Package 'PLPE'

Title: Local Pooled Error Test for Differential Expression with Paired High-throughput Data
Description: This package performs tests for paired high-throughput data.
Authors: HyungJun Cho <[email protected]> and Jae K. Lee <[email protected]>
Maintainer: Soo-heang Eo <[email protected]>
License: GPL (>= 2)
Version: 1.67.0
Built: 2024-12-27 04:12:45 UTC
Source: https://github.com/bioc/PLPE

Help Index


Local Pooled Error Test for Paired Data

Description

This invetigates differential expression for paired high-throughput data.

Usage

lpe.paired(x,...)

Arguments

x

an object for which the extraction of model lpe.paired is meaningful.

...

other arguments

Value

x

design matrix; condition index in the first column and pair index in the sceond column

...

data type: 'ms' for mass spectrometry data, 'cdna' for cDNA microarray data

Author(s)

HyungJun Cho and Jae K. Lee

References

Cho H, Smalley DM, Ross MM, Theodorescu D, Ley K and Lee JK (2007). Statistical Identification of Differentially Labelled Peptides from Liquid Chromatography Tandem Mass Spectrometry, Proteomics, 7:3681-3692.

See Also

lpe.paired.default

Examples

#LC-MS/MS proteomic data for platelets MPs
library(PLPE)
data(plateletSet)
x <- exprs(plateletSet)
x <- log2(x) 

cond <- c(1, 2, 1, 2, 1, 2)
pair <- c(1, 1, 2, 2, 3, 3)
design <- cbind(cond, pair)

out <- lpe.paired(x, design, q=0.1, data.type="ms")
out$test.out[1:10,]

Local Pooled Error Test for Paired Data

Description

This invetigates differential expression for paired high-throughput data.

Usage

## Default S3 method:
lpe.paired(x, design, data.type, q=0.01, probe.ID = NULL, estimator="median", w=0.5, w.estimator="fixed", iseed=1234, ...)

Arguments

x

data matrix

design

design matrix; condition index in the first column and pair index in the sceond column

q

quantile for intervals of intensities

probe.ID

probe set IDs; if NULL, row numbers are assigned.

data.type

data type: 'ms' for mass spectrometry data, 'cdna' for cDNA microarray data

estimator

specification for the estimator: 'median', 'mean' and 'huber'

w

weight paramter between individual variance estimate and pooling variance estimate, 0<= w <=1

w.estimator

two approaches to estimate the weight: 'random' or 'fixed'

iseed

seed number

...

other arguments

Value

design

design matrix; condition index in the first column and pair index in the sceond column

data.type

data type: 'ms' for mass spectrometry data, 'cdna' for cDNA microarray data

q

quantile for intervals of intensities

estimator

specification for the estimator: 'median', 'mean' and 'huber'

w.estimator

two approaches to estimate the weight: 'random' or 'fixed'

w

weight paramter between individual variance estimate and pooling variance estimate, 0<= w <=1

test.out

matrix for test results

Author(s)

HyungJun Cho and Jae K. Lee

References

Cho H, Smalley DM, Ross MM, Theodorescu D, Ley K and Lee JK (2007). Statistical Identification of Differentially Labelled Peptides from Liquid Chromatography Tandem Mass Spectrometry, Proteomics, 7:3681-3692.

See Also

lpe.paired

Examples

#LC-MS/MS proteomic data for platelets MPs
library(PLPE)
data(plateletSet)
x <- exprs(plateletSet)
x <- log2(x) 

cond <- c(1, 2, 1, 2, 1, 2)
pair <- c(1, 1, 2, 2, 3, 3)
design <- cbind(cond, pair)

out <- lpe.paired(x, design, q=0.1, data.type="ms")
out$test.out[1:10,]
summary(out)

FDR for PLPE

Description

This computes FDR for PLPE.

Usage

lpe.paired.fdr(x,...)

Arguments

x

data matrix

...

other arguments

Author(s)

HyungJun Cho and Jae K. Lee

References

Cho H, Smalley DM, Ross MM, Theodorescu D, Ley K and Lee JK (2007). Statistical Identification of Differentially Labelled Peptides from Liquid Chromatography Tandem Mass Spectrometry, Proteomics, 7:3681-3692.

See Also

lpe.paired.fdr.default

Examples

#LC-MS/MS proteomic data for platelets MPs
library(PLPE)
data(plateletSet)
x <- exprs(plateletSet)
x <- log2(x) 

cond <- c(1, 2, 1, 2, 1, 2)
pair <- c(1, 1, 2, 2, 3, 3)
design <- cbind(cond, pair)

out <- lpe.paired(x, design, q=0.1, data.type="ms")
out.fdr <- lpe.paired.fdr(x,obj=out)
out.fdr$FDR[1:10,]

FDR for PLPE

Description

This computes FDR for PLPE.

Usage

## Default S3 method:
lpe.paired.fdr(x, obj, n.iter=5, lambda=0.9, ...)

Arguments

x

data matrix

obj

object created from lpe.paired

n.iter

number of iterations

lambda

numeric vector of probabilities with values in [0,1]

...

other argument

Value

design

design matrix; condition index in the first column and pair index in the sceond column

data.type

data type: 'ms' for mass spectrometry data, 'cdna' for cDNA microarray data

estimator

specification for the estimator: 'median', 'mean' and 'huber'

w.estimator

two approaches to estimate the weight: 'random' or 'fixed'

w

weight paramter between individual variance estimate and pooling variance estimate, 0<= w <=1

pi0

estimated proportion of non-null peptides

FDR

matrix for test results including FDRs

...

other arguments

Author(s)

HyungJun Cho and Jae K. Lee

References

Cho H, Smalley DM, Ross MM, Theodorescu D, Ley K and Lee JK (2007). Statistical Identification of Differentially Labelled Peptides from Liquid Chromatography Tandem Mass Spectrometry, Proteomics, 7:3681-3692.

See Also

lpe.paired.fdr

Examples

#LC-MS/MS proteomic data for platelets MPs
library(PLPE)
data(plateletSet)
x <- exprs(plateletSet)
x <- log2(x) 

cond <- c(1, 2, 1, 2, 1, 2)
pair <- c(1, 1, 2, 2, 3, 3)
design <- cbind(cond, pair)

out <- lpe.paired(x, design, q=0.1, data.type="ms")
out.fdr <- lpe.paired.fdr(x,obj=out)
out.fdr$FDR[1:10,]

LCMS proteomic data for platelte MPs

Description

This data set consists of LC-MS/MS data with three replicates of paired samples.

Source

Garcia BA, Smalley DM, Cho H, Shabanowitz J, Ley K and Hunt DF (2005). The Platelet Microparticle Proteome, Journal of Proteome Research, 4:1516-1521.