFModel" function is called - the first step of TFE framework result <- PhenStat:::testDataset(test_TF, depVariable="Cholesterol", callAll=FALSE, method="TF") # print out formula that has been created PhenStat:::analysisResults(result)$model.formula.genotype # print out batch effect's significance PhenStat:::analysisResults(result)$model.effect.batch result <- PhenStat:::finalTFModel(result)
file <- system.file("extdata", "test7_TFE.csv", package="PhenStat") test <- PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="het", refGenotype = "WT", dataset.colname.sex="sex", dataset.colname.genotype="Genotype", dataset.values.female="f", dataset.values.male= "m", dataset.colname.weight="body.weight", dataset.colname.batch="Date_of_procedure_start") test_TF <- PhenStat:::TFDataset(test,depVariable="Cholesterol") # when "testDataset" function's argument "callAll" is set to FALSE # only "startTFModel" function is called - the first step of TFE framework result <- PhenStat:::testDataset(test_TF, depVariable="Cholesterol", callAll=FALSE, method="TF") # print out formula that has been created PhenStat:::analysisResults(result)$model.formula.genotype # print out batch effect's significance PhenStat:::analysisResults(result)$model.effect.batch result <- PhenStat:::finalTFModel(result)
The main function of the Fisher Exact Test framework. Creates n times 2 matrices with record counts, where n rows represent dependent variable levels and two columns represent genotype levels. Performs Fisher Exact Tests on calculated count matrices.
Three matrices can be created and three tests can be potentially perform depending on the dataset:
- all records together regardless the sex values - combined dataset,
- records where sex value is "Male" (if such exists) - males only dataset,
- records where sex value is "Female" (if such exists) - females only dataset.
Together with count matrices creates percentage matrices, calculates effect sizes and statistics for count matrices. Performs Fisher Exact Tests.
The results (matrices, statistics and Fisher Exact Test outputs) are stored in PhenTestResult
object.
The funciton is called from "testDataset" function when "method" argument is set to "FE" meaning "Fisher Exact Test".
FisherExactTest(phenList, depVariable, outputMessages=TRUE)
FisherExactTest(phenList, depVariable, outputMessages=TRUE)
phenList |
instance of the |
depVariable |
a character string defining the dependent variable of interest; mandatory argument |
outputMessages |
flag: "FALSE" value to suppress output messages; "TRUE" value to show output messages; default value TRUE |
Returns results stored in instance of the PhenTestResult
class
Natalja Kurbatova, Natasha Karp, Jeremy Mason
Karp N, Melvin D, Sanger Mouse Genetics Project, Mott R (2012): Robust and Sensitive Analysis of Mouse Knockout Phenotypes. PLoS ONE 7(12): e52410. doi:10.1371/journal.pone.0052410
West B, Welch K, Galecki A (2007): Linear Mixed Models: A practical guide using statistical software New York: Chapman & Hall/CRC 353 p.
file <- system.file("extdata", "test_categorical.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Aff3/Aff3") # "FisherExactTest" function is called from "testDataset" function. result <- PhenStat:::testDataset(test,depVariable="Thoracic.Processes",method="FE") # Fisher Exact Test results can be printed out using function "summaryOutput" summary(result)
file <- system.file("extdata", "test_categorical.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Aff3/Aff3") # "FisherExactTest" function is called from "testDataset" function. result <- PhenStat:::testDataset(test,depVariable="Thoracic.Processes",method="FE") # Fisher Exact Test results can be printed out using function "summaryOutput" summary(result)
Function generates graphs for the Mixed Model and Time as Fixed Effect frameworks' results and stores generated graphs in the defined directory.
generateGraphs(phenTestResult, dir, graphingName=NULL, type="Xlib")
generateGraphs(phenTestResult, dir, graphingName=NULL, type="Xlib")
phenTestResult |
instance of the |
dir |
directory where to store generated graphs; mandatory argument |
graphingName |
a character string defining the name to be used on the graph for the dependent variable; defaults to NULL then the depVariable name will be plotted |
type |
character string, one of "Xlib" or "quartz" (some OS X builds) or "cairo", or "window", or cairo-png"; mandatory argument |
Empty.
Natalja Kurbatova, Natasha Karp, Jeremy Mason
Karp N, Melvin D, Sanger Mouse Genetics Project, Mott R (2012): Robust and Sensitive Analysis of Mouse Knockout Phenotypes. PLoS ONE 7(12): e52410. doi:10.1371/journal.pone.0052410
West B, Welch K, Galecki A (2007): Linear Mixed Models: A practical guide using statistical software New York: Chapman & Hall/CRC 353 p.
Method getColumn
returns column of interest
This function returns column of interest
signature(obj = "PhenList")
Method getColumnBatchAdjusted
returns column of interest
adjusted for batch
This function returns column of interest
signature(obj = "PhenList")
Method getColumnView
returns RR or FE frameworks results in a column format
This function returns RR or FE frameworks results in a column format
signature(obj = "htestPhenStat")
Method getColumnWeightBatchAdjusted
returns column of interest
adjusted for weight and batch
This function returns column of interest
signature(obj = "PhenList")
Method getCountMatrices
returns count matrices for FE and RR frameworks
This function returns count matrices for FE and RR frameworks
signature(obj = "PhenTestResult")
Method getDataset
returns data frame stored in the object
This function returns data frame stored in the object.
signature(obj = "PhenList")
Method getGenotypeEffect
returns genotype effect and standard error for the linear regression frameworks
This function returns genotype effect and standard error for the linear regression frameworks
signature(obj = "PhenTestResult")
Method getMatrix
returns RR or FE frameworks results in a matrix format
This function returns RR or FE frameworks results in a matrix format
signature(obj = "htestPhenStat")
Method getPercentageMatrix
returns percentage matrix calculated out of counts
This function returns percentage matrix calculated out of counts.
signature(obj = "htestPhenStat")
Method getStat
returns simple statistics about variables in the dataset
This function returns simple statistics about variables in the dataset
signature(obj = "PhenList")
Method getVariable
returns dependent variable name
This function returns dependent variable name
signature(obj = "PhenTestResult")
Method getVariables
returns names of variables in the dataset
This function returns names of variables in the dataset
signature(obj = "PhenList")
Method hemiGenotype
returns hemi genotype if defined
This function returns hemi genotype if defined
signature(obj = "PhenList")
signature(obj = "PhenTestResult")
Wrapper for the model fitting results. Returns model fitting and testing results in a JSON format.
Assumes that modelling results are stored in the PhenTestResult
object
(output from function testDataset
).
JSONOutput(phenTestResult, phenotypeThreshold = 0.01)
JSONOutput(phenTestResult, phenotypeThreshold = 0.01)
phenTestResult |
instance of the |
phenotypeThreshold |
a numerical value defining the threshold to use in classificationTag; default value 0.01 |
Returns a vector with model fitting results in JSON format: model output summary and other values
Natalja Kurbatova
## Not run: # Mixed Model framework file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") result <- PhenStat:::testDataset(test, depVariable="Lean.Mass") PhenStat:::JSONOutput(result) # Fishe Exact Test framework file <- system.file("extdata", "test_categorical.csv", package="PhenStat") test2 <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Aff3/Aff3") result2 <- PhenStat:::testDataset(test2, depVariable="Thoracic.Processes", method="FE") PhenStat:::JSONOutput(result2) ## End(Not run)
## Not run: # Mixed Model framework file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") result <- PhenStat:::testDataset(test, depVariable="Lean.Mass") PhenStat:::JSONOutput(result) # Fishe Exact Test framework file <- system.file("extdata", "test_categorical.csv", package="PhenStat") test2 <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Aff3/Aff3") result2 <- PhenStat:::testDataset(test2, depVariable="Thoracic.Processes", method="FE") PhenStat:::JSONOutput(result2) ## End(Not run)
Prepares dataset for the LR framework - maps values of dependent variable to 0/1, where 1 is modeled.
LRDataset( phenList = NULL, depVariable = NULL, abnormalValues = c("abnormal", "Abnormal", "TRUE", "deviant"), outputMessages = TRUE )
LRDataset( phenList = NULL, depVariable = NULL, abnormalValues = c("abnormal", "Abnormal", "TRUE", "deviant"), outputMessages = TRUE )
phenList |
instance of the |
depVariable |
a character string defining the dependent variable of interest; mandatory argument |
abnormalValues |
a list of abnormal values that will be mapped to 0; mandatory argument |
outputMessages |
flag: "FALSE" value to suppress output messages; "TRUE" value to show output messages; default value TRUE |
Returns dataset suitable for LR framework, where provided abonormal values are mapped to 1 and all other values of dependent variable are assumed to be normal and are mapped to 0.
Natalja Kurbatova, Natasha Karp, Jeremy Mason
Karp N, Melvin D, Sanger Mouse Genetics Project, Mott R (2012): Robust and Sensitive Analysis of Mouse Knockout Phenotypes. PLoS ONE 7(12): e52410. doi:10.1371/journal.pone.0052410
West B, Welch K, Galecki A (2007): Linear Mixed Models: A practical guide using statistical software New York: Chapman & Hall/CRC 353 p.
file <- system.file("extdata", "testLR.csv", package="PhenStat") testLR <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Mock") testLR2 <- PhenStat:::LRDataset(testLR,"V2")
file <- system.file("extdata", "testLR.csv", package="PhenStat") testLR <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Mock") testLR2 <- PhenStat:::LRDataset(testLR,"V2")
Method matrixCount
returns matrix of counts that was created by RR or FE framework.
This function returns matrix of counts that was created by RR or FE framework.
signature(obj = "htestPhenStat")
Method method
returns method abbriviation, for example: "RR", "MM".
This function returns returns method abbriviation.
signature(obj = "PhenTestResult")
Method methodText
returns method's name, for example: "Reference Range Plus", "Linear Mixed Model".
