To install and load NBAMSeq
High-throughput sequencing experiments followed by differential expression analysis is a widely used approach to detect genomic biomarkers. A fundamental step in differential expression analysis is to model the association between gene counts and covariates of interest. NBAMSeq is a flexible statistical model based on the generalized additive model and allows for information sharing across genes in variance estimation. Specifically, we model the logarithm of mean gene counts as sums of smooth functions with the smoothing parameters and coefficients estimated simultaneously by a nested iteration. The variance is estimated by the Bayesian shrinkage approach to fully exploit the information across all genes.
The workflow of NBAMSeq contains three main steps:
Step 1: Data input using NBAMSeqDataSet
;
Step 2: Differential expression (DE) analysis using
NBAMSeq
function;
Step 3: Pulling out DE results using results
function.
Here we illustrate each of these steps respectively.
Users are expected to provide three parts of input,
i.e. countData
, colData
, and
design
.
countData
is a matrix of gene counts generated by RNASeq
experiments.
## An example of countData
n = 50 ## n stands for number of genes
m = 20 ## m stands for sample size
countData = matrix(rnbinom(n*m, mu=100, size=1/3), ncol = m) + 1
mode(countData) = "integer"
colnames(countData) = paste0("sample", 1:m)
rownames(countData) = paste0("gene", 1:n)
head(countData)
sample1 sample2 sample3 sample4 sample5 sample6 sample7 sample8 sample9
gene1 36 1 24 42 176 128 254 61 76
gene2 7 154 251 1 10 329 6 1 43
gene3 41 46 1 400 232 12 221 32 94
gene4 1302 138 1 7 79 129 15 23 1
gene5 1 28 1 136 1 2 1 67 1
gene6 145 1 1 6 104 177 53 98 225
sample10 sample11 sample12 sample13 sample14 sample15 sample16 sample17
gene1 11 27 191 1 97 39 1 70
gene2 1 13 2 1 11 1 1 48
gene3 140 1 37 17 3 3 17 205
gene4 101 1 8 167 13 3 41 21
gene5 1 3 2 30 16 1 14 5
gene6 22 27 13 198 444 683 164 415
sample18 sample19 sample20
gene1 258 9 44
gene2 76 7 255
gene3 8 53 3
gene4 134 31 7
gene5 8 6 114
gene6 1 5 3
colData
is a data frame which contains the covariates of
samples. The sample order in colData
should match the
sample order in countData
.
## An example of colData
pheno = runif(m, 20, 80)
var1 = rnorm(m)
var2 = rnorm(m)
var3 = rnorm(m)
var4 = as.factor(sample(c(0,1,2), m, replace = TRUE))
colData = data.frame(pheno = pheno, var1 = var1, var2 = var2,
var3 = var3, var4 = var4)
rownames(colData) = paste0("sample", 1:m)
head(colData)
pheno var1 var2 var3 var4
sample1 35.29267 -0.231470167 -1.1528658 0.05801744 0
sample2 30.05642 -0.121775976 1.8556718 -0.30875485 2
sample3 46.71960 1.131782772 -0.5696251 1.70792103 1
sample4 42.19015 -0.334950747 -1.1720077 -0.22341174 0
sample5 56.83200 -0.405029061 -1.4332656 0.10465325 0
sample6 48.75202 0.001871494 -1.7051015 -0.26506865 0
design
is a formula which specifies how to model the
samples. Compared with other packages performing DE analysis including
DESeq2 (Love, Huber, and Anders 2014),
edgeR (Robinson, McCarthy, and Smyth
2010), NBPSeq (Di et al. 2015) and
BBSeq (Zhou, Xia, and Wright 2011),
NBAMSeq supports the nonlinear model of covariates via mgcv (Wood and Wood 2015). To indicate the nonlinear
covariate in the model, users are expected to use
s(variable_name)
in the design
formula. In our
example, if we would like to model pheno
as a nonlinear
covariate, the design
formula should be:
Several notes should be made regarding the design
formula:
multiple nonlinear covariates are supported,
e.g. design = ~ s(pheno) + s(var1) + var2 + var3 + var4
;
the nonlinear covariate cannot be a discrete variable, e.g.
design = ~ s(pheno) + var1 + var2 + var3 + s(var4)
as
var4
is a factor, and it makes no sense to model a factor
as nonlinear;
at least one nonlinear covariate should be provided in
design
. If all covariates are assumed to have linear effect
on gene count, use DESeq2 (Love, Huber, and
Anders 2014), edgeR (Robinson, McCarthy,
and Smyth 2010), NBPSeq (Di et al.
2015) or BBSeq (Zhou, Xia, and Wright
2011) instead. e.g.
design = ~ pheno + var1 + var2 + var3 + var4
is not
supported in NBAMSeq;
design matrix is not supported.
