Title: | A Robust and Scalable Software Package for Reproducible Analysis of High-Throughput genotype-phenotype association |
---|---|
Description: | Package contains several methods for statistical analysis of genotype to phenotype association in high-throughput screening pipelines. |
Authors: | Hamed Haseli Mashhadi |
Maintainer: | Marina Kan <[email protected]> |
License: | GPL (>= 2) |
Version: | 1.19.0 |
Built: | 2024-10-30 09:19:35 UTC |
Source: | https://github.com/bioc/OpenStats |
The driver function in the OpenStats package for running statisical analysis on phenotypic data.
- It performs several checks on the data and the input model before performing the analysis. This function supports three main analysis frameworks precisely, Linear Mix model (MM), Fisher's Exact test (FE) and Reference Range plus (RR).
- It further monitors the process for failures and errors and applies some runtime patches/fixes.
- The function parameters are designed to be human-friendly by initialising the inputs by the model that will be applied to the data.
OpenStatsAnalysis( OpenStatsListObject = NULL, method = NULL, MM_fixed = TypicalModel( depVariable = "data_point", withWeight = MM_BodyWeightIncluded, Sex = TRUE, LifeStage = TRUE, data = OpenStatsListObject@datasetPL, others = NULL, debug = debug ), MM_random = rndProce("TYPICAL"), MM_BodyWeightIncluded = TRUE, MM_lower = ~ Genotype + 1, MM_weight = if ( TermInModelAndnLevels( model = MM_fixed, data = OpenStatsListObject@datasetPL ) ){ varIdent(form = ~ 1 | LifeStage) }else{ varIdent(form = ~ 1 | Genotype) }, MM_direction = "both", MM_checks = c(TRUE, TRUE, TRUE, TRUE), MM_optimise = c(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE), FE_formula = category ~ Genotype + Sex + LifeStage, RR_formula = data_point ~ Genotype + Sex + LifeStage, RRrefLevel = 'control', RR_prop = 0.95, FERR_rep = 1500, FERR_FullComparisions = c(TRUE, FALSE), MMFERR_conf.level = 0.95, debug = TRUE, ... )
OpenStatsAnalysis( OpenStatsListObject = NULL, method = NULL, MM_fixed = TypicalModel( depVariable = "data_point", withWeight = MM_BodyWeightIncluded, Sex = TRUE, LifeStage = TRUE, data = OpenStatsListObject@datasetPL, others = NULL, debug = debug ), MM_random = rndProce("TYPICAL"), MM_BodyWeightIncluded = TRUE, MM_lower = ~ Genotype + 1, MM_weight = if ( TermInModelAndnLevels( model = MM_fixed, data = OpenStatsListObject@datasetPL ) ){ varIdent(form = ~ 1 | LifeStage) }else{ varIdent(form = ~ 1 | Genotype) }, MM_direction = "both", MM_checks = c(TRUE, TRUE, TRUE, TRUE), MM_optimise = c(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE), FE_formula = category ~ Genotype + Sex + LifeStage, RR_formula = data_point ~ Genotype + Sex + LifeStage, RRrefLevel = 'control', RR_prop = 0.95, FERR_rep = 1500, FERR_FullComparisions = c(TRUE, FALSE), MMFERR_conf.level = 0.95, debug = TRUE, ... )
OpenStatsListObject |
mandatory argument. An instance of the 'OpenStatsList' or 'PhenList' (former from the Bioconductor 'PhenStat' package). |
method |
Must be specified by the user. A character string ("MM", "FE" or "RR") defining the method to use for model building. |
MM_fixed |
Only applies to the "MM" framework. A formula that specifies the fixed effect in the linear mix model. The default is data_point~Genotype+Sex+LifeStage +/- BodyWeight. Note that the algorithm checks and removes the formula terms that do not exist in data. |
MM_random |
Only applies to the "MM" framework. The random effect in the linear mixed model. See the lme() function for more details about the formula. The default is ~1|Batch. |
MM_BodyWeightIncluded |
Only applies to the 'default' MM_fixed in the "MM" framework. If TRUE then the default model includes the body weight and the model would be: data_point~Genotype+Sex+LifeStage + Weight. |
MM_lower |
Only applies to the "MM" framework. A right-sided formula, for example ~Genotype+1 or ~Sex+Genotype+1 or ~Sex+Genotype+Sex:Genotype. The lowest model that must not be included in the model optimisation. In other words, the terms in this model won't be removed during the optimisation process. The default is ~ Genotype + 1 that is the genotype effect and the intercept will be kept in the model during the optimisation process. |
MM_weight |
Only applies to the "MM" framework. From weight in the lme() manual: |
MM_direction |
Only applies to the "MM" framework. Select from "both" (for stepwise optimisation), "backward" (for backward elimination) or "forward" (for forward selection) for the optimisation algorithm. The default is "both". |
MM_checks |
Only applies to the "MM" framework. A vector of four 1/0 or TRUE/FALSE values such as c(TRUE, TRUE, TRUE, TRUE)[default]. Performing pre checks on the input model for some known scenarios. The first element of the vector activates checks on the model terms (See MM_fixed) to be existed in data. The second term removes any single level -factor- from the model (in MM_fixed). The third term removes the single value (such as a column of constants/no variation) from the -continuous- terms in the model (in MM_fixed). The Fourth element checks the interaction term to make sure all interactions have some data attached. Caution is needed for this check as it may take longer than usual if the formula in MM_fixed contains many factors. The default is c(TRUE, TRUE, TRUE, TRUE) that is all checks perform. * Note that the function always removes duplicated columns in the dataset prior to applying the lme/gls. |
MM_optimise |
Only applies to the "MM" framework. A vector of six binary values such as c(1,1,1,1,1,1) or c(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE) (default). The first element of the vector activates the fixed effect optimisation. The algorithm uses AICc to optimise the fixed effects (Check ‘AICcmodavg' package for more details about AICc). The second and third elements of the vector activate optimisation on ’weight' and 'random effects' respectively. The optimisation of weight and random effects refers to comparing the AICc between a model with and without those effects. The fourth element activates the Split model effects (for example, separate male and female effects) (see 'SplitModels' in the output object). The fifth effect activates the effect size estimation (see 'Effect sizes' in the output object). The sixth element activates the normality tests on the residuals (see 'ResidualNormalityTests' in the output object). |
FE_formula |
Only applies to the "FE" framework. The model for analysing the categorical data. The default is: category ~ Genotype + Sex + LifeStage. |
RR_formula |
Only applies to the "RR" framework. The model for analysing the RR+ compatible data. |
RRrefLevel |
Only applies to the "RR" framework. A single term for the 'reference level' in the 'reference variable' (the first term on the right hand side of the 'RR_formula') used for discritising the response. If left blank then the a level with more observations will be considered as the reference level. The default is 'control'. |
RR_prop |
Only applies to the "RR" framework. A single value between (0.5,1) not including the boundaries. The threshold for the variation ranges in the RR framework. The default value is 0.95. |
FERR_rep |
Only applies to the "RR" or "FE" frameworks. The number of iteration for the Monte Carlo Fisher's Exact test. See "B" parameter in 'fisher.test()' function. Set to 0 for non-bayesian results (not recommended). The default is 1500. |
FERR_FullComparisions |
Only applies to the "RR" or "FE" frameworks. A vector of two logical flags, default c(TRUE,FALSE). Setting the first value to TRUE, then all combinations of the effects (all levels of factors in the input model - for example Male_LifeStage, Male_Genotype, Male_Mutant, Male_control, Female_control, Female_Mutant, Female_LifeStage and so on) will be tested. Otherwise only main effects (no sub levels - for example Sex_LifeStage [not for instance Male_LifeStage]) will be tested. Setting the second element of the vector to TRUE (default FALSE) will force Fisher's Exact test to do all comparisions between different levels of the RESPONSE variable. For example, if the respose has three levels such as 1.positive, 2.negative and 3.neutral then the comparisions will be between 1\&2, 1\&3, 2\&3 and 1\&2\&3 (obviously this is the full table). |
MMFERR_conf.level |
Applies to all frameworks (MM, FE, RR). Single numeric value for the interval confidence level. Default is 0.95 |
debug |
A logical flag. Set to TRUE to see more details about the progress of the function. Default TRUE |
... |
Other parameters that can be passed to: |
OpenStatsReport function can be used to extract the key elements of the analysis from the OpenStatsMM/FE/RR objects. The output from OpenStatsReport has schemed that makes it easy to be populated to the downstream processes such as storing and accessing results from a database.