This function returns returns method's name.
signature(obj = "PhenTestResult")
Method multipleBatches
returns TRUE if there are multiple batches in the dataset, FALSE otherwise
This function returns TRUE if there are multiple batches in the dataset.
signature(obj = "PhenList")
Method noSexes
returns number of sex levels: 1/2
This function returns number of sex levels.
signature(obj = "PhenList")
signature(obj = "PhenTestResult")
Method parameters
returns parameters specific for apllied method/dataset combination
This function returns parameters specific for apllied method/dataset combination.
signature(obj = "PhenTestResult")
Parsers model output summary and returns it in readable named vector format
parserOutputSummary(linearRegressionOutput)
parserOutputSummary(linearRegressionOutput)
linearRegressionOutput |
linear regression output that comes from the MM methods; mandatory argument |
Returns a named vector with linear regression model output summary results
Natalja Kurbatova, Natasha Karp, Jeremy Mason
Karp N, Melvin D, Sanger Mouse Genetics Project, Mott R (2012): Robust and Sensitive Analysis of Mouse Knockout Phenotypes. PLoS ONE 7(12): e52410. doi:10.1371/journal.pone.0052410
West B, Welch K, Galecki A (2007): Linear Mixed Models: A practical guide using statistical software New York: Chapman & Hall/CRC 353 p.
file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") result <- PhenStat:::testDataset(test, depVariable="Lean.Mass") linearRegressionOutput <- PhenStat:::analysisResults(result) PhenStat:::parserOutputSummary(linearRegressionOutput)
file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") result <- PhenStat:::testDataset(test, depVariable="Lean.Mass") linearRegressionOutput <- PhenStat:::analysisResults(result) PhenStat:::parserOutputSummary(linearRegressionOutput)
Parsers model output summary and returns it in readable named vector format
parserOutputSummaryLR(linearRegressionOutput)
parserOutputSummaryLR(linearRegressionOutput)
linearRegressionOutput |
linear regression output that comes from the MM methods; mandatory argument |
Returns a named vector with logistic regression model output summary results
Natalja Kurbatova, Natasha Karp, Jeremy Mason
Karp N, Melvin D, Sanger Mouse Genetics Project, Mott R (2012): Robust and Sensitive Analysis of Mouse Knockout Phenotypes. PLoS ONE 7(12): e52410. doi:10.1371/journal.pone.0052410
West B, Welch K, Galecki A (2007): Linear Mixed Models: A practical guide using statistical software New York: Chapman & Hall/CRC 353 p.
file <- system.file("extdata", "testLR.csv", package="PhenStat") testLR <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Mock") testLR2 <- PhenStat:::LRDataset(testLR,"V2") resultLR <- PhenStat:::testDataset(testLR2, depVariable="V2", method="LR") linearRegressionOutput <- PhenStat:::analysisResults(resultLR) PhenStat:::parserOutputSummaryLR(linearRegressionOutput)
file <- system.file("extdata", "testLR.csv", package="PhenStat") testLR <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Mock") testLR2 <- PhenStat:::LRDataset(testLR,"V2") resultLR <- PhenStat:::testDataset(testLR2, depVariable="V2", method="LR") linearRegressionOutput <- PhenStat:::analysisResults(resultLR) PhenStat:::parserOutputSummaryLR(linearRegressionOutput)
Parsers model output summary from TF framework and returns it in readable named vector format
parserOutputTFSummary(linearRegressionOutput)
parserOutputTFSummary(linearRegressionOutput)
linearRegressionOutput |
linear regression output that comes from the TF method; mandatory argument |
Returns a named vector with model output summary results
Natalja Kurbatova, Natasha Karp, Jeremy Mason
Karp N, Melvin D, Sanger Mouse Genetics Project, Mott R (2012): Robust and Sensitive Analysis of Mouse Knockout Phenotypes. PLoS ONE 7(12): e52410. doi:10.1371/journal.pone.0052410
West B, Welch K, Galecki A (2007): Linear Mixed Models: A practical guide using statistical software New York: Chapman & Hall/CRC 353 p.
file <- system.file("extdata", "test6_RR.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Oxr1/Oxr1") result <- PhenStat:::testDataset(test, depVariable="Ca", method="TF", dataPointsThreshold=2) linearRegressionOutput <- PhenStat:::analysisResults(result) PhenStat:::parserOutputTFSummary(linearRegressionOutput)
file <- system.file("extdata", "test6_RR.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Oxr1/Oxr1") result <- PhenStat:::testDataset(test, depVariable="Ca", method="TF", dataPointsThreshold=2) linearRegressionOutput <- PhenStat:::analysisResults(result) PhenStat:::parserOutputTFSummary(linearRegressionOutput)
Function to create data object from the data frame.
In addition to dependent variable column (the variable of interest) mandatory columns that should present in the data frame are "Genotype" and "Sex". The "Assay.Date" column is used to model "Batch" effect if not specified differently. "Weight" column is used to model body weight effect.
Function creates PhenList
object, checks data integrity, renames columns when requested,
provides simple statistics about dataset.
Returns an instance of the PhenList
object created from the data file.
Dataset is cleaned to ensure there is a maximum two sex levels and there are exactly two levels for genotype. Data cleaning can be switched off by defining the argument "dataset.clean" as FALSE.
PhenList(dataset, testGenotype, refGenotype="+/+", hemiGenotype=NULL, outputMessages=TRUE, dataset.clean=TRUE, dataset.colname.batch=NULL, dataset.colname.genotype=NULL, dataset.colname.sex=NULL, dataset.colname.weight=NULL, dataset.values.missingValue=" ", dataset.values.male=NULL, dataset.values.female=NULL)
PhenList(dataset, testGenotype, refGenotype="+/+", hemiGenotype=NULL, outputMessages=TRUE, dataset.clean=TRUE, dataset.colname.batch=NULL, dataset.colname.genotype=NULL, dataset.colname.sex=NULL, dataset.colname.weight=NULL, dataset.values.missingValue=" ", dataset.values.male=NULL, dataset.values.female=NULL)
dataset |
data frame created from file or from another source; mandatory argument |
testGenotype |
defines the test genotype to be compared to the reference genotype; mandatory argument |
refGenotype |
defines the reference genotype; assigned default value is "+/+" |
hemiGenotype |
defines the genotype value for hemizygous that will be changed to test genotype value |
outputMessages |
flag: "FALSE" value to suppress output messages; "TRUE" value to show output messages; assigned default value is TRUE |
dataset.clean |
flag: "FALSE" value for no modification of the dataset; "TRUE" value to clean dataset if needed; assigned default value is TRUE |
dataset.colname.batch |
column name within dataset for the batch effect |
dataset.colname.genotype |
column name within dataset for the genotype info |
dataset.colname.sex |
column name within dataset for the sex info |
dataset.colname.weight |
column name within dataset for the weight info |
dataset.values.missingValue |
value used as missing value in the dataset |
dataset.values.male |
value used to label "males" in the dataset |
dataset.values.female |
value used to label "females" in the dataset |
Returns an instance of the PhenList
class.
Natalja Kurbatova, Natasha Karp, Jeremy Mason
Karp N, Melvin D, Sanger Mouse Genetics Project, Mott R (2012): Robust and Sensitive Analysis of Mouse Knockout Phenotypes. PLoS ONE 7(12): e52410. doi:10.1371/journal.pone.0052410
West B, Welch K, Galecki A (2007): Linear Mixed Models: A practical guide using statistical software New York: Chapman & Hall/CRC 353 p.
file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file, na.strings = '-'), testGenotype="Sparc/Sparc") file <- system.file("extdata", "test2.csv", package="PhenStat") test2 <- PhenStat:::PhenList(dataset=read.csv(file, na.strings = '-'), testGenotype="Arid4a/Arid4a", refGenotype="+/+", hemiGenotype="Arid4a/+", dataset.colname.weight="Weight.Value") file <- system.file("extdata", "test3.csv", package="PhenStat") test3 <- PhenStat:::PhenList(dataset=read.csv(file, na.strings = '-'), dataset.clean=TRUE, dataset.values.female=1, dataset.values.male=2, testGenotype="Mysm1/+")
file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file, na.strings = '-'), testGenotype="Sparc/Sparc") file <- system.file("extdata", "test2.csv", package="PhenStat") test2 <- PhenStat:::PhenList(dataset=read.csv(file, na.strings = '-'), testGenotype="Arid4a/Arid4a", refGenotype="+/+", hemiGenotype="Arid4a/+", dataset.colname.weight="Weight.Value") file <- system.file("extdata", "test3.csv", package="PhenStat") test3 <- PhenStat:::PhenList(dataset=read.csv(file, na.strings = '-'), dataset.clean=TRUE, dataset.values.female=1, dataset.values.male=2, testGenotype="Mysm1/+")
A list-based S4 class for storing phenotypic data. Helps to support data integrity checks and statistics calculation.
The PhenList object can be created by using function PhenList
.
PhenList object instance contains the following slots:
1. "datasetPL" where cleaned and checked dataset is stored: getDataset(phenList)
2. "testGenotype" where the genotype level to test is stored: testGenotype(phenList)
3. "refGenotype" where reference genotype value is stored with default value set to "+/+":
refGenotype(phenList)
4. "hemiGenotype" if defined contains the genotype value for hemizygous: hemiGenotype(phenList)
6. "dataset.clean" flag value is stored, see PhenList
for more details:
7. "dataset.colname" if defined contains dataset column names that have been renamed:
- [email protected]
column name for batch values
- [email protected]
column name for genotype values
- [email protected]
column name for sex values
- [email protected]
column name for weight values
8. "dataset.values" if defined contains dataset values that have been changed during dataset cleaning process:
- [email protected]
value used as missing value in the orginal dataset
- [email protected]
value used to label "males" in the original dataset
- [email protected]
value used to label "females" in the original dataset
datasetPL
:Object of class "data.frame"
~~ dataset to work with
refGenotype
:Object of class "character"
~~ reference genotype
testGenotype
:Object of class "character"
~~ test genotype
hemiGenotype
:Object of class "character"
~~ hemi genotype
dataset.colname.batch
:Object of class "character"
~~ column name for batch values
dataset.colname.genotype
:Object of class "character"
~~ column name for genotype values
dataset.colname.sex
:Object of class "character"
~~ column name for sex values
dataset.colname.weight
:Object of class "character"
~~ column name for weigth values
dataset.values.missingValue
:Object of class "character"
~~ value used as missing value
in the orginal dataset
dataset.values.male
:Object of class "character"
~~ value used to label "males"
in the original dataset
dataset.values.female
:Object of class "character"
~~ value used to label "females"
in the original dataset
dataset.clean
:Object of class "logical"
~~ flag value is stored
datasetUNF
:Object of class "data.frame"
~~ unfiltered dataset
(accessor): Returns dataset
(accessor): Returns reference genotype
(accessor): Returns test genotype
(accessor): Returns hemi genotype if specified
Returns specified column if exists
Returns specified column adjusted for batch effect
Returns specified column adjusted for batch and weight effects
Returns simple dataset statistics
Returns dataset column names
Returns TRUE if the batch is in the dataset, FALSE otherwise
Returns TRUE if the weight is in the dataset, FALSE otherwise
Returns TRUE if the batches are variable in the dataset, FALSE otherwise
Returns number of sexes in the dataset
Sets the batch column - change the column names
Sets the genotype column - change the column names
Sets the missing value
Sets the sex column - change the column names
Sets the weight column - change the column names
Natalja Kurbatova
file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") class(test) file <- system.file("extdata", "test2.csv", package="PhenStat") test2 <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Arid4a/Arid4a", refGenotype="+/+", hemiGenotype="Arid4a/+", dataset.colname.weight="Weight.Value") PhenStat:::getStat(test2) PhenStat:::testGenotype(test2) PhenStat:::refGenotype(test2) PhenStat:::hemiGenotype(test2)
file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") class(test) file <- system.file("extdata", "test2.csv", package="PhenStat") test2 <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Arid4a/Arid4a", refGenotype="+/+", hemiGenotype="Arid4a/+", dataset.colname.weight="Weight.Value") PhenStat:::getStat(test2) PhenStat:::testGenotype(test2) PhenStat:::refGenotype(test2) PhenStat:::hemiGenotype(test2)
This function takes a Phenlist object and generates a pdf report containing several statistical methods.