We then construct the NBAMSeqDataSet
using
countData
, colData
, and
design
:
class: NBAMSeqDataSet
dim: 50 20
metadata(1): fitted
assays(1): counts
rownames(50): gene1 gene2 ... gene49 gene50
rowData names(0):
colnames(20): sample1 sample2 ... sample19 sample20
colData names(5): pheno var1 var2 var3 var4
Differential expression analysis can be performed by
NBAMSeq
function:
Several other arguments in NBAMSeq
function are
available for users to customize the analysis.
gamma
argument can be used to control the smoothness
of the nonlinear function. Higher gamma
means the nonlinear
function will be more smooth. See the gamma
argument of gam
function in mgcv (Wood and Wood 2015) for
details. Default gamma
is 2.5;
fitlin
is either TRUE
or
FALSE
indicating whether linear model should be fitted
after fitting the nonlinear model;
parallel
is either TRUE
or
FALSE
indicating whether parallel should be used. e.g. Run
NBAMSeq
with parallel = TRUE
:
Results of DE analysis can be pulled out by results
function. For continuous covariates, the name
argument
should be specified indicating the covariate of interest. For nonlinear
continuous covariates, base mean, effective degrees of freedom (edf),
test statistics, p-value, and adjusted p-value will be returned.
DataFrame with 6 rows and 7 columns
baseMean edf stat pvalue padj AIC BIC
<numeric> <numeric> <numeric> <numeric> <numeric> <numeric> <numeric>
gene1 67.8088 1.00005 0.319907 0.57169808 0.9162836 227.508 234.478
gene2 65.4074 1.00038 0.795235 0.37263536 0.8986182 200.381 207.352
gene3 67.1238 1.00007 0.878490 0.34868188 0.8986182 212.158 219.129
gene4 83.2885 1.00006 8.838854 0.00294972 0.0721591 216.026 222.996
gene5 20.1673 1.00005 1.122337 0.28943942 0.8986182 164.883 171.853
gene6 100.5017 1.00008 0.217798 0.64078607 0.9162836 229.774 236.745
For linear continuous covariates, base mean, estimated coefficient, standard error, test statistics, p-value, and adjusted p-value will be returned.
DataFrame with 6 rows and 8 columns
baseMean coef SE stat pvalue padj AIC
<numeric> <numeric> <numeric> <numeric> <numeric> <numeric> <numeric>
gene1 67.8088 -0.491513 0.689601 -0.712750 0.476001 0.610257 227.508
gene2 65.4074 0.953351 0.854170 1.116114 0.264373 0.583781 200.381
gene3 67.1238 -0.532217 0.692255 -0.768817 0.442002 0.610257 212.158
gene4 83.2885 0.132785 0.744304 0.178402 0.858407 0.894174 216.026
gene5 20.1673 -0.746732 0.815579 -0.915585 0.359884 0.599206 164.883
gene6 100.5017 -1.145177 0.723532 -1.582758 0.113477 0.378255 229.774
BIC
<numeric>
gene1 234.478
gene2 207.352
gene3 219.129
gene4 222.996
gene5 171.853
gene6 236.745
For discrete covariates, the contrast
argument should be
specified. e.g. contrast = c("var4", "2", "0")
means
comparing level 2 vs. level 0 in var4
.
DataFrame with 6 rows and 8 columns
baseMean coef SE stat pvalue padj AIC
<numeric> <numeric> <numeric> <numeric> <numeric> <numeric> <numeric>
gene1 67.8088 0.599749 0.935989 0.640765 0.5216752 0.724231 227.508
gene2 65.4074 1.985626 1.159109 1.713062 0.0867011 0.312381 200.381
gene3 67.1238 -0.789314 0.901335 -0.875716 0.3811846 0.614814 212.158
gene4 83.2885 0.511225 1.005608 0.508374 0.6111912 0.724231 216.026
gene5 20.1673 0.970726 1.071794 0.905702 0.3650936 0.614814 164.883
gene6 100.5017 -1.443829 0.934282 -1.545388 0.1222523 0.382039 229.774
BIC
<numeric>
gene1 234.478
gene2 207.352
gene3 219.129
gene4 222.996
gene5 171.853
gene6 236.745
We suggest two approaches to visualize the nonlinear associations.
The first approach is to plot the smooth components of a fitted negative
binomial additive model by plot.gam
function in mgcv (Wood and Wood 2015). This can be done by
calling makeplot
function and passing in
NBAMSeqDataSet
object. Users are expected to provide the
phenotype of interest in phenoname
argument and gene of
interest in genename
argument.
## assuming we are interested in the nonlinear relationship between gene10's
## expression and "pheno"
makeplot(gsd, phenoname = "pheno", genename = "gene10", main = "gene10")
In addition, to explore the nonlinear association of covariates, it is also instructive to look at log normalized counts vs. variable scatter plot. Below we show how to produce such plot.