1. Successful execution of the function will return a list of three elements:
input |
This contains the list of inputs |
output |
A list of outputs |
extra |
A placeholder for extra information if exists |
2. If the function fails:
messages |
A placeholder for the errors/warnings in the case of failure |
Hamed Haseli Mashhadi <[email protected]>
OpenStatsList
OpenStatsComplementarySplit
, plot.OpenStatsMM
,plot.OpenStatsFE
,plot.OpenStatsRR
, summary.OpenStatsMM
, summary.OpenStatsFE
,summary.OpenStatsRR
, print.OpenStatsMM
, print.OpenStatsFE
, print.OpenStatsRR
#################################################################### # 1 Data preparation #################################################################### ################# # 1.1 Continuous data - Creating OpenStatsList object ################# fileCon <- system.file("extdata", "test_continuous.csv", package = "OpenStats") test_Cont <- OpenStatsList( dataset = read.csv(fileCon), testGenotype = "experimental", refGenotype = "control", dataset.colname.genotype = "biological_sample_group", dataset.colname.batch = "date_of_experiment", dataset.colname.lifestage = NULL, dataset.colname.weight = "weight", dataset.colname.sex = "sex" ) ################# # 1.2 Categorical data - Creating OpenStatsList object ################# fileCat <- system.file("extdata", "test_categorical.csv", package = "OpenStats") test_Cat <- OpenStatsList( dataset = read.csv(fileCat, na.strings = "-"), testGenotype = "Aff3/Aff3", refGenotype = "+/+", dataset.colname.genotype = "Genotype", dataset.colname.batch = "Assay.Date", dataset.colname.lifestage = NULL, dataset.colname.weight = "Weight", dataset.colname.sex = "Sex" ) #################################################################### # 2 Testing frameworks #################################################################### ################# # 2.1 Optimised Linear Mixed model (MM) framework ################# MM1_result <- OpenStatsAnalysis( OpenStatsList = test_Cont, method = "MM", MM_fixed = data_point ~ Genotype + Weight ) VO_MM1 <- OpenStatsReport(MM1_result) plot(MM1_result, col = 2, main = "Optimised model") summary(MM1_result) ################# # 2.2 Linear Mixed model (MM) with NO optimisation # for the fixed effects but random/weight effects ################# MM2_result <- OpenStatsAnalysis( OpenStatsList = test_Cont, method = "MM", MM_fixed = data_point ~ Genotype + Weight, MM_lower = ~ Genotype + Weight + 1 # Or simply MM_optimise = c(0, 1, 1, 1, 1, 1) ) VO_MM2 <- OpenStatsReport(MM2_result) plot(MM2_result, col = 8, main = "No optimisation on the fixed effects") summary(MM2_result) ################# # 2.3 Linear Mixed model (MM) with NO optimisation on the model ################# MM3_result <- OpenStatsAnalysis( OpenStatsList = test_Cont, method = "MM", MM_fixed = data_point ~ Genotype + Weight, MM_optimise = c(0, 0, 0, 1, 1, 1) ) VO_MM3 <- OpenStatsReport(MM3_result) plot(MM3_result, col = 3, main = "Not optimised model") summary(MM3_result) ################# # 2.4 Reference range framework ################# RR_result <- OpenStatsAnalysis( OpenStatsList = test_Cont, method = "RR", RR_formula = data_point ~ Genotype + Sex ) VO_RR <- OpenStatsReport(RR_result) plot(RR_result, col = 3:4) summary(RR_result) ################# # 2.5 Fisher's exact test framework ################# FE_result <- OpenStatsAnalysis( OpenStatsList = test_Cat, method = "FE", FE_formula = Thoracic.Processes ~ Genotype + Sex ) VO_FE <- OpenStatsReport(FE_result) plot(FE_result, col = 1:2) summary(FE_result)
#################################################################### # 1 Data preparation #################################################################### ################# # 1.1 Continuous data - Creating OpenStatsList object ################# fileCon <- system.file("extdata", "test_continuous.csv", package = "OpenStats") test_Cont <- OpenStatsList( dataset = read.csv(fileCon), testGenotype = "experimental", refGenotype = "control", dataset.colname.genotype = "biological_sample_group", dataset.colname.batch = "date_of_experiment", dataset.colname.lifestage = NULL, dataset.colname.weight = "weight", dataset.colname.sex = "sex" ) ################# # 1.2 Categorical data - Creating OpenStatsList object ################# fileCat <- system.file("extdata", "test_categorical.csv", package = "OpenStats") test_Cat <- OpenStatsList( dataset = read.csv(fileCat, na.strings = "-"), testGenotype = "Aff3/Aff3", refGenotype = "+/+", dataset.colname.genotype = "Genotype", dataset.colname.batch = "Assay.Date", dataset.colname.lifestage = NULL, dataset.colname.weight = "Weight", dataset.colname.sex = "Sex" ) #################################################################### # 2 Testing frameworks #################################################################### ################# # 2.1 Optimised Linear Mixed model (MM) framework ################# MM1_result <- OpenStatsAnalysis( OpenStatsList = test_Cont, method = "MM", MM_fixed = data_point ~ Genotype + Weight ) VO_MM1 <- OpenStatsReport(MM1_result) plot(MM1_result, col = 2, main = "Optimised model") summary(MM1_result) ################# # 2.2 Linear Mixed model (MM) with NO optimisation # for the fixed effects but random/weight effects ################# MM2_result <- OpenStatsAnalysis( OpenStatsList = test_Cont, method = "MM", MM_fixed = data_point ~ Genotype + Weight, MM_lower = ~ Genotype + Weight + 1 # Or simply MM_optimise = c(0, 1, 1, 1, 1, 1) ) VO_MM2 <- OpenStatsReport(MM2_result) plot(MM2_result, col = 8, main = "No optimisation on the fixed effects") summary(MM2_result) ################# # 2.3 Linear Mixed model (MM) with NO optimisation on the model ################# MM3_result <- OpenStatsAnalysis( OpenStatsList = test_Cont, method = "MM", MM_fixed = data_point ~ Genotype + Weight, MM_optimise = c(0, 0, 0, 1, 1, 1) ) VO_MM3 <- OpenStatsReport(MM3_result) plot(MM3_result, col = 3, main = "Not optimised model") summary(MM3_result) ################# # 2.4 Reference range framework ################# RR_result <- OpenStatsAnalysis( OpenStatsList = test_Cont, method = "RR", RR_formula = data_point ~ Genotype + Sex ) VO_RR <- OpenStatsReport(RR_result) plot(RR_result, col = 3:4) summary(RR_result) ################# # 2.5 Fisher's exact test framework ################# FE_result <- OpenStatsAnalysis( OpenStatsList = test_Cat, method = "FE", FE_formula = Thoracic.Processes ~ Genotype + Sex ) VO_FE <- OpenStatsReport(FE_result) plot(FE_result, col = 1:2) summary(FE_result)
This function splits the input data according to the defined values in the 'variables' parameter and runs separate analyses on the split datasets. For example, the default split, c("Sex", "LifeStage"), creates independent input data for Males (only), Females, Early, Late, Male.Early, Males.Late, Females.Early, Females.Late and analyses these datasets separately.