PhenStatReport( PhenlistObject , depVariable = NULL , other.response = NULL , update = TRUE , Gene.Symbol = NULL , Response.name = NULL , destination = NULL , reportTitle = "Extended Statistical Report", DataRelease = NULL , Showsource = FALSE , open = FALSE , clean = TRUE , verbos = FALSE , ... )
PhenStatReport( PhenlistObject , depVariable = NULL , other.response = NULL , update = TRUE , Gene.Symbol = NULL , Response.name = NULL , destination = NULL , reportTitle = "Extended Statistical Report", DataRelease = NULL , Showsource = FALSE , open = FALSE , clean = TRUE , verbos = FALSE , ... )
PhenlistObject |
A phenlist object that is already created by PhenList() function in PhenStat. |
depVariable |
String. Name of the dependent variable. |
other.response |
The vector of strings. A vector of names containing the other dependent variables in the data set. Default NULL |
update |
Logical flag. Set to TRUE to get the latest version of the report on the fly. Default is TRUE |
Gene.Symbol |
Optional string. Gene symbol. Default NULL |
Response.name |
Optional string. Name of the dependent variable. Default NULL |
destination |
Location of the final report file. The default is the working directory of R. |
reportTitle |
The title of the report that is printed on the top of the first page of the report. |
DataRelease |
Optional flag. Data release version. Default NULL |
Showsource |
Logical flag. Set to TRUE to see the actual R codes that generate each section of the report. Default FALSE |
open |
Logical flag. Set to TRUE to open the report after it is generated. Default FALSE |
clean |
Logical flag. Set to TRUE to remove the auxiliary files after successfully generating the report. Default TRUE |
verbos |
Logical flag. Setting to TRUE shows the details and progress of the report generating function on screen. Default FALSE |
... |
List of other parameters that can be passed to the functions. |
See PhenStatReport page on the IMPC website
PhenlistObject |
The input object |
depVariable |
Dependent variable |
texfile |
The location of the .tex file, given Clean=FALSE |
pdffile |
The location of the final pdf file |
... |
The same as the input parameters |
Hamed Haselimashhadi <[email protected]>
file <- system.file("extdata", "test1.csv", package = "PhenStat") test = PhenStat:::PhenList(dataset = read.csv(file,na.strings = '-'), testGenotype = "Sparc/Sparc") ## Not run: PhenStatReport(test, depVariable = 'Bone.Area', open = TRUE) ## End(Not run)
file <- system.file("extdata", "test1.csv", package = "PhenStat") test = PhenStat:::PhenList(dataset = read.csv(file,na.strings = '-'), testGenotype = "Sparc/Sparc") ## Not run: PhenStatReport(test, depVariable = 'Bone.Area', open = TRUE) ## End(Not run)
Creates PhenTestResult
object based on test results or model building results.
Internal function for the package. Not build for users to directly call.
PhenTestResult(model.output=NULL, model.dataset=NULL, depVariable=NULL, refGenotype=NULL, equation="withWeight", method="MM", model.effect.batch=NULL, model.effect.variance=NULL,model.effect.sex=NULL, model.effect.interaction=NULL, model.output.interaction=NULL, model.effect.weight=NULL, numberSexes=NULL,pThreshold=0.05, model.formula.null=NULL,model.formula.genotype=NULL, model.output.genotype.nulltest.pVal=NULL, model.output.quality=NULL,model.output.summary=NULL, model.output.averageRefGenotype = NULL, model.output.percentageChanges = NULL)
PhenTestResult(model.output=NULL, model.dataset=NULL, depVariable=NULL, refGenotype=NULL, equation="withWeight", method="MM", model.effect.batch=NULL, model.effect.variance=NULL,model.effect.sex=NULL, model.effect.interaction=NULL, model.output.interaction=NULL, model.effect.weight=NULL, numberSexes=NULL,pThreshold=0.05, model.formula.null=NULL,model.formula.genotype=NULL, model.output.genotype.nulltest.pVal=NULL, model.output.quality=NULL,model.output.summary=NULL, model.output.averageRefGenotype = NULL, model.output.percentageChanges = NULL)
model.output |
representing the model fit gls object or lme object |
model.dataset |
dataset used for modeling |
depVariable |
depending variable in the model |
refGenotype |
reference genotype in the model |
equation |
possible values: "withWeight" to include weight effect into model, "withoutWeight" to exclude weight effect from the model |
method |
possible values: "MM" to work with Mixed Model framework, "FE" to work with Fisher Exact Test framework |
model.effect.batch |
Result of the test for batch effect significance |
model.effect.variance |
Result of the test for residual variance effect |
model.effect.sex |
Result of the test for sex effect significance |
model.effect.weight |
Result of the test for weight effect significance |
model.effect.interaction |
Result of the test for genotype by sex interaction significance |
model.output.interaction |
Interaction test result: p-value |
numberSexes |
number of possible sex values in the dataset |
pThreshold |
p-value threshold used to evaluate the effect significance, default value 0.05 |
model.formula.null |
formula for the model without genotype effect |
model.formula.genotype |
formula for the model with genotype effect |
model.output.genotype.nulltest.pVal |
Genotype test results: p-value |
model.output.quality |
vector that contains diagnostic test output for mixed model quality of fit |
model.output.summary |
named vector that contains summary of the model output |
model.output.averageRefGenotype |
named vector that contains mean values calculated for reference genotype records |
model.output.percentageChanges |
named vector that contains percentage changes values per sex |
Returns an instance of the PhenTestResult
class.
Natalja Kurbatova, Natasha Karp, Jeremy Mason
Karp N, Melvin D, Sanger Mouse Genetics Project, Mott R (2012): Robust and Sensitive Analysis of Mouse Knockout Phenotypes. PLoS ONE 7(12): e52410. doi:10.1371/journal.pone.0052410
West B, Welch K, Galecki A (2007): Linear Mixed Models: A practical guide using statistical software New York: Chapman & Hall/CRC 353 p.
file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") # "testDataset" function calls "PhenTestResult" function internally result <- PhenStat:::testDataset(test, equation="withoutWeight", depVariable="Lean.Mass") class(result)
file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") # "testDataset" function calls "PhenTestResult" function internally result <- PhenStat:::testDataset(test, equation="withoutWeight", depVariable="Lean.Mass") class(result)
A list-based S4 class for storing of model fitting results and other information like dependent variable, method used to build a model, etc.
Helps to support operations needed for model fitting process and modelling/testing results storage.
In the package PhenTestResult object is created by function testDataset
.
PhenTestResults object instance contains the following slots:
1. "analysedDataset" contains subdataset that was used for the modelling/testing:
analysedDataset(phenTestResult)
2. "depVariable" contains dependent variable that was tested: getVariable(phenTestResult)
3. "refGenotype" contains reference genotype which is usually is wildtype: refGenotype(phenTestResult)
4. "testGenotype" contains test genotype: testGenotype(phenTestResult)
5. "method" contains method name that was used for modelling/testing: method(phenTestResult)
6. "transformationRequired" contains TRUE/FALSE value indicating transofrmation of dependent variable:
transformationText(phenTestResult)
or phenTestResult@transformationRequired
7. "lambdaValue" contains lambda value for the Box-Cox transformation:
transformationText(phenTestResult)
or phenTestResult$lambdaValue
8. "scaleShift" contains the value of scale shift for Box-Cox transformation:
transformationText(phenTestResult)
or phenTestResult@scaleShift
9. "transformationCode" contains the code of transformation. Possible values:
0 - transformation is not applicable (methods "FE", "RR", "LR") or switched off by user 1 - transformation is not needed (1 is within the 95 2 - log transformation 3 - power transformation 4 - transformation is not performed since optimal lambda value is not found (-5 > lambda > 5)
transformationText(phenTestResult)
or phenTestResult@transformationCode
10. "parameters" contains the parameters used during method application, e.g. pThreshold for MM and TF:
parameters(phenTestResult)
11. Modelling/testing results are stored in the sections "analysisResults":
analysisResults(phenTestResult)
The contents of the analysisResults slot depend on framework that was used.
The results of MM and TF frameworks:
1. Equation used during linear modeling: analysisResults(phenTestResult)$equation
2. Batch effect significance: analysisResults(phenTestResult)$model.effect.batch
3. Variance equality: analysisResults(phenTestResult)$model.effect.variance
4. Weight effect significance: analysisResults(phenTestResult)$model.effect.weight
5. Sex effect significance: analysisResults(phenTestResult)$model.effect.interaction
6. Evidence of sex effect (p-value): analysisResults(phenTestResult)$model.output.interaction
7. Evidence of genotype effect (p-value):
analysisResults(phenTestResult)$model.output.genotype.nulltest.pVal
8. Formula for the final genotype model: analysisResults(phenTestResult)$model.formula.genotype
9. Formula for the final null model: analysisResults(phenTestResult)$model.formula.null
10. Model fitting output: analysisResults(phenTestResult)$model.output
11. Model fitting summary: summary(analysisResults(phenTestResult)$model.output)$tTable
The results of FE and RR frameworks are stored as a list of htestPhenStat S4 objects:
analysisResults(phenTestResult)[[1]]
.
