Package 'Omixer'

Title: Omixer: multivariate and reproducible sample randomization to proactively counter batch effects in omics studies
Description: Omixer - an Bioconductor package for multivariate and reproducible sample randomization, which ensures optimal sample distribution across batches with well-documented methods. It outputs lab-friendly sample layouts, reducing the risk of sample mixups when manually pipetting randomized samples.
Authors: Lucy Sinke [cre, aut]
Maintainer: Lucy Sinke <[email protected]>
License: MIT + file LICENSE
Version: 1.17.0
Built: 2024-11-25 06:11:50 UTC
Source: https://github.com/bioc/Omixer

Help Index


Multivariate Randomization

Description

Omixer provides functions to perform optimal randomization of sample lists prior to omic profiling. This minimizes the correlation between biological factors and technical covariates, whilst ensuring there is insufficient evidence for any of these associations.

Details

Following this multivariate randomization, Omixer can also be used to smoothly bridge the gap between dry and wet labs, by creating visually intuitive sample sheets.

With clear documentation and the possibility to reproduce any output sample list, Omixer sets the standard for transparency and reproducibility in this often vague methodological step.

Author(s)

Lucy Sinke [email protected]


Correlation Tests

Description

This function uses appropriate tests of correlation between two variables and stores the estimate and p-value in a list.

Usage

omixerCorr(x, y)

Arguments

x

Randomization variable (e.g. age)

y

Technical covariate (e.g. plate number)

Details

For two categorical variables, the Cramer's V estimate is stored alongside chi-square p-value. For all other combinations of variables, Pearson's correlation coefficient and p-value are stored.

Please note: variables will be converted to numeric class within this function.

Value

List of correlation estimate and p-value

Examples

library(tibble)
library(forcats)
library(stringr)

sampleList <- tibble(sampleId=str_pad(1:48, 4, pad="0"),
sex=as_factor(sample(c("m", "f"), 48, replace=TRUE)), 
age=round(rnorm(48, mean=30, sd=8), 0), 
smoke=as_factor(sample(c("yes", "ex", "never"), 48, replace=TRUE)),
date=sample(seq(as.Date('2008/01/01'), as.Date('2016/01/01'), 
    by="day"), 48))
                
omixerCorr(sampleList$age, sampleList$sex)

Multivariate Randomization

Description

As the main function of the Omixer package, this function outputs a randomized sample list that minimizes correlations between biological factors and technical covariates.

Usage

omixerRand(
  df,
  sampleId = "sampleId",
  block = "block",
  iterNum = 1000,
  wells,
  div = "none",
  positional = FALSE,
  plateNum = 1,
  layout,
  mask = 0,
  techVars,
  randVars
)

Arguments

df

Sample list

sampleId

String specifying sample ID variable

block

Paired sample identifier

iterNum

Number of layouts to generate

wells

Number of wells on a plate

div

Plate subdivisions

positional

Logical indicator of positional batch effects

plateNum

Number of plates

layout

Custom plate layout as data frame

mask

Wells to be left empty

techVars

Technical covariates

randVars

Randomization variables

Value

Selected randomized sample list as a data frame

Randomization environment of optimal list generation

Examples

library(tibble)
library(forcats)
library(stringr)

sampleList <- tibble(sampleId=str_pad(1:48, 4, pad="0"),
sex=as_factor(sample(c("m", "f"), 48, replace=TRUE)), 
age=round(rnorm(48, mean=30, sd=8), 0), 
smoke=as_factor(sample(c("yes", "ex", "never"), 48, replace=TRUE)),
date=sample(seq(as.Date('2008/01/01'), as.Date('2016/01/01'), 
               by="day"), 48))
               
randVars <- c("sex", "age", "smoke", "date")

omixerLayout <- omixerRand(sampleList, sampleId="sampleId", 
block="block", iterNum=10, wells=48, div="row", 
plateNum=1, randVars=randVars)

Sample Sheet Generation

Description

This function will generate visually intuitive plate layouts for the wet lab, with the option to colour code different types of samples (e.g. for studies investigating multiple tissues).

Usage

omixerSheet(omixerLayout = omixerLayout, group)

Arguments

omixerLayout

Randomized sample list

group

Colour-coding indicator

Value

PDF of sample layout in working directory

Examples

library(tibble)
library(forcats)
library(stringr)

sampleList <- tibble(sampleId=str_pad(1:48, 4, pad="0"),
sex=as_factor(sample(c("m", "f"), 48, replace=TRUE)), 
age=round(rnorm(48, mean=30, sd=8), 0), 
smoke=as_factor(sample(c("yes", "ex", "never"), 48, replace=TRUE)),
date=sample(seq(as.Date('2008/01/01'), as.Date('2016/01/01'), 
               by="day"), 48))
               
randVars <- c("sex", "age", "smoke", "date")

omixerLayout <- omixerRand(sampleList, sampleId="sampleId", 
block="block", iterNum=10, wells=48, div="row", 
plateNum=1, randVars=randVars)

omixerSheet(omixerLayout)

Sample List Regeneration

Description

Regenerate an Omixer-produced randomized sample list quickly, after setting up the random environement from omixerRand

Usage

omixerSpecific(
  df,
  sampleId = "sampleId",
  block = "block",
  wells,
  div = "none",
  positional = FALSE,
  plateNum = 1,
  layout,
  mask = 0,
  techVars,
  randVars
)

Arguments

df

Sample list

sampleId

String specifying sample ID variable

block

Paired sample identifier

wells

Number of wells on a plate

div

Plate subdivisions

positional

Logical indicator of positional batch effects

plateNum

Number of plates

layout

Custom plate layout as data frame

mask

Wells to be left empty

techVars

Technical covariates

randVars

Randomization variables

Value

Chosen layout as a data frame

Examples

library(tibble)
library(forcats)
library(stringr)

sampleList <- tibble(sampleId=str_pad(1:48, 4, pad="0"),
sex=as_factor(sample(c("m", "f"), 48, replace=TRUE)), 
age=round(rnorm(48, mean=30, sd=8), 0), 
smoke=as_factor(sample(c("yes", "ex", "never"), 48, replace=TRUE)),
date=sample(seq(as.Date('2008/01/01'), as.Date('2016/01/01'), 
               by="day"), 48))
               
randVars <- c("sex", "age", "smoke", "date")

omixerLayout <- omixerSpecific(sampleList, sampleId="sampleId", 
block="block", wells=48, div="row", 
plateNum=1, randVars=randVars)