Package: PeacoQC (via r-universe)

June 14, 2024
Title Peak-based selection of high quality cytometry data
Version 1.15.0
Description This is a package that includes pre-processing and quality control functions that can remove margin events, compensate and transform the data and that will use PeacoQCSignalStability for quality control. This last function will first detect peaks in each channel of the flowframe. It will remove anomalies based on the IsolationTree function and the MAD outlier detection method. This package can be used for both flow- and mass cytometry data.

Encoding UTF-8

License GPL (>=3)
LazyData true

URL http://github.com/saeyslab/PeacoQC

BugReports http://github.com/saeyslab/PeacoQC/issues
Depends R (>=4.0)
Imports circlize, ComplexHeatmap, flowCore, flowWorkspace, ggplot2, grDevices, grid, gridExtra, methods, plyr, stats, utils
RoxygenNote 7.2.0
Suggests knitr, rmarkdown, BiocStyle
VignetteBuilder knitr
biocViews FlowCytometry, QualityControl, Preprocessing, PeakDetection
Repository https://bioc.r-universe.dev
RemoteUrl https://github.com/bioc/PeacoQC
RemoteRef HEAD
RemoteSha c8c47c5b112ad8e8a9a7a963148d5f4b057ab56b

Contents

PeacoQC 2
PeacoQCHeatmap 4
PlotPeacoQC 5
RemoveDoublets 7
RemoveMargins 8
Index 10
PeacoQC Peak-based detection of high quality cytometry data

Description

PeacoQC will determine peaks on the channels in the flowframe. Then it will remove anomalies caused by e.g. clogs, changes in speed etc. by using an IsolationTree and/or the MAD method.

Usage

PeacoQC(ff, channels, determine_good_cells="all",
plot=20, save_fcs=TRUE, output_directory=".",
name_directory="PeacoQC_results", report=TRUE,
events_per_bin=FindEventsPerBin(remove_zeros, ff, channels,
min_cells, max_bins, step), min_cells=150, max_bins=500, step=500,
MAD=6, IT_limit=0.6, consecutive_bins=5, remove_zeros=FALSE, suffix_fcs="_QC", force_IT=150, peak_removal = (1/3),
min_nr_bins_peakdetection $=10$, time_channel_parameter = "Time",
...)

Arguments

ff A flowframe or the location of an fcs file. Make sure that the flowframe is compensated and transformed. If it is mass cytometry data, only a transformation is necessary.
channels Indices or names of the channels in the flowframe on which peaks have to be determined.
determine_good_cells
If set to FALSE, the algorithm will only determine peaks. If it is set to "all", the bad measurements will be filtered out based on the MAD and IT analysis. It can also be put to "MAD" or "IT" to only use one method of filtering.
plot When PeacoQC removes more than the specified percentage, an overview plot will be made of all the selected channels and the deleted measurements. If set to TRUE, the PlotPeacoQC function is run to make an overview plot of the deleted measurements, even when nothing is removed. Default is set to 20. If an increasing or decreasing trend is found, a figure will also be made except if plot is set to FALSE.
$\left.\begin{array}{ll}\text { save_fcs } & \text { If set to TRUE, the cleaned fcs file will be saved in the output_directory as: } \\ \text { filename_QC.fcs. The _QC name can be altered with the suffix_fcs param- } \\ \text { eter. An extra column named "Original_ID" is added to this fcs file where the } \\ \text { cells are given their original cell id. Default is TRUE. }\end{array}\right\}$

Value

This function returns a list with a number of items. It will include "FinalFF" where the transformed, compensated and cleaned flowframe is stored. It also contains the starting parameters and the information necessary to give to PlotPeacoQC if the two functions are run seperatly. The GoodCells list is also given where 'good' measurements are indicated as TRUE and the to be removed measurements as FALSE.