Each one htestPhenStat object contains:
1. Output of Fisher Exact Test: pvalue(analysisResults(phenTestResult)[[1]])
.
2. Effect size: ES(analysisResults(phenTestResult)[[1]])
.
3. Name of the table analysed (all, males, females): analysedSubset(analysisResults(phenTestResult)[[1]])
.
4. Comparison, used for RR only (High vs Normal/Low, Low vs High/Normal):
comparison(analysisResults(phenTestResult)[[1]])
.
5. Matrix of counts: matrixCount(analysisResults(phenTestResult)[[1]])
.
analysedDataset
:Object of class "data.frame"
~~ analysed dataset
transformationRequired
:Object of class "logical"
~~ flag indicating was or not
transformation performed
lambdaValue
:Object of class "numeric"
~~ Box-Cox transform lambda value
scaleShift
:Object of class "numeric"
~~ Box-Cox transform scale shift
transformationCode
:Object of class "numeric"
~~ code explaining the transformation output
depVariable
:Object of class "character"
~~ dependent variable
refGenotype
:Object of class "character"
~~ reference genotype
testGenotype
:Object of class "character"
~~ test genotype
method
:Object of class "character"
~~ analysis method
parameters
:Object of class "matrix"
~~ parameters of method
analysisResults
:Object of class "list"
~~ results of the analysis
(accessor): Returns dependent variable
(accessor): Returns reference genotype
(accessor): Returns test genotype
(accessor): Returns method used
(accessor): Returns full name of the method used
(accessor): Returns parameteres used during the method application
(accessor): Returns analysis results depending on method
(accessor): Returns analysed dataset
(accessor): Returns the info about transformation
Returns TRUE if the batch is in the dataset, FALSE otherwise
Returns TRUE if the weight is in the dataset, FALSE otherwise
Returns number of sexes in the dataset
Prints out the PhenTestResult object
Returns count matrices if they are present (for methods "FE" and "RR"), NULL otherwise.
Natalja Kurbatova
# Mixed Model framework file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") result <- PhenStat:::testDataset(test, equation="withoutWeight", depVariable="Bone.Area") PhenStat:::getVariable(result) PhenStat:::method(result) # Batch effect is significant PhenStat:::analysisResults(result)$model.effect.batch # Variance homogeneosity PhenStat:::analysisResults(result)$model.effect.variance # Weight effect is significant PhenStat:::analysisResults(result)$model.effect.weight # Sex effect is significant PhenStat:::analysisResults(result)$model.effect.interaction # Sex effect p-value - the result of the test PhenStat:::analysisResults(result)$model.output.interaction # Genotype effect p-value PhenStat:::analysisResults(result)$model.output.genotype.nulltest.pVal # Final model formula with genotype PhenStat:::analysisResults(result)$model.formula.genotype # Final model formula without genotype PhenStat:::analysisResults(result)$model.formula.null # Final model fitting output # result$model.output # Final model fitting summary # summary(result$model.output)$tTable # Fisher Exact Test framework file <- system.file("extdata", "test_categorical.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Aff3/Aff3") result <- PhenStat:::testDataset(test, depVariable="Thoracic.Processes", method="FE") PhenStat:::getVariable(result) PhenStat:::method(result) for (i in seq_along(analysisResults(result))) { val <- PhenStat:::analysisResults(result)[[i]] val }
# Mixed Model framework file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") result <- PhenStat:::testDataset(test, equation="withoutWeight", depVariable="Bone.Area") PhenStat:::getVariable(result) PhenStat:::method(result) # Batch effect is significant PhenStat:::analysisResults(result)$model.effect.batch # Variance homogeneosity PhenStat:::analysisResults(result)$model.effect.variance # Weight effect is significant PhenStat:::analysisResults(result)$model.effect.weight # Sex effect is significant PhenStat:::analysisResults(result)$model.effect.interaction # Sex effect p-value - the result of the test PhenStat:::analysisResults(result)$model.output.interaction # Genotype effect p-value PhenStat:::analysisResults(result)$model.output.genotype.nulltest.pVal # Final model formula with genotype PhenStat:::analysisResults(result)$model.formula.genotype # Final model formula without genotype PhenStat:::analysisResults(result)$model.formula.null # Final model fitting output # result$model.output # Final model fitting summary # summary(result$model.output)$tTable # Fisher Exact Test framework file <- system.file("extdata", "test_categorical.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Aff3/Aff3") result <- PhenStat:::testDataset(test, depVariable="Thoracic.Processes", method="FE") PhenStat:::getVariable(result) PhenStat:::method(result) for (i in seq_along(analysisResults(result))) { val <- PhenStat:::analysisResults(result)[[i]] val }
Plot method for objects of class "PhenList".
## S3 method for class 'PhenList' plot( x , depVariable = 'Value', graphingName = NULL , outputMessages = TRUE, type = NULL, ... )
## S3 method for class 'PhenList' plot( x , depVariable = 'Value', graphingName = NULL , outputMessages = TRUE, type = NULL, ... )
x |
instance of the PhenList class mandatory argument |
depVariable |
a character string defining the dependent variable of interest mandatory argument |
graphingName |
character string defining the name to be used on the graph for the dependent variable |
outputMessages |
flag:"FALSE" value to suppress output messages "TRUE" value to show output messages default value TRUE |
type |
a vector of names. Select one or more from the list below to only get those plots.
|
... |
Empty.
Hamed Haselimashhadi < [email protected] >
example(testDataset)
example(testDataset)
Plot method for objects of class "phenTestResult".
## S3 method for class 'PhenTestResult' plot( x , graphingName = NULL , outputMessages = TRUE, type = NULL, ... )
## S3 method for class 'PhenTestResult' plot( x , graphingName = NULL , outputMessages = TRUE, type = NULL, ... )
x |
instance of the PhenTestResult class mandatory argument |
graphingName |
character string defining the name to be used on the graph for the dependent variable |
outputMessages |
flag:"FALSE" value to suppress output messages "TRUE" value to show output messages default value TRUE |
type |
a vector of names. Select one or more from the list below to only get those plots.
|
... |
Empty.
Hamed Haselimashhadi < [email protected] >
example(testDataset)
example(testDataset)
Graph function for the Mixed Model framework's results. Creates predicted versus residual values plots split by genotype.
plotResidualPredicted(phenTestResult,outputMessages=TRUE)
plotResidualPredicted(phenTestResult,outputMessages=TRUE)
phenTestResult |
instance of the |
outputMessages |
flag: "FALSE" value to suppress output messages; "TRUE" value to show output messages; default value TRUE |
Empty.
Natalja Kurbatova, Natasha Karp, Jeremy Mason
Karp N, Melvin D, Sanger Mouse Genetics Project, Mott R (2012): Robust and Sensitive Analysis of Mouse Knockout Phenotypes. PLoS ONE 7(12): e52410. doi:10.1371/journal.pone.0052410
West B, Welch K, Galecki A (2007): Linear Mixed Models: A practical guide using statistical software New York: Chapman & Hall/CRC 353 p.
file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") result <- PhenStat:::testDataset(test, depVariable="Lean.Mass") PhenStat:::plotResidualPredicted(result)
file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") result <- PhenStat:::testDataset(test, depVariable="Lean.Mass") PhenStat:::plotResidualPredicted(result)
Method pvalue
returns p-value that was calculate by RR or FE framework.
This function returns p-value that was calculate by RR or FE framework.
signature(obj = "htestPhenStat")
Graph function for the Mixed Model framework's results. Creates a Q-Q plot of residuals for each genotype.
qqplotGenotype(phenTestResult,outputMessages=TRUE)
qqplotGenotype(phenTestResult,outputMessages=TRUE)
phenTestResult |
instance of the |
outputMessages |
flag: "FALSE" value to suppress output messages; "TRUE" value to show output messages; default value TRUE |
Empty.
Natalja Kurbatova, Natasha Karp, Jeremy Mason
Karp N, Melvin D, Sanger Mouse Genetics Project, Mott R (2012): Robust and Sensitive Analysis of Mouse Knockout Phenotypes. PLoS ONE 7(12): e52410. doi:10.1371/journal.pone.0052410
West B, Welch K, Galecki A (2007): Linear Mixed Models: A practical guide using statistical software New York: Chapman & Hall/CRC 353 p.
file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") result <- PhenStat:::testDataset(test, depVariable="Lean.Mass") PhenStat:::qqplotGenotype(result)
file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") result <- PhenStat:::testDataset(test, depVariable="Lean.Mass") PhenStat:::qqplotGenotype(result)
Graph function for the Mixed Model framework's results. Creates a Q-Q plot of blups (best linear unbiased predictions).
qqplotRandomEffects(phenTestResult,outputMessages=TRUE)
qqplotRandomEffects(phenTestResult,outputMessages=TRUE)
phenTestResult |
instance of the |
outputMessages |
flag: "FALSE" value to suppress output messages; "TRUE" value to show output messages; default value TRUE |
Empty.
Natalja Kurbatova, Natasha Karp, Jeremy Mason
Karp N, Melvin D, Sanger Mouse Genetics Project, Mott R (2012): Robust and Sensitive Analysis of Mouse Knockout Phenotypes. PLoS ONE 7(12): e52410. doi:10.1371/journal.pone.0052410
West B, Welch K, Galecki A (2007): Linear Mixed Models: A practical guide using statistical software New York: Chapman & Hall/CRC 353 p.
file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") result <- PhenStat:::testDataset(test, depVariable="Lean.Mass") PhenStat:::qqplotRandomEffects(result)
file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") result <- PhenStat:::testDataset(test, depVariable="Lean.Mass") PhenStat:::qqplotRandomEffects(result)
Graph function for the Mixed Model framework's results. Creates a Q-Q plot of rotated residuals.
qqplotRotatedResiduals(phenTestResult,outputMessages=TRUE)
qqplotRotatedResiduals(phenTestResult,outputMessages=TRUE)
phenTestResult |
instance of the |
outputMessages |
flag: "FALSE" value to suppress output messages; "TRUE" value to show output messages; default value TRUE |
Empty.
