Package 'Nebulosa'

Title: Single-Cell Data Visualisation Using Kernel Gene-Weighted Density Estimation
Description: This package provides a enhanced visualization of single-cell data based on gene-weighted density estimation. Nebulosa recovers the signal from dropped-out features and allows the inspection of the joint expression from multiple features (e.g. genes). Seurat and SingleCellExperiment objects can be used within Nebulosa.
Authors: Jose Alquicira-Hernandez [aut, cre]
Maintainer: Jose Alquicira-Hernandez <[email protected]>
License: GPL-3
Version: 1.17.0
Built: 2024-10-30 08:32:19 UTC
Source: https://github.com/bioc/Nebulosa

Help Index


Estimate weighted kernel density

Description

Estimate weighted kernel density

Usage

calculate_density(w, x, method, adjust = 1, map = TRUE)

Arguments

w

Vector with weights for each observation

x

Matrix with dimensions where to calculate the density from. Only the first two dimensions will be used

method

Kernel density estimation method:

  • ks: Computes density using the kde function from the ks package.

  • wkde: Computes density using a modified version of the kde2d function from the MASS package to allow weights. Bandwidth selection from the ks package is used instead.

adjust

Numeric value to adjust to bandwidth. Default: 1. Not available for ks method

map

Whether to map densities to individual observations

Value

If map is TRUE, a vector with corresponding densities for each observation is returned. Otherwise, a list with the density estimates from the selected method is returned.

Author(s)

Jose Alquicira-Hernandez

Examples

dens <- Nebulosa:::calculate_density(iris[, 3], iris[, 1:2], method = "wkde")

Plot gene-weighted 2D kernel density

Description

Plot gene-weighted 2D kernel density

Usage

plot_density(
  object,
  features,
  slot = NULL,
  joint = FALSE,
  reduction = NULL,
  dims = c(1, 2),
  method = c("ks", "wkde"),
  adjust = 1,
  size = 1,
  shape = 16,
  combine = TRUE,
  pal = "viridis",
  raster = TRUE,
  ...
)

## S4 method for signature 'Seurat'
plot_density(
  object,
  features,
  slot = NULL,
  joint = FALSE,
  reduction = NULL,
  dims = c(1, 2),
  method = c("ks", "wkde"),
  adjust = 1,
  size = 1,
  shape = 16,
  combine = TRUE,
  pal = "viridis",
  raster = TRUE,
  ...
)

## S4 method for signature 'SingleCellExperiment'
plot_density(
  object,
  features,
  slot = NULL,
  joint = FALSE,
  reduction = NULL,
  dims = c(1, 2),
  method = c("ks", "wkde"),
  adjust = 1,
  size = 1,
  shape = 16,
  combine = TRUE,
  pal = "viridis",
  raster = TRUE,
  ...
)

Arguments

object

Seurat or SingleCellExperiment object

features

Features (e.g. genes) to visualize

slot

Type of data: counts ordata for Seurat objects and counts, logcounts, or normcounts for SingleCellExperiment objects

joint

Return joint density plot? By default FALSE

reduction

Name of the reduction to visualize. If not provided, last computed reduction is visualized

dims

Vector of length 2 specifying the dimensions to be plotted. By default, the first two dimensions are considered.

method

Kernel density estimation method:

  • ks: Computes density using the kde function from the ks package.

  • wkde: Computes density using a modified version of the kde2d function from the MASS package to allow weights. Bandwidth selection from the ks package is used instead.

adjust

Numeric value to adjust to bandwidth. Default: 1. Not available for ks method

size

Size of the geom to be plotted (e.g. point size)

shape

Shape of the geom to be plotted

combine

Create a single plot? If FALSE, a list with ggplot objects is returned

pal

String specifying the viridis color palette to use.

raster

Rasterise plot

...

Further scale arguments passed to scale_color_viridis_c Options:

  • viridis

  • magma

  • cividis

  • inferno

  • plasma

Value

A scatterplot from a given reduction showing the gene-weighted density

Methods (by class)

  • plot_density(Seurat): Plot gene-weighted 2D kernel density

  • plot_density(SingleCellExperiment): Plot gene-weighted 2D kernel density

Author(s)

Jose Alquicira-Hernandez

Examples

data <- SeuratObject::pbmc_small
plot_density(data, "CD3E")

Plot density estimates

Description

Plot density estimates

Usage

plot_density_(
  z,
  feature,
  cell_embeddings,
  dim_names,
  shape,
  size,
  legend_title,
  pal = c("viridis", "magma", "cividis", "inferno", "plasma"),
  raster,
  ...
)

Arguments

z

Vector with density values for each cells

feature

Name of the feature being plotted

cell_embeddings

Matrix with cell embeddings

dim_names

Names of the dimensions from the cell embeddings

shape

Geom shape

size

Geom size

legend_title

String used as legend title

pal

String specifying the viridis color palette to use

raster

Rasterise plot

...

Further scale arguments passed to scale_color_viridis_c

Value

A ggplot object

Author(s)

Jose Alquicira-Hernandez


Weighted 2D kernel density estimation

Description

Weighted 2D kernel density estimation

Usage

wkde2d(x, y, w, h, adjust = 1, n = 100, lims = c(range(x), range(y)))

Arguments

x

Dimension 1

y

Dimension 2

w

Weight variable

h

vector of bandwidths for x and y directions. Defaults to normal reference bandwidth (ks::hpi). A scalar value will be taken to apply to both directions.

adjust

Bandwidth adjustment

n

Number of grid points in each direction. Can be scalar or a length-2 integer vector.

lims

The limits of the rectangle covered by the grid as c(xl, xu, yl, yu).

Value

A list of three components.

  • x, y The x and y coordinates of the grid points, vectors of length n.

  • z An n[1] by n[2] matrix of the weighted estimated density: rows correspond to the value of x, columns to the value of y.

Author(s)

Jose Alquicira-Hernandez

Examples

set.seed(1)
x <- rnorm(100)

set.seed(2)
y <- rnorm(100)

set.seed(3)
w <- sample(c(0, 1), 100, replace = TRUE)

dens <- Nebulosa:::wkde2d(x, y, w)