OpenStatsComplementarySplit( object = NULL, variables = c("Sex", "LifeStage"), debug = FALSE )
OpenStatsComplementarySplit( object = NULL, variables = c("Sex", "LifeStage"), debug = FALSE )
object |
Mandatory argument. An instance of the 'OpenStatsAnalysis' object under the MM (linear mixed model) framework. |
variables |
Vector of names. A vector of variable names that will be fed into the split engine. The default is 'c("Sex", "LifeStage")' that should report the results for the following categories: Males, Females, Early, Late, Male.Early, Males.Late, Females.Early, Females.Late. |
debug |
Logical flag. Set to TRUE to see the analysis log. Default FALSE. |
List of splits and the analysis outputs. The splits contain the name of the partitioning levels (for example Female or Female.Age_15_weeks), and an 'OpenStatsAnalysis' object including the input data, outputs etc. See the examples for a general view of the output object.
Hamed Haseli Mashhadi <[email protected]>
OpenStatsAnalysis
, plot.OpenStatsComplementarySplit
, summary.OpenStatsComplementarySplit
#################################################################### # Data preparation # - Continuous data - Creating OpenStatsList object #################################################################### fileCon <- system.file("extdata", "test_continuous.csv", package = "OpenStats") test_Cont <- OpenStatsList( dataset = read.csv(fileCon), testGenotype = "experimental", refGenotype = "control", dataset.colname.genotype = "biological_sample_group", dataset.colname.batch = "date_of_experiment", dataset.colname.lifestage = NULL, dataset.colname.weight = "weight", dataset.colname.sex = "sex" ) #################################################################### # Analysis # - Optimised Linear Mixed Model (MM) framework #################################################################### MM_result <- OpenStatsAnalysis( OpenStatsList = test_Cont, method = "MM", MM_fixed = data_point ~ Genotype + Weight ) #################################################################### # Split on Sex # ** This split is already available from the normal running of OpenStatsAnalysis #################################################################### output <- OpenStatsComplementarySplit(object = MM_result, variables = "Sex") # Structure of the output object lapply(output, names) # Summaries summary(output, format = "pandoc") # See knitr:kable function for more formats # Plots plot(output, ask = TRUE)
#################################################################### # Data preparation # - Continuous data - Creating OpenStatsList object #################################################################### fileCon <- system.file("extdata", "test_continuous.csv", package = "OpenStats") test_Cont <- OpenStatsList( dataset = read.csv(fileCon), testGenotype = "experimental", refGenotype = "control", dataset.colname.genotype = "biological_sample_group", dataset.colname.batch = "date_of_experiment", dataset.colname.lifestage = NULL, dataset.colname.weight = "weight", dataset.colname.sex = "sex" ) #################################################################### # Analysis # - Optimised Linear Mixed Model (MM) framework #################################################################### MM_result <- OpenStatsAnalysis( OpenStatsList = test_Cont, method = "MM", MM_fixed = data_point ~ Genotype + Weight ) #################################################################### # Split on Sex # ** This split is already available from the normal running of OpenStatsAnalysis #################################################################### output <- OpenStatsComplementarySplit(object = MM_result, variables = "Sex") # Structure of the output object lapply(output, names) # Summaries summary(output, format = "pandoc") # See knitr:kable function for more formats # Plots plot(output, ask = TRUE)
The driver function to create 'OpenStatsList' object from a data frame.
- The mandatory variable for creating a 'standard' OpenStatsList objects is 'Genotype'. Having two levels in the 'Genotype' field is mandatory. The function further checks for the optional 'Sex' with two levels (Male/Female), LifeStage' with two levels (Early/Late), 'Batch' (defined as date_of experiment in the IMPC) and 'Weight' (defined as animal body weight in the IMPC) and reports any abnormality in the data.
- For advance applications, the function is capable of creating a 'OpenStatsList' object without performing checks. To do this, set clean.dataset to FALSE.
OpenStatsList( dataset , testGenotype = 'experimental' , refGenotype = 'control' , hemiGenotype = NULL , clean.dataset = TRUE , dataset.colname.genotype = 'biological_sample_group' , dataset.colname.sex = 'sex' , dataset.colname.batch = 'date_of_experiment' , dataset.colname.lifestage = 'LifeStage' , dataset.colname.weight = 'weight' , dataset.values.missingValue = c(' ','') , dataset.values.male = NULL , dataset.values.female = NULL , dataset.values.early = NULL , dataset.values.late = NULL , debug = TRUE )
OpenStatsList( dataset , testGenotype = 'experimental' , refGenotype = 'control' , hemiGenotype = NULL , clean.dataset = TRUE , dataset.colname.genotype = 'biological_sample_group' , dataset.colname.sex = 'sex' , dataset.colname.batch = 'date_of_experiment' , dataset.colname.lifestage = 'LifeStage' , dataset.colname.weight = 'weight' , dataset.values.missingValue = c(' ','') , dataset.values.male = NULL , dataset.values.female = NULL , dataset.values.early = NULL , dataset.values.late = NULL , debug = TRUE )
dataset |
mandatory argument. data frame created from file or from another source. See notes for more details |
testGenotype |
mandatory argument. Defines the test genotype to be compared to the reference genotype. Default 'experimental' |
refGenotype |
defines the reference genotype; assigned default value is 'control' |
hemiGenotype |
optional argument. defines the genotype value for hemizygous that will be changed to test genotype value |
clean.dataset |
logical flag. 'TRUE' activates all checks and modification on the input data. The overview of the checks is, existence of the variables, checking levels, missings and relabeling |
dataset.colname.genotype |
mandatory argument. Column name within dataset for the genotype. Default 'biological_sample_group' |
dataset.colname.sex |
optional argument. column name within dataset for the sex. Default 'sex' |
dataset.colname.batch |
optional argument. column name within dataset for the batch effect. Default 'date_of_experiment' |
dataset.colname.lifestage |
optional argument. column name within dataset for the life stage. Default 'LifeStage' |
dataset.colname.weight |
optional argument. column name within dataset for the body weight. Default 'weight' |
dataset.values.missingValue |
value used as missing value in the dataset. Default '(space)'. |
dataset.values.male |
value used to label "males" in the dataset |
dataset.values.female |
value used to label "females" in the dataset |
dataset.values.early |
value used to label "early life stage" in the dataset |
dataset.values.late |
value used to label "late life stage" in the dataset |
debug |
A logical flag. Set to TRUE to see more details about the progress of the function. Default TRUE |
an instance of the OpenStatsList class. The S4 object contains:
1. raw data: 'OpenStatsListObject@datasetUNF'
2. polished 'data: OpenStatsListObject@datasetPL'
3. the inputarguments to the 'OpenStatsList' function
OpenStats allows a 'data.frame' for the input data. This data.frame can be formed from csv, tsv, txt etc. files and is organised with rows and columns for samples and features respectively. This allows a wide range of integration with other Bioconductor/CRAN packages, for instance, the output of Bioconductor 'SummarizedExperiment' package can be transformed and fed into OpenStats (note that SummarizedExperiment allows sample in columns and feature in rows that requires at least a transpose operation). Additionally, Bioconductor 'PhenStat' function 'PhenList' produces very similar results to 'OpenStatsList' that allows direct processing of the 'PhenList' object by downstream OpenStats operational functions.