Natalja Kurbatova, Natasha Karp, Jeremy Mason
Karp N, Melvin D, Sanger Mouse Genetics Project, Mott R (2012): Robust and Sensitive Analysis of Mouse Knockout Phenotypes. PLoS ONE 7(12): e52410. doi:10.1371/journal.pone.0052410
Houseman, E. A., Ryan, L. M., Coull, B. A. (2004): Cholesky residuals for assessing normal errors in a linear model with correlated outcomes. Journal of the American Statistical Association 99466: pg 383-394. Doi 10.1198
West B, Welch K, Galecki A (2007): Linear Mixed Models: A practical guide using statistical software New York: Chapman & Hall/CRC 353 p.
file <- system.file("extdata", "test2.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), dataset.colname.weight="Weight.Value", testGenotype="Arid4a/Arid4a", hemiGenotype="Arid4a/+") result <- PhenStat:::testDataset(test, depVariable="Cl") PhenStat:::qqplotRotatedResiduals(result)
file <- system.file("extdata", "test2.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), dataset.colname.weight="Weight.Value", testGenotype="Arid4a/Arid4a", hemiGenotype="Arid4a/+") result <- PhenStat:::testDataset(test, depVariable="Cl") PhenStat:::qqplotRotatedResiduals(result)
Checks the dependent variable and dataset to make choose the appropriate statistical method. Returns the method or the list of methods that are appropriate for statistical analysis.
recommendMethod(phenList = NULL, depVariable = NULL, outputMessages = TRUE, upper = 5)
recommendMethod(phenList = NULL, depVariable = NULL, outputMessages = TRUE, upper = 5)
phenList |
instance of the |
depVariable |
a character string defining the dependent variable of interest; mandatory argument |
outputMessages |
flag: "FALSE" value to suppress output messages; "TRUE" value to show output messages; default value TRUE |
upper |
Single integer: maximum allowed number of levels for the Batch in the TF framework |
Returns the method or the list of methods that are appropriate for statistical analysis.
Natalja Kurbatova, Natasha Karp, Jeremy Mason
Karp N, Melvin D, Sanger Mouse Genetics Project, Mott R (2012): Robust and Sensitive Analysis of Mouse Knockout Phenotypes. PLoS ONE 7(12): e52410. doi:10.1371/journal.pone.0052410
West B, Welch K, Galecki A (2007): Linear Mixed Models: A practical guide using statistical software New York: Chapman & Hall/CRC 353 p.
file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") PhenStat:::recommendMethod(test,"Lean.Mass")
file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") PhenStat:::recommendMethod(test,"Lean.Mass")
Method refGenotype
returns reference genotype
This function returns reference genotype.
signature(obj = "PhenList")
signature(obj = "PhenTestResult")
This is an internal function run within RR framework. It performs Reference Ranges Plus test and after that Fisher Exact test on calculated count matrices. As an internal function, it doesn't include extensive error testing of inputs. Please use cautiously if calling directly.
Works with PhenList
object created by PhenList
function.
RRTest( phenList, depVariable, outputMessages = TRUE, naturalVariation = 95, controlPointsThreshold = 60 )
RRTest( phenList, depVariable, outputMessages = TRUE, naturalVariation = 95, controlPointsThreshold = 60 )
phenList |
instance of the |
depVariable |
a character string defining the dependent variable of interest; mandatory argument |
outputMessages |
flag: "FALSE" value to suppress output messages; "TRUE" value to show output messages; default value TRUE |
naturalVariation |
number defining the natural variation range in percents for normal values; default value 95 |
controlPointsThreshold |
number defining how many control points is needed to perform RR plus method; default value 60 |
Returns results stored in instance of the PhenTestResult
class
Natalja Kurbatova, Natasha Karp, Jeremy Mason
Karp N, Melvin D, Sanger Mouse Genetics Project, Mott R (2012): Robust and Sensitive Analysis of Mouse Knockout Phenotypes. PLoS ONE 7(12): e52410. doi:10.1371/journal.pone.0052410
West B, Welch K, Galecki A (2007): Linear Mixed Models: A practical guide using statistical software New York: Chapman & Hall/CRC 353 p.
PhenList
and testDataset
file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") # "RRTest" function is called from "testDataset" function result <- PhenStat:::testDataset(test, depVariable="Lean.Mass", method="RR") # RR test results can be printed out using function "summaryOutput" summary(result)
file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") # "RRTest" function is called from "testDataset" function result <- PhenStat:::testDataset(test, depVariable="Lean.Mass", method="RR") # RR test results can be printed out using function "summaryOutput" summary(result)
Graph function for the phenotypic dataset. Creates a scatter plot body weight versus dependent variable.
Both a regression line and a loess line (locally weighted line) is fitted for each genotype.
scatterplotGenotypeWeight( phenList, depVariable = NULL, graphingName = NULL, outputMessages = TRUE )
scatterplotGenotypeWeight( phenList, depVariable = NULL, graphingName = NULL, outputMessages = TRUE )
phenList |
instance of the |
depVariable |
a character string defining the dependent variable of interest; mandatory argument |
graphingName |
a character string defining the name to be used on the graph for the dependent variable; mandatory argument |
outputMessages |
flag: "FALSE" value to suppress output messages; "TRUE" value to show output messages; default value TRUE |
Empty.
Natalja Kurbatova, Natasha Karp, Jeremy Mason
Karp N, Melvin D, Sanger Mouse Genetics Project, Mott R (2012): Robust and Sensitive Analysis of Mouse Knockout Phenotypes. PLoS ONE 7(12): e52410. doi:10.1371/journal.pone.0052410
West B, Welch K, Galecki A (2007): Linear Mixed Models: A practical guide using statistical software New York: Chapman & Hall/CRC 353 p.
file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") PhenStat:::scatterplotGenotypeWeight(test, depVariable="Bone.Mineral.Content", graphingName="BMC" ) file <- system.file("extdata", "test4.csv", package="PhenStat") test_1sex <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Mysm1/+") PhenStat:::scatterplotGenotypeWeight(test_1sex, depVariable="Lean.Mass", graphingName="Lean Mass")
file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") PhenStat:::scatterplotGenotypeWeight(test, depVariable="Bone.Mineral.Content", graphingName="BMC" ) file <- system.file("extdata", "test4.csv", package="PhenStat") test_1sex <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Mysm1/+") PhenStat:::scatterplotGenotypeWeight(test_1sex, depVariable="Lean.Mass", graphingName="Lean Mass")
Graph function for the phenotypic dataset. Creates a scatter plot body weight versus dependent variable. It is based on PhenTestResult object. Both a regression line and a loess line (locally weighted line) is fitted for each genotype.
scatterplotGenotypeWeightResult(phenTestResult, graphingName = NULL, outputMessages = TRUE)
scatterplotGenotypeWeightResult(phenTestResult, graphingName = NULL, outputMessages = TRUE)
phenTestResult |
instance of the |
graphingName |
a character string defining the name to be used on the graph for the dependent variable; mandatory argument |
outputMessages |
flag: "FALSE" value to suppress output messages; "TRUE" value to show output messages; default value TRUE |
Empty.
Natalja Kurbatova, Natasha Karp, Jeremy Mason
Karp N, Melvin D, Sanger Mouse Genetics Project, Mott R (2012): Robust and Sensitive Analysis of Mouse Knockout Phenotypes. PLoS ONE 7(12): e52410. doi:10.1371/journal.pone.0052410
West B, Welch K, Galecki A (2007): Linear Mixed Models: A practical guide using statistical software New York: Chapman & Hall/CRC 353 p.
file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") result <- PhenStat:::testDataset(test, depVariable="Lean.Mass") PhenStat:::scatterplotGenotypeWeightResult(result, graphingName="BMC" ) file <- system.file("extdata", "test4.csv", package="PhenStat") test_1sex <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Mysm1/+") result_1sex <- PhenStat:::testDataset(test_1sex, depVariable="Lean.Mass") PhenStat:::scatterplotGenotypeWeightResult(result_1sex, graphingName="Lean Mass")
file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") result <- PhenStat:::testDataset(test, depVariable="Lean.Mass") PhenStat:::scatterplotGenotypeWeightResult(result, graphingName="BMC" ) file <- system.file("extdata", "test4.csv", package="PhenStat") test_1sex <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Mysm1/+") result_1sex <- PhenStat:::testDataset(test_1sex, depVariable="Lean.Mass") PhenStat:::scatterplotGenotypeWeightResult(result_1sex, graphingName="Lean Mass")
Graph function for the phenotypic dataset. Creates a scatterplot split by sex, genotype and batch. refGenotype data points are shown in black and the testGenotype data points are shown in red.
Note: the batches are not ordered with time but allow assessment of how the testGenotype data lie relative to the variation within the refGenotype data.
scatterplotSexGenotypeBatch( phenList, depVariable = NULL, graphingName = NULL, outputMessages = TRUE )
scatterplotSexGenotypeBatch( phenList, depVariable = NULL, graphingName = NULL, outputMessages = TRUE )
phenList |
instance of the |
depVariable |
a character string defining the dependent variable of interest; mandatory argument |
graphingName |
a character string defining the name to be used on the graph for the dependent variable; mandatory argument |
outputMessages |
flag: "FALSE" value to suppress output messages; "TRUE" value to show output messages; default value TRUE |
Empty.
Natalja Kurbatova, Natasha Karp, Jeremy Mason
Karp N, Melvin D, Sanger Mouse Genetics Project, Mott R (2012): Robust and Sensitive Analysis of Mouse Knockout Phenotypes. PLoS ONE 7(12): e52410. doi:10.1371/journal.pone.0052410
West B, Welch K, Galecki A (2007): Linear Mixed Models: A practical guide using statistical software New York: Chapman & Hall/CRC 353 p.
file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") # box plot for dataset with two sexes: males and females PhenStat:::scatterplotSexGenotypeBatch(test, depVariable="Bone.Mineral.Content", graphingName="BMC" ) file <- system.file("extdata", "test4.csv", package="PhenStat") test_1sex <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Mysm1/+") # box plot for females only dataset PhenStat:::scatterplotSexGenotypeBatch(test_1sex,depVariable="Lean.Mass", graphingName="Lean Mass")
file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") # box plot for dataset with two sexes: males and females PhenStat:::scatterplotSexGenotypeBatch(test, depVariable="Bone.Mineral.Content", graphingName="BMC" ) file <- system.file("extdata", "test4.csv", package="PhenStat") test_1sex <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Mysm1/+") # box plot for females only dataset PhenStat:::scatterplotSexGenotypeBatch(test_1sex,depVariable="Lean.Mass", graphingName="Lean Mass")
Graph function for the phenotypic dataset. Creates a scatterplot split by sex, genotype and batch. refGenotype data points are shown in black and the testGenotype data points are shown in red. It is based on PhenTestResult object.
