Compiled date: 2024-11-20
Last edited: 2024-01-21
License: GPL-3
To install the Bioconductor version of the POMA package, run the following code:
The POMA
package functions are organized into three
sequential, distinct blocks: Data Preparation, Pre-processing, and
Statistical Analysis.
The SummarizedExperiment
package from Bioconductor
offers well-defined computational data structures for representing
various types of omics experiment data (Morgan et al. 2020).
Utilizing these data structures can significantly improve data analysis.
POMA
leverages SummarizedExperiment
objects,
enhancing the reusability of existing methods for this class and
contributing to more robust and reproducible workflows.
The workflow begins with either loading or creating a
SummarizedExperiment
object. Typically, your data might be
stored in separate matrices and/or data frames. The
PomaCreateObject
function simplifies this step by quickly
building a SummarizedExperiment object for you.
# create an SummarizedExperiment object from two separated data frames
target <- readr::read_csv("your_target.csv")
features <- readr::read_csv("your_features.csv")
data <- PomaCreateObject(metadata = target, features = features)
Alternatively, if your data is already in a
SummarizedExperiment
object, you can proceed directly to
the pre-processing step. This vignette uses example data provided in
POMA
.
imputed <- st000336 %>%
PomaImpute(method = "knn", zeros_as_na = TRUE, remove_na = TRUE, cutoff = 20)
> 2 features removed.
imputed
> class: SummarizedExperiment
> dim: 29 57
> metadata(0):
> assays(1): ''
> rownames(29): x1_methylhistidine x3_methylhistidine ... pyruvate
> succinate
> rowData names(0):
> colnames(57): 1 2 ... 56 57
> colData names(2): group steroids
normalized <- imputed %>%
PomaNorm(method = "log_pareto")
normalized
> class: SummarizedExperiment
> dim: 29 57
> metadata(0):
> assays(1): ''
> rownames(29): x1_methylhistidine x3_methylhistidine ... pyruvate
> succinate
> rowData names(0):
> colnames(57): 1 2 ... 56 57
> colData names(2): group steroids
pre_processed <- PomaOutliers(normalized)$data
pre_processed
> class: SummarizedExperiment
> dim: 29 52
> metadata(0):
> assays(1): ''
> rownames(29): x1_methylhistidine x3_methylhistidine ... pyruvate
> succinate
> rowData names(0):
> colnames(52): 1 2 ... 56 57
> colData names(2): group steroids
sessionInfo()
> R version 4.4.2 (2024-10-31)
> Platform: x86_64-pc-linux-gnu
> Running under: Ubuntu 24.04.1 LTS
>
> Matrix products: default
> BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so; LAPACK version 3.12.0
>
> locale:
> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
> [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
> [9] LC_ADDRESS=C LC_TELEPHONE=C
> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
>
> time zone: Etc/UTC
> tzcode source: system (glibc)
>
> attached base packages:
> [1] stats4 stats graphics grDevices utils datasets methods
> [8] base
>
> other attached packages:
> [1] magrittr_2.0.3 SummarizedExperiment_1.37.0
> [3] Biobase_2.67.0 GenomicRanges_1.59.1
> [5] GenomeInfoDb_1.43.1 IRanges_2.41.1
> [7] S4Vectors_0.45.2 BiocGenerics_0.53.3
> [9] generics_0.1.3 MatrixGenerics_1.19.0
> [11] matrixStats_1.4.1 patchwork_1.3.0
> [13] ggtext_0.1.2 POMA_1.17.5
> [15] BiocStyle_2.35.0
>
> loaded via a namespace (and not attached):
> [1] gtable_0.3.6 impute_1.81.0 xfun_0.49
> [4] bslib_0.8.0 ggplot2_3.5.1 lattice_0.22-6
> [7] vctrs_0.6.5 tools_4.4.2 parallel_4.4.2
> [10] tibble_3.2.1 fansi_1.0.6 cluster_2.1.6
> [13] pkgconfig_2.0.3 Matrix_1.7-1 lifecycle_1.0.4
> [16] GenomeInfoDbData_1.2.13 stringr_1.5.1 compiler_4.4.2
> [19] farver_2.1.2 munsell_0.5.1 permute_0.9-7
> [22] htmltools_0.5.8.1 sys_3.4.3 buildtools_1.0.0
> [25] sass_0.4.9 yaml_2.3.10 pillar_1.9.0
> [28] crayon_1.5.3 jquerylib_0.1.4 tidyr_1.3.1
> [31] MASS_7.3-61 cachem_1.1.0 DelayedArray_0.33.2
> [34] vegan_2.6-8 abind_1.4-8 nlme_3.1-166
> [37] commonmark_1.9.2 tidyselect_1.2.1 digest_0.6.37
> [40] stringi_1.8.4 dplyr_1.1.4 purrr_1.0.2
> [43] splines_4.4.2 labeling_0.4.3 maketools_1.3.1
> [46] fastmap_1.2.0 grid_4.4.2 colorspace_2.1-1
> [49] cli_3.6.3 SparseArray_1.7.2 S4Arrays_1.7.1
> [52] utf8_1.2.4 withr_3.0.2 scales_1.3.0
> [55] UCSC.utils_1.3.0 rmarkdown_2.29 XVector_0.47.0
> [58] httr_1.4.7 evaluate_1.0.1 knitr_1.49
> [61] viridisLite_0.4.2 mgcv_1.9-1 markdown_1.13
> [64] rlang_1.1.4 gridtext_0.1.5 Rcpp_1.0.13-1
> [67] glue_1.8.0 BiocManager_1.30.25 xml2_1.3.6
> [70] jsonlite_1.8.9 R6_2.5.1 zlibbioc_1.52.0