Hamed Haseli Mashhadi <[email protected]>
OpenStatsAnalysis
,plot.OpenStatsList
,summary.OpenStatsList
, summary.OpenStatsList
,
#################################################################### df <- read.csv(system.file("extdata", "test_continuous.csv", package = "OpenStats")) #################################################################### # OpenStatsList object #################################################################### OpenStatsList <- OpenStatsList( dataset = df, testGenotype = "experimental", refGenotype = "control", dataset.colname.batch = "date_of_experiment", dataset.colname.genotype = "biological_sample_group", dataset.colname.sex = "sex", dataset.colname.weight = "weight" ) p <- plot(OpenStatsList, vars = c( "Genotype", "Sex", "data_point", "age_in_days" ) ) p$Continuous p$Categorical summary(OpenStatsList, style = "grid") class(OpenStatsList) rm(OpenStatsList)
#################################################################### df <- read.csv(system.file("extdata", "test_continuous.csv", package = "OpenStats")) #################################################################### # OpenStatsList object #################################################################### OpenStatsList <- OpenStatsList( dataset = df, testGenotype = "experimental", refGenotype = "control", dataset.colname.batch = "date_of_experiment", dataset.colname.genotype = "biological_sample_group", dataset.colname.sex = "sex", dataset.colname.weight = "weight" ) p <- plot(OpenStatsList, vars = c( "Genotype", "Sex", "data_point", "age_in_days" ) ) p$Continuous p$Categorical summary(OpenStatsList, style = "grid") class(OpenStatsList) rm(OpenStatsList)
Specifying the age in days, this function creates a 'OpenStatsList' object from a 'PhenList' object from Bioconductor PhenStat package.
OpenStatsListBuilder( PhenListobject, DOE = NULL, DOB = NULL, d.threshold = 16 * 7, debug = TRUE )
OpenStatsListBuilder( PhenListobject, DOE = NULL, DOB = NULL, d.threshold = 16 * 7, debug = TRUE )
PhenListobject |
Mandatory argument. Instance of the 'PhenList' object from PhenStat package |
DOE |
Name of the data column for the 'Batch' in the 'PhenList' object. If left NULL then the input 'PhenList' object will be returned. Default NULL |
DOB |
Name of the data column for the 'date_of_birth' in the 'PhenList' object. If left NULL then the input 'PhenList' object will be returned. Default NULL |
d.threshold |
The threshold in age (DOE-DOB) to specify LifeStage early/late levels. The function uses as.Date(DOE)-as.Date(DOB) to calculate the age. The default is 16 weeks (16*7 days) |
debug |
Logical flag. Set to TRUE to see debug messages. Default TRUE |
Provided DOE and DOB are not NULL, a 'OpenStatsList' object that is quite similar to 'PhenList' object with an extra column called 'LifeStage' with two levels 'Early' and 'Late'. Otherwise, the output is similar to the input 'PhenList' object.
Hamed Haseli Mashhadi <[email protected]>
OpenStatsAnalysis
, OpenStatsList
## Not run: library(PhenStat) file <- system.file("extdata", "test_continuous.csv", package = "OpenStats") #################################################################### # PhenListObject from PhenStat package # The R package PhenStats must be installed in prior #################################################################### PhenListObject <- PhenList( dataset = read.csv(file), testGenotype = "experimental", refGenotype = "control", dataset.colname.batch = "date_of_experiment", dataset.colname.genotype = "biological_sample_group", dataset.colname.sex = "sex", dataset.colname.weight = "weight" ) #################################################################### # OpenStatsList object #################################################################### OpenStatsListBuilder <- OpenStats:::OpenStatsListBuilder( PhenListobject = PhenListObject, DOE = "Batch", DOB = "Birth.Date", d.threshold = 99 ) plot(OpenStatsListBuilder) class(OpenStatsListBuilder) rm(OpenStatsListBuilder) ## End(Not run)
## Not run: library(PhenStat) file <- system.file("extdata", "test_continuous.csv", package = "OpenStats") #################################################################### # PhenListObject from PhenStat package # The R package PhenStats must be installed in prior #################################################################### PhenListObject <- PhenList( dataset = read.csv(file), testGenotype = "experimental", refGenotype = "control", dataset.colname.batch = "date_of_experiment", dataset.colname.genotype = "biological_sample_group", dataset.colname.sex = "sex", dataset.colname.weight = "weight" ) #################################################################### # OpenStatsList object #################################################################### OpenStatsListBuilder <- OpenStats:::OpenStatsListBuilder( PhenListobject = PhenListObject, DOE = "Batch", DOB = "Birth.Date", d.threshold = 99 ) plot(OpenStatsListBuilder) class(OpenStatsListBuilder) rm(OpenStatsListBuilder) ## End(Not run)
Wrapper for the output of 'OpenStatsAnalysis'. Returns model fitting and results in a list or JSON format (StatPacket).
OpenStatsReport( object , othercolumns = NULL , JSON = FALSE , RemoveNullKeys = FALSE , ReportNullSchema = FALSE , ... )
OpenStatsReport( object , othercolumns = NULL , JSON = FALSE , RemoveNullKeys = FALSE , ReportNullSchema = FALSE , ... )
object |
'Mandatory argument'. An instance of the OpenStatsAnalysis result object |
othercolumns |
A list of column names that must be included in the results. Default NULL |
JSON |
Logical flag. Setting to TRUE for the JSON (StatPacket) output otherwise, the function returns a list |
RemoveNullKeys |
Logical flag. Setting to TRUE will remove all NULL elements from the output. Default is FALSE |
ReportNullSchema |
logical flag. Setting to TRUE forces the function to return results even if the OpenStatsAnalysis returns a failure message |
... |
Other parameters that can be passed to 'toJSON()' function in the "jsonlite" library |
OpenStatsReport function can be used to extract the key elements of the analysis from the OpenStatsMM/FE/RR objects (the output from OpenStatsAnalysis function). The output from OpenStatsReport has schemed that makes it easy to be populated to the downstream processes such as storing and accessing results from a database.