Note: the batches are not ordered with time but allow assessment of how the testGenotype data lie relative to the variation within the refGenotype data.
scatterplotSexGenotypeBatchResult(phenTestResult, graphingName = NULL, outputMessages = TRUE)
scatterplotSexGenotypeBatchResult(phenTestResult, graphingName = NULL, outputMessages = TRUE)
phenTestResult |
instance of the |
graphingName |
a character string defining the name to be used on the graph for the dependent variable; mandatory argument |
outputMessages |
flag: "FALSE" value to suppress output messages; "TRUE" value to show output messages; default value TRUE |
Empty.
Natalja Kurbatova, Natasha Karp, Jeremy Mason
Karp N, Melvin D, Sanger Mouse Genetics Project, Mott R (2012): Robust and Sensitive Analysis of Mouse Knockout Phenotypes. PLoS ONE 7(12): e52410. doi:10.1371/journal.pone.0052410
West B, Welch K, Galecki A (2007): Linear Mixed Models: A practical guide using statistical software New York: Chapman & Hall/CRC 353 p.
file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") result <- PhenStat:::testDataset(test, depVariable="Lean.Mass") # box plot for dataset with two sexes: males and females PhenStat:::scatterplotSexGenotypeBatchResult(result, graphingName="BMC" ) file <- system.file("extdata", "test4.csv", package="PhenStat") test_1sex <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Mysm1/+") result_1sex <- PhenStat:::testDataset(test_1sex, depVariable="Lean.Mass") # box plot for females only dataset PhenStat:::scatterplotSexGenotypeBatchResult(result_1sex, graphingName="Lean Mass")
file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") result <- PhenStat:::testDataset(test, depVariable="Lean.Mass") # box plot for dataset with two sexes: males and females PhenStat:::scatterplotSexGenotypeBatchResult(result, graphingName="BMC" ) file <- system.file("extdata", "test4.csv", package="PhenStat") test_1sex <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Mysm1/+") result_1sex <- PhenStat:::testDataset(test_1sex, depVariable="Lean.Mass") # box plot for females only dataset PhenStat:::scatterplotSexGenotypeBatchResult(result_1sex, graphingName="Lean Mass")
Method setBatch
sets batch column in the dataset
This function sets batch column in the dataset.
signature(obj = "PhenList")
Method setGenotype
sets genotype column in the dataset
This function sets genotype column in the dataset.
signature(obj = "PhenList")
Method setMissingValue
sets missing value in the dataset
This function sets missing value in the dataset.
signature(obj = "PhenList")
Method setSex
sets sex column in the dataset
This function sets sex column in the dataset.
signature(obj = "PhenList")
Method setWeight
sets weight column in the dataset
This function sets weight column in the dataset.
signature(obj = "PhenList")
This is an internal function run within LR framework. It completes the testing stage of which effects are significant. As an internal function, it doesn't include extensive error testing of inputs. Please use cautiously if calling directly.
It creates start model and modify it after testing of different hypothesis.
The tested effects are:
-batch effect (TRUE if batch variation is significant, FALSE if not), though it is never used in final LR model;
-interaction effect (TRUE if genotype by sex interaction is significant),
-sex effect (TRUE if sex is significant),
-weight effect and variance effect are not tested and used in LR model.
startLRModel(phenList, depVariable, outputMessages = TRUE, pThreshold = 0.05)
startLRModel(phenList, depVariable, outputMessages = TRUE, pThreshold = 0.05)
phenList |
instance of the |
depVariable |
a character string defining the dependent variable of interest; mandatory argument |
outputMessages |
flag: "FALSE" value to suppress output messages; "TRUE" value to show output messages ; default value TRUE |
pThreshold |
a numerical value for the p-value threshold used to determine which fixed effects to keep in the model, default value 0.05 |
Returns results stored in instance of the PhenTestResult
class
Natalja Kurbatova, Natasha Karp, Jeremy Mason
Karp N, Melvin D, Sanger Mouse Genetics Project, Mott R (2012): Robust and Sensitive Analysis of Mouse Knockout Phenotypes. PLoS ONE 7(12): e52410. doi:10.1371/journal.pone.0052410
West B, Welch K, Galecki A (2007): Linear Mixed Models: A practical guide using statistical software New York: Chapman & Hall/CRC 353 p.
file <- system.file("extdata", "testLR.csv", package="PhenStat") testLR <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Mock") testLR2 <- PhenStat:::LRDataset(testLR,"V2") # when "testDataset" function's argument "callAll" is set to FALSE # only "startLRModel" function is called - the first step of LR framework resultLR <- PhenStat:::testDataset(testLR2, depVariable="V2", callAll=FALSE, method="LR") # print out formula that has been created PhenStat:::analysisResults(resultLR)$model.formula.genotype # print out batch effect's significance PhenStat:::analysisResults(resultLR)$model.effect.batch
file <- system.file("extdata", "testLR.csv", package="PhenStat") testLR <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Mock") testLR2 <- PhenStat:::LRDataset(testLR,"V2") # when "testDataset" function's argument "callAll" is set to FALSE # only "startLRModel" function is called - the first step of LR framework resultLR <- PhenStat:::testDataset(testLR2, depVariable="V2", callAll=FALSE, method="LR") # print out formula that has been created PhenStat:::analysisResults(resultLR)$model.formula.genotype # print out batch effect's significance PhenStat:::analysisResults(resultLR)$model.effect.batch
This is an internal function run within MM framework. It completes the testing stage of which effects are significant. As an internal function, it doesn't include extensive error testing of inputs. Please use cautiously if calling directly.
It creates start model and modify it after testing of different hypothesis (the model fixed effects).
The model random effects are:
-batch effect (TRUE if batch variation is significant, FALSE if not)
The model fixed effects are:
-variance effect (TRUE if residual variances for genotype groups are homogeneous and FALSE if they are heterogeneous),
-interaction effect (TRUE if genotype by sex interaction is significant),
-sex effect (TRUE if sex is significant),
-weight effect (TRUE if weight is significant).
If user would like to assign other TRUE/FALSE values to the fixed effects of the model then he or she has to define keepList argument which is vector of TRUE/FALSE values.
If user has defined model fixed effects (keepList argument) then function prints out calculated and user defined effects (only when outputMessages argument is set to TRUE), checks user defined effects for consistency (for instance, if there are no "Weight" column in the dataset then weight effect can't be assigned to TRUE, etc.) and modifies start model according to user defined effects.
As the result PhenTestResult object that contains calculated or user defined model fixed effects and MM start model is created.
startModel(phenList, depVariable, equation="withWeight", outputMessages=TRUE, pThreshold=0.05, keepList=NULL,modelWeight = NULL, threshold = 10^-18, check = 1)
startModel(phenList, depVariable, equation="withWeight", outputMessages=TRUE, pThreshold=0.05, keepList=NULL,modelWeight = NULL, threshold = 10^-18, check = 1)
phenList |
instance of the |
depVariable |
a character string defining the dependent variable of interest; mandatory argument |
equation |
a character string defining the equation to use. Possible values "withWeight" (default),"withoutWeight" |
outputMessages |
flag: "FALSE" value to suppress output messages; "TRUE" value to show output messages ; default value TRUE |
pThreshold |
a numerical value for the p-value threshold used to determine which fixed effects to keep in the model, default value 0.05 |
keepList |
a logical vector defining the significance of different model effects: keep_batch, keep_equalvar, keep_weight, keep_sex, keep_interaction; default value NULL |
modelWeight |
a vector of positive values for weights in the mixed model. The sum of the values must be one. |
threshold |
a single positive value. The threshold for the ModelWeights to consider as zero (see modelWeight) |
check |
Only useful when modelWeight is included. Select between 0, 1, 2 to impose different weighting strategies on the Linear Mixed model. check=1 (default) selects the weights that are greater than the threshold (above) and keeps the batches that include more than one single sample. check=2 keeps only the weights that are greater than the threshold but ignores the single sample batches. check=0 to disable the function. |
Returns results stored in instance of the PhenTestResult
class
Natalja Kurbatova, Natasha Karp, Jeremy Mason
Karp N, Melvin D, Sanger Mouse Genetics Project, Mott R (2012): Robust and Sensitive Analysis of Mouse Knockout Phenotypes. PLoS ONE 7(12): e52410. doi:10.1371/journal.pone.0052410
West B, Welch K, Galecki A (2007): Linear Mixed Models: A practical guide using statistical software New York: Chapman & Hall/CRC 353 p.
file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") # when "testDataset" function's argument "callAll" is set to FALSE # only "startModel" function is called - the first step of MM framework result <- PhenStat:::testDataset(test, depVariable="Lean.Mass", callAll=FALSE) # print out formula that has been created PhenStat:::analysisResults(result)$model.formula.genotype # print out batch effect's significance PhenStat:::analysisResults(result)$model.effect.batch # change the model result <- PhenStat:::testDataset(test, depVariable="Lean.Mass", equation="withWeight", callAll=FALSE) # print out new formula PhenStat:::analysisResults(result)$model.formula.genotype
file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") # when "testDataset" function's argument "callAll" is set to FALSE # only "startModel" function is called - the first step of MM framework result <- PhenStat:::testDataset(test, depVariable="Lean.Mass", callAll=FALSE) # print out formula that has been created PhenStat:::analysisResults(result)$model.formula.genotype # print out batch effect's significance PhenStat:::analysisResults(result)$model.effect.batch # change the model result <- PhenStat:::testDataset(test, depVariable="Lean.Mass", equation="withWeight", callAll=FALSE) # print out new formula PhenStat:::analysisResults(result)$model.formula.genotype
This is an internal function run within TF framework. It completes the testing stage of which effects are significant. As an internal function, it doesn't include extensive error testing of inputs. Please use cautiously if calling directly.
It creates start model and modify it after testing of different hypothesis.