## here we explore the most significant nonlinear association
res1 = res1[order(res1$pvalue),]
topgene = rownames(res1)[1]
sf = getsf(gsd) ## get the estimated size factors
## divide raw count by size factors to obtain normalized counts
countnorm = t(t(countData)/sf)
head(res1)
DataFrame with 6 rows and 7 columns
baseMean edf stat pvalue padj AIC BIC
<numeric> <numeric> <numeric> <numeric> <numeric> <numeric> <numeric>
gene45 131.3899 1.00018 14.84635 0.000116552 0.0058276 228.734 235.705
gene4 83.2885 1.00006 8.83885 0.002949721 0.0721591 216.026 222.996
gene20 59.6507 1.00008 8.14052 0.004329546 0.0721591 203.183 210.153
gene13 102.1395 1.00006 6.01169 0.014215635 0.1776954 222.264 229.234
gene22 118.8957 1.00008 4.10980 0.042647941 0.4264794 245.888 252.859
gene21 91.8227 1.00015 3.27993 0.070169785 0.5251234 211.427 218.397
library(ggplot2)
setTitle = topgene
df = data.frame(pheno = pheno, logcount = log2(countnorm[topgene,]+1))
ggplot(df, aes(x=pheno, y=logcount))+geom_point(shape=19,size=1)+
geom_smooth(method='loess')+xlab("pheno")+ylab("log(normcount + 1)")+
annotate("text", x = max(df$pheno)-5, y = max(df$logcount)-1,
label = paste0("edf: ", signif(res1[topgene,"edf"],digits = 4)))+
ggtitle(setTitle)+
theme(text = element_text(size=10), plot.title = element_text(hjust = 0.5))
R version 4.4.1 (2024-06-14)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 24.04.1 LTS
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so; LAPACK version 3.12.0
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
time zone: Etc/UTC
tzcode source: system (glibc)
attached base packages:
[1] stats4 stats graphics grDevices utils datasets methods
[8] base
other attached packages:
[1] ggplot2_3.5.1 BiocParallel_1.41.0
[3] NBAMSeq_1.23.0 SummarizedExperiment_1.35.5
[5] Biobase_2.67.0 GenomicRanges_1.57.2
[7] GenomeInfoDb_1.41.2 IRanges_2.39.2
[9] S4Vectors_0.43.2 BiocGenerics_0.53.0
[11] MatrixGenerics_1.17.1 matrixStats_1.4.1
[13] rmarkdown_2.28
loaded via a namespace (and not attached):
[1] KEGGREST_1.45.1 gtable_0.3.6 xfun_0.48
[4] bslib_0.8.0 lattice_0.22-6 vctrs_0.6.5
[7] tools_4.4.1 parallel_4.4.1 RSQLite_2.3.7
[10] tibble_3.2.1 fansi_1.0.6 AnnotationDbi_1.69.0
[13] highr_0.11 blob_1.2.4 pkgconfig_2.0.3
[16] Matrix_1.7-1 lifecycle_1.0.4 GenomeInfoDbData_1.2.13
[19] farver_2.1.2 compiler_4.4.1 Biostrings_2.75.0
[22] munsell_0.5.1 DESeq2_1.47.0 codetools_0.2-20
[25] htmltools_0.5.8.1 sys_3.4.3 buildtools_1.0.0
[28] sass_0.4.9 yaml_2.3.10 pillar_1.9.0
[31] crayon_1.5.3 jquerylib_0.1.4 DelayedArray_0.33.1
[34] cachem_1.1.0 abind_1.4-8 nlme_3.1-166
[37] genefilter_1.87.0 locfit_1.5-9.10 digest_0.6.37
[40] labeling_0.4.3 splines_4.4.1 maketools_1.3.1
[43] fastmap_1.2.0 grid_4.4.1 colorspace_2.1-1
[46] cli_3.6.3 SparseArray_1.5.45 magrittr_2.0.3
[49] S4Arrays_1.5.11 survival_3.7-0 XML_3.99-0.17
[52] utf8_1.2.4 withr_3.0.2 scales_1.3.0
[55] UCSC.utils_1.1.0 bit64_4.5.2 XVector_0.45.0
[58] httr_1.4.7 bit_4.5.0 png_0.1-8
[61] memoise_2.0.1 evaluate_1.0.1 knitr_1.48
[64] mgcv_1.9-1 rlang_1.1.4 Rcpp_1.0.13
[67] DBI_1.2.3 xtable_1.8-4 glue_1.8.0
[70] annotate_1.85.0 jsonlite_1.8.9 R6_2.5.1
[73] zlibbioc_1.51.2