A list of values or a JSON object depends on the "JSON" parameter
Hamed Haseli Mashhadi <[email protected]>
example(OpenStatsAnalysis)
example(OpenStatsAnalysis)
This function visualises an 'OpenStatsComplementarySplit' object
## S3 method for class 'OpenStatsComplementarySplit' plot(x, main = "Final Model", ask = FALSE, mfrow = c(2, 2), ...)
## S3 method for class 'OpenStatsComplementarySplit' plot(x, main = "Final Model", ask = FALSE, mfrow = c(2, 2), ...)
x |
an instance of 'OpenStatsComplementarySplit' result |
main |
a string to be pasted to the title of the plots |
ask |
see 'ask' in 'par()' function. Default FALSE |
mfrow |
the screen partition. see 'mfrow' argument in the 'par' function. Default c(2,2) then all plots display in one screen. |
... |
other parameters that can be passed to the 'plot' function |
The plot function creates some visualisations for the split results from the linear mixed model framework. Each level of partitioning variables (see 'variables' in the 'OpenStatsComplementarySplit' function manual) produces a set of plots listed below:
- Residual versus fitted values
- Residual density plot and the normality test p-value
- Residual Q-Q plot
- The density plot of the response variable and the normality test p-value
Not applicable
Hamed Haseli Mashhadi <[email protected]>
OpenStatsComplementarySplit
, print.OpenStatsComplementarySplit
, summary.OpenStatsComplementarySplit
example(OpenStatsComplementarySplit)
example(OpenStatsComplementarySplit)
This function visualises an 'OpenStatsFE' object
## S3 method for class 'OpenStatsFE' plot(x, main = "Mosaic plot", ask = FALSE, mfrow = c(2, 2), ...)
## S3 method for class 'OpenStatsFE' plot(x, main = "Mosaic plot", ask = FALSE, mfrow = c(2, 2), ...)
x |
an instance of ‘OpenStatsFE' result from OpenStatsAnalysis(method = ’FE') function |
main |
a string to be pasted to the title of the plots |
ask |
see 'ask' in 'par()' function. Default FALSE |
mfrow |
the screen partition. see 'mfrow' argument in the 'par' function. Default c(2,2) then all plots display in one screen. |
... |
other parameters that can be passed to the 'plot' function |
The plot function creates some visualisations for the Fisher's exact test framework:
- Mosaic plot of the response versus Genotype/Sex/LifeStage (if they exist in the data
- Mosaic plot of the Sex versus Genotype (if they exist in the data)
Not applicable
Hamed Haseli Mashhadi <[email protected]>
OpenStatsAnalysis
, plot.OpenStatsRR
, plot.OpenStatsMM
#################################################################### # Data preparation #################################################################### ################# # Categorical data - Creating OpenStatsList object ################# fileCat <- system.file("extdata", "test_categorical.csv", package = "OpenStats") test_Cat <- OpenStatsList( dataset = read.csv(fileCat, na.strings = "-"), testGenotype = "Aff3/Aff3", refGenotype = "+/+", dataset.colname.genotype = "Genotype", dataset.colname.batch = "Assay.Date", dataset.colname.lifestage = NULL, dataset.colname.weight = "Weight", dataset.colname.sex = "Sex" ) ################# # Fisher's exact test framework ################# FE_result <- OpenStatsAnalysis( OpenStatsList = test_Cat, method = "FE", FE_formula = Thoracic.Processes ~ Genotype + Sex ) plot(FE_result, col = 1:2)
#################################################################### # Data preparation #################################################################### ################# # Categorical data - Creating OpenStatsList object ################# fileCat <- system.file("extdata", "test_categorical.csv", package = "OpenStats") test_Cat <- OpenStatsList( dataset = read.csv(fileCat, na.strings = "-"), testGenotype = "Aff3/Aff3", refGenotype = "+/+", dataset.colname.genotype = "Genotype", dataset.colname.batch = "Assay.Date", dataset.colname.lifestage = NULL, dataset.colname.weight = "Weight", dataset.colname.sex = "Sex" ) ################# # Fisher's exact test framework ################# FE_result <- OpenStatsAnalysis( OpenStatsList = test_Cat, method = "FE", FE_formula = Thoracic.Processes ~ Genotype + Sex ) plot(FE_result, col = 1:2)
This function visualises an 'OpenStatsList' object
## S3 method for class 'OpenStatsList' plot(x, vars = NULL, ...)
## S3 method for class 'OpenStatsList' plot(x, vars = NULL, ...)
x |
OpenStatsList object |
vars |
Variable(s) of interest. The default is 'Batch', 'Genotype', 'Sex and 'LifeStage' if exists in the data |
... |
Optional parameters that can be passed to 'Hmisc::plot.describe()' |
The plot function produces two sets of plots for:
- categorical data: scatter plot of proportions
- continuous data: histogram
List of two plot objects, Continuous and Categorical
Hamed Haseli Mashhadi <[email protected]>
example(OpenStatsList)
example(OpenStatsList)
This function visualises an 'OpenStatsMM' object
## S3 method for class 'OpenStatsMM' plot(x, main = "Final Model", ask = FALSE, mfrow = c(2, 2), ...)
## S3 method for class 'OpenStatsMM' plot(x, main = "Final Model", ask = FALSE, mfrow = c(2, 2), ...)
x |
an instance of ‘OpenStatsMM' result from OpenStatsAnalysis(method = ’MM') function |
main |
a string to be pasted to the title of the plots |
ask |
see 'ask' in 'par()' function. Default FALSE |
mfrow |
the screen partition. see 'mfrow' argument in the 'par' function. Default c(2,2) then all plots display in one screen. |
... |
other parameters that can be passed to the 'plot' function |
The plot function creates some visualisations for the linear mixed model framework:
- Residual versus fitted values
- Residual density plot and the normality test p-value
- Residual Q-Q plot
- The density plot of the response variable and the normality test p-value
Not applicable
Hamed Haseli Mashhadi <[email protected]>
OpenStatsAnalysis
, plot.OpenStatsFE
, plot.OpenStatsRR
#################################################################### # Data preparation #################################################################### ################# # Continuous data - Creating OpenStatsList object ################# fileCon <- system.file("extdata", "test_continuous.csv", package = "OpenStats") test_Cont <- OpenStatsList( dataset = read.csv(fileCon), testGenotype = "experimental", refGenotype = "control", dataset.colname.genotype = "biological_sample_group", dataset.colname.batch = "date_of_experiment", dataset.colname.lifestage = NULL, dataset.colname.weight = "weight", dataset.colname.sex = "sex" ) ################# # Optimised Linear Mixed model (MM) framework ################# MM1_result <- OpenStatsAnalysis( OpenStatsList = test_Cont, method = "MM", MM_fixed = data_point ~ Genotype + Weight ) print(MM1_result, col = 2, main = "Optimised model")
#################################################################### # Data preparation #################################################################### ################# # Continuous data - Creating OpenStatsList object ################# fileCon <- system.file("extdata", "test_continuous.csv", package = "OpenStats") test_Cont <- OpenStatsList( dataset = read.csv(fileCon), testGenotype = "experimental", refGenotype = "control", dataset.colname.genotype = "biological_sample_group", dataset.colname.batch = "date_of_experiment", dataset.colname.lifestage = NULL, dataset.colname.weight = "weight", dataset.colname.sex = "sex" ) ################# # Optimised Linear Mixed model (MM) framework ################# MM1_result <- OpenStatsAnalysis( OpenStatsList = test_Cont, method = "MM", MM_fixed = data_point ~ Genotype + Weight ) print(MM1_result, col = 2, main = "Optimised model")