The tested fixed effects are:
-batch effect (TRUE if batch variation is significant, FALSE if not),
-variance effect (TRUE if residual variances for genotype groups are homogeneous and FALSE if they are heterogeneous),
-interaction effect (TRUE if genotype by sex interaction is significant),
-sex effect (TRUE if sex is significant),
-weight effect (TRUE if weight is significant).
startTFModel(phenList, depVariable, equation="withWeight", outputMessages=TRUE, pThreshold=0.05, keepList=NULL)
startTFModel(phenList, depVariable, equation="withWeight", outputMessages=TRUE, pThreshold=0.05, keepList=NULL)
phenList |
instance of the |
depVariable |
a character string defining the dependent variable of interest; mandatory argument |
equation |
a character string defining the equation to use. Possible values "withWeight" (default),"withoutWeight" |
outputMessages |
flag: "FALSE" value to suppress output messages; "TRUE" value to show output messages ; default value TRUE |
pThreshold |
a numerical value for the p-value threshold used to determine which fixed effects to keep in the model, default value 0.05 |
keepList |
a logical vector defining the significance of different model effects: keep_batch, keep_equalvar, keep_weight, keep_sex, keep_interaction; default value NULL |
Returns results stored in instance of the PhenTestResult
class
Natalja Kurbatova, Natasha Karp, Jeremy Mason
Karp N, Melvin D, Sanger Mouse Genetics Project, Mott R (2012): Robust and Sensitive Analysis of Mouse Knockout Phenotypes. PLoS ONE 7(12): e52410. doi:10.1371/journal.pone.0052410
West B, Welch K, Galecki A (2007): Linear Mixed Models: A practical guide using statistical software New York: Chapman & Hall/CRC 353 p.
file <- system.file("extdata", "test7_TFE.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="het", refGenotype = "WT", dataset.colname.sex="sex", dataset.colname.genotype="Genotype", dataset.values.female="f", dataset.values.male= "m", dataset.colname.weight="body.weight", dataset.colname.batch="Date_of_procedure_start") test_TF <- PhenStat:::TFDataset(test,depVariable="Cholesterol") # when "testDataset" function's argument "callAll" is set to FALSE # only "startTFModel" function is called - the first step of TFE framework result <- PhenStat:::testDataset(test_TF, depVariable="Cholesterol", callAll=FALSE, method="TF") # print out formula that has been created PhenStat:::analysisResults(result)$model.formula.genotype # print out batch effect's significance PhenStat:::analysisResults(result)$model.effect.batch
file <- system.file("extdata", "test7_TFE.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="het", refGenotype = "WT", dataset.colname.sex="sex", dataset.colname.genotype="Genotype", dataset.values.female="f", dataset.values.male= "m", dataset.colname.weight="body.weight", dataset.colname.batch="Date_of_procedure_start") test_TF <- PhenStat:::TFDataset(test,depVariable="Cholesterol") # when "testDataset" function's argument "callAll" is set to FALSE # only "startTFModel" function is called - the first step of TFE framework result <- PhenStat:::testDataset(test_TF, depVariable="Cholesterol", callAll=FALSE, method="TF") # print out formula that has been created PhenStat:::analysisResults(result)$model.formula.genotype # print out batch effect's significance PhenStat:::analysisResults(result)$model.effect.batch
Method subsetText
returns full name of subset that was analysed by RR or FE framework:
Males only, Females only, All.
This function returns full name of subset that was analysed by RR or FE framework.
signature(obj = "htestPhenStat")
Wrapper for the model fitting results. Returns model fitting and testing results in a user friendly format.
## S3 method for class 'PhenTestResult' summary(object, phenotypeThreshold = 0.01,...)
## S3 method for class 'PhenTestResult' summary(object, phenotypeThreshold = 0.01,...)
object |
instance of the |
phenotypeThreshold |
a numerical value defining the threshold to use in classificationTag; default value 0.01 |
... |
Not applicable |
Returns model fitting results in a text format for the screen
Natalja Kurbatova, Natasha Karp, Jeremy Mason
Karp N, Melvin D, Sanger Mouse Genetics Project, Mott R (2012): Robust and Sensitive Analysis of Mouse Knockout Phenotypes. PLoS ONE 7(12): e52410. doi:10.1371/journal.pone.0052410
West B, Welch K, Galecki A (2007): Linear Mixed Models: A practical guide using statistical software New York: Chapman & Hall/CRC 353 p.
# Mixed Model framework file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") result <- PhenStat:::testDataset(test, depVariable="Lean.Mass") summary(result) # Fishe Exact Test framework file <- system.file("extdata", "test_categorical.csv", package="PhenStat") test2 <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Aff3/Aff3") result2 <- PhenStat:::testDataset(test2, depVariable="Thoracic.Processes", method="FE") summary(result2)
# Mixed Model framework file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") result <- PhenStat:::testDataset(test, depVariable="Lean.Mass") summary(result) # Fishe Exact Test framework file <- system.file("extdata", "test_categorical.csv", package="PhenStat") test2 <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Aff3/Aff3") result2 <- PhenStat:::testDataset(test2, depVariable="Thoracic.Processes", method="FE") summary(result2)
Wrapper for the model fitting results. Returns model fitting and testing results in a user friendly format.
summaryOutput(phenTestResult, phenotypeThreshold = 0.01)
summaryOutput(phenTestResult, phenotypeThreshold = 0.01)
phenTestResult |
instance of the |
phenotypeThreshold |
a numerical value defining the threshold to use in classificationTag; default value 0.01 |
Returns model fitting results in a text format for the screen
Natalja Kurbatova, Natasha Karp, Jeremy Mason
Karp N, Melvin D, Sanger Mouse Genetics Project, Mott R (2012): Robust and Sensitive Analysis of Mouse Knockout Phenotypes. PLoS ONE 7(12): e52410. doi:10.1371/journal.pone.0052410
West B, Welch K, Galecki A (2007): Linear Mixed Models: A practical guide using statistical software New York: Chapman & Hall/CRC 353 p.
# Mixed Model framework file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") result <- PhenStat:::testDataset(test, depVariable="Lean.Mass") PhenStat:::summaryOutput(result) # Fishe Exact Test framework file <- system.file("extdata", "test_categorical.csv", package="PhenStat") test2 <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Aff3/Aff3") result2 <- PhenStat:::testDataset(test2, depVariable="Thoracic.Processes", method="FE") PhenStat:::summaryOutput(result2)
# Mixed Model framework file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") result <- PhenStat:::testDataset(test, depVariable="Lean.Mass") PhenStat:::summaryOutput(result) # Fishe Exact Test framework file <- system.file("extdata", "test_categorical.csv", package="PhenStat") test2 <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Aff3/Aff3") result2 <- PhenStat:::testDataset(test2, depVariable="Thoracic.Processes", method="FE") PhenStat:::summaryOutput(result2)
Statistical analysis manager function in PhenStat package.
Firstly, it performs the checks for dependent variable in the dataset. Some checks are generic, some depends on selected statistical framework/method.
Secondly, if checks are passed it runs the stages of selected framework to analyse dependent variable.
For instance, runs startModel and finalModel for the MM framework if the argument "callAll" is set to TRUE. If framework contains only one stage like in Fisher Exact Test case then runs that one stage regardless "callAll" value.
testDataset( phenList = NULL , depVariable = NULL , equation = "withWeight" , outputMessages = TRUE , pThreshold = 0.05 , method = "MM" , modelWeight = NULL , callAll = TRUE , keepList = NULL , dataPointsThreshold = 4 , RR_naturalVariation = 95 , RR_controlPointsThreshold = 60 , transformValues = FALSE , useUnfiltered = FALSE , threshold = 10 ^ -18 , check = 1 , upper = 5 )
testDataset( phenList = NULL , depVariable = NULL , equation = "withWeight" , outputMessages = TRUE , pThreshold = 0.05 , method = "MM" , modelWeight = NULL , callAll = TRUE , keepList = NULL , dataPointsThreshold = 4 , RR_naturalVariation = 95 , RR_controlPointsThreshold = 60 , transformValues = FALSE , useUnfiltered = FALSE , threshold = 10 ^ -18 , check = 1 , upper = 5 )
phenList |
instance of the |
depVariable |
a character string defining the dependent variable of interest; mandatory argument |
equation |
a character string defining the equation to use. Possible values "withWeight" (default), "withoutWeight" |
outputMessages |
flag: "FALSE" value to suppress output messages; "TRUE" value to show output messages; default value TRUE |
pThreshold |
a numerical value for the p-value threshold used to determine which fixed effects to keep in the model, default value 0.05 |
method |
a character string ("MM", "FE", "TF" or "RR") defining the method to use for model building; default value "MM" for mixed model |
modelWeight |
a vector of possible weights (the same length as the response) that are imposed on the weighted MM. Only works when method="MM". The default is NULL that leads to normal (non-weighted) MM. |
callAll |
flag: "FALSE" value to run only the first stage of the selected framework; "TRUE" value (default) to run all stages of framework one after another |
keepList |
a logical vector defining the significance of different model effects: keep_batch, keep_equalvar, keep_weight, keep_sex, keep_interaction; default value NULL |
dataPointsThreshold |
threshold for the number of data points in the MM framework; default value is 4 ; minimal value is 2 |
RR_naturalVariation |
threshold for the variation ranges in the RR framework; default value is 95 ; minimal value is 60 |
RR_controlPointsThreshold |
threshold for the number of control data points in the RR framework ; default value is 60; minimal value is 40 |
transformValues |
flag: "FALSE" value to suppress transformation; "TRUE" value to perform transformation if needed; default value FALSE |
useUnfiltered |
flag: "FALSE" value to use filtered dataset; "TRUE" value to use unfiltered dataset; default value FALSE |
threshold |
The threshold for the model weights to be considered as zero. It only works when method="MM" and modelWeight is not null. Default is 10^-18. |
check |
Only useful when modelWeight is included. Select between 0, 1, 2 to impose different weighting strategies on the Linear Mixed model. check=1 (default) selects the weights that are greater than the threshold (above) and keeps the batches that include more than one single sample. check=2 keeps only the weights that are greater than the threshold but ignores the single sample batches. check=0 to disable the function. |
upper |
Single integer: maximum allowed number of levels for the Batch in the TF framework. Default 5 |
Returns results stored in instance of the PhenTestResult
class
Natalja Kurbatova, Natasha Karp, Jeremy Mason
Karp N, Melvin D, Sanger Mouse Genetics Project, Mott R (2012): Robust and Sensitive Analysis of Mouse Knockout Phenotypes. PLoS ONE 7(12): e52410. doi:10.1371/journal.pone.0052410
West B, Welch K, Galecki A (2007): Linear Mixed Models: A practical guide using statistical software New York: Chapman & Hall/CRC 353 p.