Examples

```
# General pipeline for preprocessing and quality control with PeacoQC
# Read in raw fcs file
fileName <- system.file("extdata", "111.fcs", package="PeacoQC")
ff <- flowCore::read.FCS(fileName)
# Define channels where the margin events should be removed
# and on which the quality control should be done
channels <- c(1, 3, 5:14, 18, 21)
ff <- RemoveMargins(ff=ff, channels=channels, output="frame")
# Compensate and transform the data
ff <- flowCore::compensate(ff, flowCore::keyword(ff)$SPILL)
ff <- flowCore::transform(ff,
    flowCore::estimateLogicle(ff,
    colnames(flowCore::keyword(ff)$SPILL)))
#Run PeacoQC
PeacoQC_res <- PeacoQC(ff, channels,
    determine_good_cells="all",
    save_fcs=TRUE)
```

PeacoQCHeatmap Make overview heatmap of quality control analysis

Description

PeacoQCHeatmap will make a heatmap to display all the results generated by PeacoQC. It will include the percentages of measurements that are removed in total, by the IT method and by the MAD method. It will also show the parameters that were used during the quality control.

Usage

PeacoQCHeatmap(report_location, show_values=TRUE, show_row_names=TRUE, latest_tests=FALSE, title="PeacoQC report", ...)

Arguments

	The path to the PeacoQC report generated by PeacoQC.
show_values	If set to TRUE, the percentages of removed values will be displayed on the heatmap. Default is TRUE.
show_row_names	If set to FALSE, the filenames will not be displayed on the heatmap. Default is TRUE.
latest_tests	If this is set to TRUE, only the latest quality control run will be displayed in the heatmap. Default is FALSE.
title	The title that should be given to the heatmap. Default is "PeacoQC_report".
	Extra parameters to be given to the Heatmap function (eg. row_split)

Value

This function returns nothing but generates a heatmap that can be saved as pdf or png

Examples

```
# Find path to PeacoQC report
location <- system.file("extdata", "PeacoQC_report.txt", package="PeacoQC")
# Make heatmap overview of quality control run
PeacoQCHeatmap(report_location=location)
# Make heatmap with only the runs of the last test
PeacoQCHeatmap(report_location=location, latest_tests=TRUE)
# Make heatmap with row annotation
PeacoQCHeatmap(report_location=location,
    row_split=c(rep("r1",7), rep("r2", 55)))
```

PlotPeacoQC Visualise deleted cells of PeacoQC

Description

PlotPeacoQC will generate a png file with on overview of the flow rate and the different selected channels. These will be annotated based on the measurements that were removed by PeacoQC. It is also possible to only display the quantiles and median or only the measurements without any annotation.

Usage

PlotPeacoQC(ff, channels, output_directory=".", display_cells=2000, manual_cells=NULL, title_FR=NULL, display_peaks=TRUE, prefix="PeacoQC_", time_unit=100, time_channel_parameter="Time", ...)

Arguments

ff	A flowframe
channels	Indices of names of the channels in the flowframe that have to be displayed
output_directory	
	Directory where the plots should be generated. Set to NULL if no plots need to be generated. The default is the working directory.
display_cells	The number of measurements that should be displayed. (The number of dots that are displayed for every channel) The default is 2000.
manual_cells	Give a vector (TRUE/FALSE) with annotations for each cell to compare the automated QC with. The default is NULL.
title_FR	Th
display_peaks	If the result of PeacoQC is given, all the quality control results will be visualised. If set to TRUE: PeacoQC will be run and only the peaks will be displayed without any quality control. If set to FALSE, no peaks will be displayed and only the events will be displayed. Default is TRUE.
prefix	The prefix that will be given to the generated png file. Default is "PeacoQC_".
time_unit	The number of time units grouped together for visualising event rate. The default is set to 100 , resulting in events per second for most flow datasets. Suggested to adapt for mass cytometry data.
time_channel_parameter	
	Name of the time channel in ff if present. Default is "Time".
	Arguments to be given to PeacoQC if display_peaks is set to TRUE.