This function visualises an 'OpenStatsRR' object
## S3 method for class 'OpenStatsRR' plot(x, main = "Mosaic plot", ask = FALSE, mfrow = c(2, 2), ...)
## S3 method for class 'OpenStatsRR' plot(x, main = "Mosaic plot", ask = FALSE, mfrow = c(2, 2), ...)
x |
an instance of ‘OpenStatsRR' result from OpenStatsAnalysis(method = ’RR') function |
main |
a string to be pasted to the title of the plots |
ask |
see 'ask' in 'par()' function. Default FALSE |
mfrow |
the screen partition. see 'mfrow' argument in the 'par' function. Default c(2,2) then all plots display in one screen. |
... |
other parameters that can be passed to the 'plot' function |
The plot function creates some visualisations for the reference range plus framework
- Mosaic plot of the discretised response versus Genotype/Sex/LifeStage (if they exist in the data
- Mosaic plot of the Sex versus Genotype (if they exist in the data)
Not applicable
Hamed Haseli Mashhadi <[email protected]>
OpenStatsAnalysis
, plot.OpenStatsFE
, plot.OpenStatsMM
#################################################################### # Data preparation #################################################################### ################# # Continuous data - Creating OpenStatsList object ################# fileCon <- system.file("extdata", "test_continuous.csv", package = "OpenStats") test_Cont <- OpenStatsList( dataset = read.csv(fileCon), testGenotype = "experimental", refGenotype = "control", dataset.colname.genotype = "biological_sample_group", dataset.colname.batch = "date_of_experiment", dataset.colname.lifestage = NULL, dataset.colname.weight = "weight", dataset.colname.sex = "sex" ) ################# # Reference range framework ################# RR_result <- OpenStatsAnalysis( OpenStatsList = test_Cont, method = "RR", RR_formula = data_point ~ Genotype + Sex ) plot(RR_result, col = 3:4)
#################################################################### # Data preparation #################################################################### ################# # Continuous data - Creating OpenStatsList object ################# fileCon <- system.file("extdata", "test_continuous.csv", package = "OpenStats") test_Cont <- OpenStatsList( dataset = read.csv(fileCon), testGenotype = "experimental", refGenotype = "control", dataset.colname.genotype = "biological_sample_group", dataset.colname.batch = "date_of_experiment", dataset.colname.lifestage = NULL, dataset.colname.weight = "weight", dataset.colname.sex = "sex" ) ################# # Reference range framework ################# RR_result <- OpenStatsAnalysis( OpenStatsList = test_Cont, method = "RR", RR_formula = data_point ~ Genotype + Sex ) plot(RR_result, col = 3:4)
This function displays a summary table for an 'OpenStatsComplementarySplit' object
## S3 method for class 'OpenStatsComplementarySplit' print(x, format = "rst", ...)
## S3 method for class 'OpenStatsComplementarySplit' print(x, format = "rst", ...)
x |
an instance of 'OpenStatsComplementarySplit' result |
format |
See format argument from the knitr::kable function |
... |
Other parameters that can be passed to knitr::kable function |
The output consists of the following statistics for levels of partitioning variables (see 'variables' in the 'OpenStatsComplementarySplit' function manual):
- Applied model
- Checked/optimised model
- Treatment group
- Control group
- If possible, whether sexual dimorphism is detected from the analysis
- Genotype effect p-value
- Genotype effect p-value for females
- Genotype effect p-value for males
- If LifeStage existed in the data, LifeStage p-value
- Genotype effect for early adults
- Genotype effect for late adults
- If Sex existed in the data, Sex p-value
- If bodyweight existed in the data, bodyweight p-value
Hamed Haseli Mashhadi <[email protected]>
OpenStatsComplementarySplit
, OpenStatsAnalysis
, plot.OpenStatsComplementarySplit
, print.OpenStatsComplementarySplit
example(OpenStatsComplementarySplit)
example(OpenStatsComplementarySplit)
This function prints summary table for an OpenStatsFE object
## S3 method for class 'OpenStatsFE' print(x, format = "rst", ...)
## S3 method for class 'OpenStatsFE' print(x, format = "rst", ...)
x |
an instance of OpenStatsFE result from OpenStatsAnalysis(method = 'FE') function |
format |
See format argument from the knitr::kable function |
... |
Other parameters that can be passed to knitr::kable function |
The output consists of the following statistics:
- Applied model
- Checked/optimised model
- Treatment group
- Control group
- If possible, whether sexual dimorphism is detected from the analysis
- Genotype effect p-value
- Genotype effect p-value for females
- Genotype effect p-value for males
- If LifeStage existed in the data, LifeStage p-value
- Genotype effect for early adults
- Genotype effect for late adults
- If Sex existed in the data, Sex p-value
- If bodyweight existed in the data, bodyweight p-value
Hamed Haseli Mashhadi <[email protected]>
OpenStatsAnalysis
, print.OpenStatsMM
, print.OpenStatsRR
#################################################################### # Data preparation #################################################################### ################# # Categorical data - Creating OpenStatsList object ################# fileCat <- system.file("extdata", "test_categorical.csv", package = "OpenStats") test_Cat <- OpenStatsList( dataset = read.csv(fileCat, na.strings = "-"), testGenotype = "Aff3/Aff3", refGenotype = "+/+", dataset.colname.genotype = "Genotype", dataset.colname.batch = "Assay.Date", dataset.colname.lifestage = NULL, dataset.colname.weight = "Weight", dataset.colname.sex = "Sex" ) ################# # Fisher's exact test framework ################# FE_result <- OpenStatsAnalysis( OpenStatsList = test_Cat, method = "FE", FE_formula = Thoracic.Processes ~ Genotype + Sex ) print(FE_result)
#################################################################### # Data preparation #################################################################### ################# # Categorical data - Creating OpenStatsList object ################# fileCat <- system.file("extdata", "test_categorical.csv", package = "OpenStats") test_Cat <- OpenStatsList( dataset = read.csv(fileCat, na.strings = "-"), testGenotype = "Aff3/Aff3", refGenotype = "+/+", dataset.colname.genotype = "Genotype", dataset.colname.batch = "Assay.Date", dataset.colname.lifestage = NULL, dataset.colname.weight = "Weight", dataset.colname.sex = "Sex" ) ################# # Fisher's exact test framework ################# FE_result <- OpenStatsAnalysis( OpenStatsList = test_Cat, method = "FE", FE_formula = Thoracic.Processes ~ Genotype + Sex ) print(FE_result)
This function prints a summary table for an OpenStatsList object
## S3 method for class 'OpenStatsList' print(x, vars = NULL, ...)
## S3 method for class 'OpenStatsList' print(x, vars = NULL, ...)
x |
OpenStatsList object |
vars |
Variable(s) of interest |
... |
Optional parameters that can be passed to 'summarytools::dfSummary ()' |
Tabe of summary statistics
Hamed Haseli Mashhadi <[email protected]>
OpenStatsList
, summary.OpenStatsList
, OpenStatsAnalysis
example(OpenStatsList)
example(OpenStatsList)