PhenList
,
plot.PhenTestResult
,
plot.PhenList
# Mixed Model framework file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") plot(test,depVariable="Lean.Mass") result <- PhenStat:::testDataset(test, depVariable="Lean.Mass") # print out formula that has been created PhenStat:::analysisResults(result)$model.formula.genotype summary(result) plot(result) # Mixed Model framework with user defined effects user_defined_effects <- c(keep_batch=TRUE, keep_equalvar=TRUE, keep_weight=TRUE, keep_sex=TRUE, keep_interaction=TRUE) result3 <- PhenStat:::testDataset(test, depVariable="Lean.Mass", keepList=user_defined_effects) # print out formula that has been created PhenStat:::analysisResults(result3)$model.formula.genotype summary(result3) plot(result3) # Fisher Exact Test framework file <- system.file("extdata", "test_categorical.csv", package="PhenStat") test2 <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Aff3/Aff3") plot(test2,depVariable="Thoracic.Processes") result2 <- PhenStat:::testDataset(test2, depVariable="Thoracic.Processes", method="FE") summary(result2) plot(result2)
# Mixed Model framework file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") plot(test,depVariable="Lean.Mass") result <- PhenStat:::testDataset(test, depVariable="Lean.Mass") # print out formula that has been created PhenStat:::analysisResults(result)$model.formula.genotype summary(result) plot(result) # Mixed Model framework with user defined effects user_defined_effects <- c(keep_batch=TRUE, keep_equalvar=TRUE, keep_weight=TRUE, keep_sex=TRUE, keep_interaction=TRUE) result3 <- PhenStat:::testDataset(test, depVariable="Lean.Mass", keepList=user_defined_effects) # print out formula that has been created PhenStat:::analysisResults(result3)$model.formula.genotype summary(result3) plot(result3) # Fisher Exact Test framework file <- system.file("extdata", "test_categorical.csv", package="PhenStat") test2 <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Aff3/Aff3") plot(test2,depVariable="Thoracic.Processes") result2 <- PhenStat:::testDataset(test2, depVariable="Thoracic.Processes", method="FE") summary(result2) plot(result2)
Performs diagnostic tests for Logistic Regression model quality of fit. There are no arguments checks assuming that function is called internally from the "finalLRModel" function. Otherwise should be used with precaution.
testFinalLRModel(phenTestResult)
testFinalLRModel(phenTestResult)
phenTestResult |
instance of the |
Returns a vector with model fitting results
Natalja Kurbatova, Natasha Karp, Jeremy Mason
Karp N, Melvin D, Sanger Mouse Genetics Project, Mott R (2012): Robust and Sensitive Analysis of Mouse Knockout Phenotypes. PLoS ONE 7(12): e52410. doi:10.1371/journal.pone.0052410
West B, Welch K, Galecki A (2007): Linear Mixed Models: A practical guide using statistical software New York: Chapman & Hall/CRC 353 p.
file <- system.file("extdata", "testLR.csv", package="PhenStat") testLR <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Mock") testLR2 <- PhenStat:::LRDataset(testLR,"V2") resultLR <- PhenStat:::testDataset(testLR2, depVariable="V2", method="LR") PhenStat:::testFinalLRModel(resultLR)
file <- system.file("extdata", "testLR.csv", package="PhenStat") testLR <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Mock") testLR2 <- PhenStat:::LRDataset(testLR,"V2") resultLR <- PhenStat:::testDataset(testLR2, depVariable="V2", method="LR") PhenStat:::testFinalLRModel(resultLR)
Performs diagnostic tests for Mixed Model quality of fit. There are no arguments checks assuming that function is called internally from the "finalModel" function. Otherwise should be used with precaution.
testFinalModel(phenTestResult)
testFinalModel(phenTestResult)
phenTestResult |
instance of the |
Returns a vector with model fitting results
Natalja Kurbatova, Natasha Karp, Jeremy Mason
Karp N, Melvin D, Sanger Mouse Genetics Project, Mott R (2012): Robust and Sensitive Analysis of Mouse Knockout Phenotypes. PLoS ONE 7(12): e52410. doi:10.1371/journal.pone.0052410
West B, Welch K, Galecki A (2007): Linear Mixed Models: A practical guide using statistical software New York: Chapman & Hall/CRC 353 p.
file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") result <- PhenStat:::testDataset(test, depVariable="Lean.Mass") PhenStat:::testFinalModel(result)
file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") result <- PhenStat:::testDataset(test, depVariable="Lean.Mass") PhenStat:::testFinalModel(result)
Method testGenotype
returns test genotype
This function returns test genotype.
signature(obj = "PhenList")
signature(obj = "PhenTestResult")
Removes of all non-concurrent batches from the dataset. Returns dataset suitable for TF framework or original dataset if data removal was not successful.
TFDataset(phenList, depVariable, outputMessages = TRUE, forDecisionTree = FALSE, upper = 5)
TFDataset(phenList, depVariable, outputMessages = TRUE, forDecisionTree = FALSE, upper = 5)
phenList |
instance of the |
depVariable |
a character string defining the dependent variable of interest; mandatory argument |
outputMessages |
flag: "FALSE" value to suppress output messages; "TRUE" value to show output messages; default value TRUE |
forDecisionTree |
flag: "FALSE" value for normal procedure; "TRUE" value to indicate that is called form decisionTree function; default value FALSE |
upper |
Single integer: maximum allowed number of levels for the Batch in the TF framework. Default 5. |
Returns dataset suitable for TF framework or original dataset if data removal was not successful.
Natalja Kurbatova, Natasha Karp, Jeremy Mason
Karp N, Melvin D, Sanger Mouse Genetics Project, Mott R (2012): Robust and Sensitive Analysis of Mouse Knockout Phenotypes. PLoS ONE 7(12): e52410. doi:10.1371/journal.pone.0052410
West B, Welch K, Galecki A (2007): Linear Mixed Models: A practical guide using statistical software New York: Chapman & Hall/CRC 353 p.
file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") test2 <- PhenStat:::TFDataset(test,"Lean.Mass")
file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") test2 <- PhenStat:::TFDataset(test,"Lean.Mass")
Method transformation
returns transformation values: lamda=value, scaleShift=value
This function returns transformation values.
signature(obj = "PhenTestResult")
Method transformationJSON
returns transformation values as JSON string
This function returns transformation values as JSON string.
signature(obj = "PhenTestResult")
Method transformationText
returns transformation values as one string
This function returns transformation values as one string.
signature(obj = "PhenTestResult")
Wrapper for the model fitting results. Returns model fitting and testing results in a vector format.
Assumes that modelling results are stored in the PhenTestResult
object
(output from function testDataset
).
vectorOutput( phenTestResult, phenotypeThreshold = 0.01, othercolumns = NULL, quote = '"' )
vectorOutput( phenTestResult, phenotypeThreshold = 0.01, othercolumns = NULL, quote = '"' )
phenTestResult |
instance of the |
phenotypeThreshold |
a numerical value defining the threshold to use in classificationTag; default value 0.01 |
othercolumns |
a vector of column names that needs to be included in the function output |
quote |
The charachter that is used to encompass the JSON keys in summary statistics. The default is quotation |
Returns a vector with model fitting results: model output summary and other values
Natalja Kurbatova, Natasha Karp, Jeremy Mason
Karp N, Melvin D, Sanger Mouse Genetics Project, Mott R (2012): Robust and Sensitive Analysis of Mouse Knockout Phenotypes. PLoS ONE 7(12): e52410. doi:10.1371/journal.pone.0052410
West B, Welch K, Galecki A (2007): Linear Mixed Models: A practical guide using statistical software New York: Chapman & Hall/CRC 353 p.
# Mixed Model framework file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") result <- PhenStat:::testDataset(test, depVariable="Lean.Mass") PhenStat:::vectorOutput(result) # Fishe Exact Test framework file <- system.file("extdata", "test_categorical.csv", package="PhenStat") test2 <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Aff3/Aff3") result2 <- PhenStat:::testDataset(test2, depVariable="Thoracic.Processes", method="FE") PhenStat:::vectorOutput(result2)
# Mixed Model framework file <- system.file("extdata", "test1.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Sparc/Sparc") result <- PhenStat:::testDataset(test, depVariable="Lean.Mass") PhenStat:::vectorOutput(result) # Fishe Exact Test framework file <- system.file("extdata", "test_categorical.csv", package="PhenStat") test2 <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Aff3/Aff3") result2 <- PhenStat:::testDataset(test2, depVariable="Thoracic.Processes", method="FE") PhenStat:::vectorOutput(result2)
Returns count matrices from Fisher Exact Test framework in a vector form.
Note: Maximal supported number of dependent variable levels is 10.
vectorOutputMatrices(phenTestResult,outputMessages=TRUE)
vectorOutputMatrices(phenTestResult,outputMessages=TRUE)
phenTestResult |
instance of the |
outputMessages |
flag: "FALSE" value to suppress output messages; "TRUE" value to show output messages; default value TRUE |
Returns a vector with count values.
Natalja Kurbatova, Natasha Karp, Jeremy Mason
Karp N, Melvin D, Sanger Mouse Genetics Project, Mott R (2012): Robust and Sensitive Analysis of Mouse Knockout Phenotypes. PLoS ONE 7(12): e52410. doi:10.1371/journal.pone.0052410
West B, Welch K, Galecki A (2007): Linear Mixed Models: A practical guide using statistical software New York: Chapman & Hall/CRC 353 p.
file <- system.file("extdata", "test_categorical.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Aff3/Aff3") result <- PhenStat:::testDataset(test, depVariable="Thoracic.Processes", method="FE") PhenStat:::vectorOutputMatrices(result)
file <- system.file("extdata", "test_categorical.csv", package="PhenStat") test <- PhenStat:::PhenList(dataset=read.csv(file,na.strings = '-'), testGenotype="Aff3/Aff3") result <- PhenStat:::testDataset(test, depVariable="Thoracic.Processes", method="FE") PhenStat:::vectorOutputMatrices(result)
Returns TRUE if the weight is in the dataset, FALSE otherwise
TRUE/FALSE
signature(obj = "PhenList")
signature(obj = "PhenTestResult")