Value

This function returns nothing but generates a png file in the output_directory

Examples

```
## Plotting the results of PeacoQC
# Read in transformed and compensated data
fileName <- system.file("extdata", "111_Comp_Trans.fcs", package="PeacoQC")
ff <- flowCore::read.FCS(fileName)
# Define channels on which the quality control should be done and the
# plots should be made
channels <- c(1, 3, 5:14, 18, 21)
# Run PeacoQC
PeacoQC_res <- PeacoQC(ff,
    channels,
    determine_good_cells="all",
    plot=FALSE,
    save_fcs=TRUE)
# Run PlotPeacoQC
```

```
PlotPeacoQC(ff, channels, display_peaks=PeacoQC_res)
## Plot only the peaks (No quality control)
PlotPeacoQC(ff, channels, display_peaks=TRUE)
## Plot only the dots of the file
PlotPeacoQC(ff, channels, display_peaks=FALSE)
```


RemoveDoublets Remove doublet events from flow cytometry data

Description

RemoveDoublets will remove doublet events from the flowframe based on two channels.

Usage

RemoveDoublets(ff, channel1="FSC-A", channel2="FSC-H", nmad=4, verbose=FALSE, output="frame")

Arguments

ff	A flowframe that contains flow cytometry data.
channel1	The first channels that will be used to determine the doublet events. Default is "FSC-A"
channel2	The second channels that will be used to determine the doublet events. Default is "FSC-H"
nmad	Bandwidth above the ratio allowed (cells are kept if their ratio is smaller than the median ratio + nmad times the median absolute deviation of the ratios). Default is 4.
verbose	If set to TRUE, the median ratio and width will be printed. Default is FALSE.
output	If set to "full", a list with the filtered flowframe and the indices of the doublet event is returned. If set to "frame", only the filtered flowframe is returned. The default is "frame".

Value

This function returns either a filtered flowframe when the output parameter is set to "frame" or a list containing the filtered flowframe and a TRUE/FALSE list indicating the margin events. An extra column named "Original_ID" is added to the flowframe where the cells are given their original cell id.

Examples

```
# Read in data
fileName <- system.file("extdata", "111.fcs", package="PeacoQC")
ff <- flowCore::read.FCS(fileName)
# Remove doublets
ff_cleaned <- RemoveDoublets(ff)
```

RemoveMargins Remove margin events of flow cytometry data

Description

RemoveMargins will remove margin events from the flowframe based on the internal description of the fcs file.

Usage

RemoveMargins(ff, channels, channel_specifications=NULL, output="frame")

Arguments

ff A flowframe that contains flow cytometry data.
channels The channel indices or channel names that have to be checked for margin events
channel_specifications
A list of vectors with parameter specifications for certain channels. This parameter should only be used if the values in the internal parameters description is too strict or wrong for a number or all channels. This should be one list per channel with first a minRange and then a maxRange value in a vector. This list should have the channel name found back in colnames(flowCore: : exprs(ff)). If a channel is not listed in this parameter, its default internal values will be used. The default of this parameter is NULL.
output If set to "full", a list with the filtered flowframe and the indices of the margin event is returned. If set to "frame", only the filtered flowframe is returned. The default is "frame".

Value

This function returns either a filtered flowframe when the output parameter is set to "frame" or a list containing the filtered flowframe and a TRUE/FALSE list indicating the margin events. An extra column named "Original_ID" is added to the flowframe where the cells are given their original cell id.

Examples

```
# Read in raw data
fileName <- system.file("extdata", "111.fcs", package="PeacoQC")
ff <- flowCore::read.FCS(fileName)
# Define channels where the margin events should be removed
channels <- c(1, 3, 5:14, 18, 21)
# Remove margins
ff_cleaned <- RemoveMargins(ff, channels)
# If an internal value is wrong for a channels (e.g. FSC-A)
channel_specifications <- list("FSC-A"=c(-111, 262144),
                    "SSC-A"=c(-111, 262144))
ff_cleaned <- RemoveMargins(
    ff,
    channels,
    channel_specifications=channel_specifications)
```


Index

PeacoQC, 2
PeacoQCHeatmap, 4
PlotPeacoQC, 5
RemoveDoublets, 7
RemoveMargins, 8