This function prints summary table for an OpenStatsMM object
## S3 method for class 'OpenStatsMM' print(x, format = "rst", ...)
## S3 method for class 'OpenStatsMM' print(x, format = "rst", ...)
x |
an instance of OpenStatsMM result from OpenStatsAnalysis(method = 'MM') function |
format |
See format argument from the knitr::kable function |
... |
Other parameters that can be passed to knitr::kable function |
The output consists of the following statistics:
- Applied model
- Checked/optimised model
- Treatment group
- Control group
- If possible, whether sexual dimorphism is detected from the analysis
- Genotype effect p-value
- Genotype effect p-value for females
- Genotype effect p-value for males
- If LifeStage existed in the data, LifeStage p-value
- Genotype effect for early adults
- Genotype effect for late adults
- If Sex existed in the data, Sex p-value
- If bodyweight existed in the data, bodyweight p-value
Hamed Haseli Mashhadi <[email protected]>
OpenStatsAnalysis
, print.OpenStatsFE
, print.OpenStatsRR
#################################################################### # Data preparation #################################################################### ################# # Continuous data - Creating OpenStatsList object ################# fileCon <- system.file("extdata", "test_continuous.csv", package = "OpenStats") test_Cont <- OpenStatsList( dataset = read.csv(fileCon), testGenotype = "experimental", refGenotype = "control", dataset.colname.genotype = "biological_sample_group", dataset.colname.batch = "date_of_experiment", dataset.colname.lifestage = NULL, dataset.colname.weight = "weight", dataset.colname.sex = "sex" ) ################# # Optimised Linear Mixed model (MM) framework ################# MM1_result <- OpenStatsAnalysis( OpenStatsList = test_Cont, method = "MM", MM_fixed = data_point ~ Genotype + Weight ) print(MM1_result)
#################################################################### # Data preparation #################################################################### ################# # Continuous data - Creating OpenStatsList object ################# fileCon <- system.file("extdata", "test_continuous.csv", package = "OpenStats") test_Cont <- OpenStatsList( dataset = read.csv(fileCon), testGenotype = "experimental", refGenotype = "control", dataset.colname.genotype = "biological_sample_group", dataset.colname.batch = "date_of_experiment", dataset.colname.lifestage = NULL, dataset.colname.weight = "weight", dataset.colname.sex = "sex" ) ################# # Optimised Linear Mixed model (MM) framework ################# MM1_result <- OpenStatsAnalysis( OpenStatsList = test_Cont, method = "MM", MM_fixed = data_point ~ Genotype + Weight ) print(MM1_result)
This function prints summary table for an OpenStatsRR object
## S3 method for class 'OpenStatsRR' print(x, format = "rst", ...)
## S3 method for class 'OpenStatsRR' print(x, format = "rst", ...)
x |
an instance of OpenStatsRR result from OpenStatsAnalysis(method = 'RR') function |
format |
See format argument from the knitr::kable function |
... |
Other parameters that can be passed to knitr::kable function |
The output consists of a pair of values separated by comma, e.g. 1,1, for low and high classes respectively. The following statistics are reported in the summary:
- Applied model
- Checked/optimised model
- Treatment group
- Control group
- If possible, whether sexual dimorphism is detected from the analysis
- Genotype effect p-value
- Genotype effect p-value for females
- Genotype effect p-value for males
- If LifeStage existed in the data, LifeStage p-value
- Genotype effect for early adults
- Genotype effect for late adults
- If Sex existed in the data, Sex p-value
- If bodyweight existed in the data, bodyweight p-value
Hamed Haseli Mashhadi <[email protected]>
OpenStatsAnalysis
,, print.OpenStatsFE
, print.OpenStatsMM
#################################################################### # Data preparation #################################################################### ################# # Continuous data - Creating OpenStatsList object ################# fileCon <- system.file("extdata", "test_continuous.csv", package = "OpenStats") test_Cont <- OpenStatsList( dataset = read.csv(fileCon), testGenotype = "experimental", refGenotype = "control", dataset.colname.genotype = "biological_sample_group", dataset.colname.batch = "date_of_experiment", dataset.colname.lifestage = NULL, dataset.colname.weight = "weight", dataset.colname.sex = "sex" ) ################# # Reference range framework ################# RR_result <- OpenStatsAnalysis( OpenStatsList = test_Cont, method = "RR", RR_formula = data_point ~ Genotype + Sex ) print(RR_result)
#################################################################### # Data preparation #################################################################### ################# # Continuous data - Creating OpenStatsList object ################# fileCon <- system.file("extdata", "test_continuous.csv", package = "OpenStats") test_Cont <- OpenStatsList( dataset = read.csv(fileCon), testGenotype = "experimental", refGenotype = "control", dataset.colname.genotype = "biological_sample_group", dataset.colname.batch = "date_of_experiment", dataset.colname.lifestage = NULL, dataset.colname.weight = "weight", dataset.colname.sex = "sex" ) ################# # Reference range framework ################# RR_result <- OpenStatsAnalysis( OpenStatsList = test_Cont, method = "RR", RR_formula = data_point ~ Genotype + Sex ) print(RR_result)
This function provides summary for an 'OpenStatsComplementarySplit' object
## S3 method for class 'OpenStatsComplementarySplit' summary(object, format = "rst", ...)
## S3 method for class 'OpenStatsComplementarySplit' summary(object, format = "rst", ...)
object |
an instance of 'OpenStatsComplementarySplit' result |
format |
See format argument from the knitr::kable function |
... |
Other parameters that can be passed to knitr::kable function |
The output consists of the following statistics for levels of partitioning variables (see 'variables' in the 'OpenStatsComplementarySplit' function manual):
- Applied model
- Checked/optimised model
- Treatment group
- Control group
- If possible, whether sexual dimorphism is detected from the analysis
- Genotype effect p-value
- Genotype effect p-value for females
- Genotype effect p-value for males
- If LifeStage existed in the data, LifeStage p-value
- Genotype effect for early adults
- Genotype effect for late adults
- If Sex existed in the data, Sex p-value
- If bodyweight existed in the data, bodyweight p-value
Hamed Haseli Mashhadi <[email protected]>
OpenStatsComplementarySplit
, plot.OpenStatsComplementarySplit
, print.OpenStatsComplementarySplit
, OpenStatsAnalysis
example(OpenStatsComplementarySplit)
example(OpenStatsComplementarySplit)
This function provides summary for an OpenStatsFE object
## S3 method for class 'OpenStatsFE' summary(object, format = "rst", ...)
## S3 method for class 'OpenStatsFE' summary(object, format = "rst", ...)
object |
an instance of OpenStatsFE result from OpenStatsAnalysis(method = 'FE') function |
format |
See format argument from the knitr::kable function |
... |
Other parameters that can be passed to knitr::kable function |
The output consists of the following statistics:
- Applied model
- Checked/optimised model
- Treatment group
- Control group
- If possible, whether sexual dimorphism is detected from the analysis
- Genotype effect p-value
- Genotype effect p-value for females
- Genotype effect p-value for males
- If LifeStage existed in the data, LifeStage p-value
- Genotype effect for early adults
- Genotype effect for late adults
- If Sex existed in the data, Sex p-value
- If bodyweight existed in the data, bodyweight p-value
Hamed Haseli Mashhadi <[email protected]>
OpenStatsAnalysis
, summary.OpenStatsMM
, summary.OpenStatsRR
#################################################################### # Data preparation #################################################################### ################# # Categorical data - Creating OpenStatsList object ################# fileCat <- system.file("extdata", "test_categorical.csv", package = "OpenStats") test_Cat <- OpenStatsList( dataset = read.csv(fileCat, na.strings = "-"), testGenotype = "Aff3/Aff3", refGenotype = "+/+", dataset.colname.genotype = "Genotype", dataset.colname.batch = "Assay.Date", dataset.colname.lifestage = NULL, dataset.colname.weight = "Weight", dataset.colname.sex = "Sex" ) ################# # Fisher's exact test framework ################# FE_result <- OpenStatsAnalysis( OpenStatsList = test_Cat, method = "FE", FE_formula = Thoracic.Processes ~ Genotype + Sex ) summary(FE_result)
#################################################################### # Data preparation #################################################################### ################# # Categorical data - Creating OpenStatsList object ################# fileCat <- system.file("extdata", "test_categorical.csv", package = "OpenStats") test_Cat <- OpenStatsList( dataset = read.csv(fileCat, na.strings = "-"), testGenotype = "Aff3/Aff3", refGenotype = "+/+", dataset.colname.genotype = "Genotype", dataset.colname.batch = "Assay.Date", dataset.colname.lifestage = NULL, dataset.colname.weight = "Weight", dataset.colname.sex = "Sex" ) ################# # Fisher's exact test framework ################# FE_result <- OpenStatsAnalysis( OpenStatsList = test_Cat, method = "FE", FE_formula = Thoracic.Processes ~ Genotype + Sex ) summary(FE_result)
This function provides a detailed summary of an OpenStatsList object
## S3 method for class 'OpenStatsList' summary(object, vars = NULL, ...)
## S3 method for class 'OpenStatsList' summary(object, vars = NULL, ...)
object |
OpenStatsList object |
vars |
Variable(s) of interest |
... |
Optional parameters that can be passed to 'summarytools::dfSummary ()' |
Tabe of summary statistics
Hamed Haseli Mashhadi <[email protected]>
OpenStatsList
, summary.OpenStatsList
example(OpenStatsList)
example(OpenStatsList)
This function provides summary for an OpenStatsMM object
## S3 method for class 'OpenStatsMM' summary(object, format = "rst", ...)
## S3 method for class 'OpenStatsMM' summary(object, format = "rst", ...)
object |
an instance of OpenStatsMM result from OpenStatsAnalysis(method = 'MM') function |
format |
See format argument from the knitr::kable function |
... |
Other parameters that can be passed to knitr::kable function |
The output consists of the following statistics:
- Applied model
- Checked/optimised model
- Treatment group
- Control group
- If possible, whether sexual dimorphism is detected from the analysis
- Genotype effect p-value
- Genotype effect p-value for females
- Genotype effect p-value for males
- If LifeStage existed in the data, LifeStage p-value
- Genotype effect for early adults
- Genotype effect for late adults
- If Sex existed in the data, Sex p-value
- If bodyweight existed in the data, bodyweight p-value
Hamed Haseli Mashhadi <[email protected]>
OpenStatsAnalysis
, summary.OpenStatsFE
, summary.OpenStatsRR
#################################################################### # Data preparation #################################################################### ################# # Continuous data - Creating OpenStatsList object ################# fileCon <- system.file("extdata", "test_continuous.csv", package = "OpenStats") test_Cont <- OpenStatsList( dataset = read.csv(fileCon), testGenotype = "experimental", refGenotype = "control", dataset.colname.genotype = "biological_sample_group", dataset.colname.batch = "date_of_experiment", dataset.colname.lifestage = NULL, dataset.colname.weight = "weight", dataset.colname.sex = "sex" ) ################# # Optimised Linear Mixed model (MM) framework ################# MM1_result <- OpenStatsAnalysis( OpenStatsList = test_Cont, method = "MM", MM_fixed = data_point ~ Genotype + Weight ) summary(MM1_result)
#################################################################### # Data preparation #################################################################### ################# # Continuous data - Creating OpenStatsList object ################# fileCon <- system.file("extdata", "test_continuous.csv", package = "OpenStats") test_Cont <- OpenStatsList( dataset = read.csv(fileCon), testGenotype = "experimental", refGenotype = "control", dataset.colname.genotype = "biological_sample_group", dataset.colname.batch = "date_of_experiment", dataset.colname.lifestage = NULL, dataset.colname.weight = "weight", dataset.colname.sex = "sex" ) ################# # Optimised Linear Mixed model (MM) framework ################# MM1_result <- OpenStatsAnalysis( OpenStatsList = test_Cont, method = "MM", MM_fixed = data_point ~ Genotype + Weight ) summary(MM1_result)
This function provides summary for an OpenStatsRR object
## S3 method for class 'OpenStatsRR' summary(object, format = "rst", ...)
## S3 method for class 'OpenStatsRR' summary(object, format = "rst", ...)
object |
an instance of OpenStatsRR result from OpenStatsAnalysis(method = 'RR') function |
format |
See format argument from the knitr::kable function |
... |
Other parameters that can be passed to knitr::kable function |
The output consists of a pair of values separated by comma, e.g. 1,1, for low and high classes respectively. The following statistics are reported in the summary:
- Applied model
- Checked/optimised model
- Treatment group
- Control group
- If possible, whether sexual dimorphism is detected from the analysis
- Genotype effect p-value
- Genotype effect p-value for females
- Genotype effect p-value for males
- If LifeStage existed in the data, LifeStage p-value
- Genotype effect for early adults
- Genotype effect for late adults
- If Sex existed in the data, Sex p-value
- If bodyweight existed in the data, bodyweight p-value
Hamed Haseli Mashhadi <[email protected]>
OpenStatsAnalysis
, summary.OpenStatsFE
, summary.OpenStatsMM
#################################################################### # Data preparation #################################################################### ################# # Continuous data - Creating OpenStatsList object ################# fileCon <- system.file("extdata", "test_continuous.csv", package = "OpenStats") test_Cont <- OpenStatsList( dataset = read.csv(fileCon), testGenotype = "experimental", refGenotype = "control", dataset.colname.genotype = "biological_sample_group", dataset.colname.batch = "date_of_experiment", dataset.colname.lifestage = NULL, dataset.colname.weight = "weight", dataset.colname.sex = "sex" ) ################# # Reference range framework ################# RR_result <- OpenStatsAnalysis( OpenStatsList = test_Cont, method = "RR", RR_formula = data_point ~ Genotype + Sex ) summary(RR_result)
#################################################################### # Data preparation #################################################################### ################# # Continuous data - Creating OpenStatsList object ################# fileCon <- system.file("extdata", "test_continuous.csv", package = "OpenStats") test_Cont <- OpenStatsList( dataset = read.csv(fileCon), testGenotype = "experimental", refGenotype = "control", dataset.colname.genotype = "biological_sample_group", dataset.colname.batch = "date_of_experiment", dataset.colname.lifestage = NULL, dataset.colname.weight = "weight", dataset.colname.sex = "sex" ) ################# # Reference range framework ################# RR_result <- OpenStatsAnalysis( OpenStatsList = test_Cont, method = "RR", RR_formula = data_point ~ Genotype + Sex ) summary(RR_result)