Title: | Calculates Mulcom test |
---|---|
Description: | Identification of differentially expressed genes and false discovery rate (FDR) calculation by Multiple Comparison test. |
Authors: | Claudio Isella |
Maintainer: | Claudio Isella <[email protected]> |
License: | GPL-2 |
Version: | 1.57.0 |
Built: | 2024-10-30 08:23:53 UTC |
Source: | https://github.com/bioc/Mulcom |
Computes harmonic means across groups replicate Should not be called directly
harmonicMean(index)
harmonicMean(index)
index |
a numeric vector with the groups labels of the samples. 0 are the control samples. Number must be progressive |
harmonicMean
calculates harmonic means across groups replicate for the estimation of Mulcom Test
a numeric vector
Claudio Isella, [email protected]
significant gene list with limma in Affymetrix
Claudio Isella, [email protected]
significant gene list with limma in Illumina
Claudio Isella, [email protected]
Calculates MulCom test score for given m and t parameters
mulCalc(Mulcom_P, m, t)
mulCalc(Mulcom_P, m, t)
Mulcom_P |
an object of class MULCOM |
m |
m: a numeric value corresponding to log 2 ratio correction for MulCom Test |
t |
t: a numeric value corresponding to T values for MulCom Test |
mulCalc
Calculate the Mulcom Score with m and t defined by the user
Mulcom_P
:an object of class MULCOM_P
m
:a number corresponding to log 2 ratio correction for MulCom Test
t
:a number corresponding to T values for MulCom Test
Claudio Isella, [email protected]
data(benchVign) mulcom_scores <- mulScores(Affy, Affy$Groups) mulcom_calc <- mulCalc(mulcom_scores, 0.2, 2)
data(benchVign) mulcom_scores <- mulScores(Affy, Affy$Groups) mulcom_calc <- mulCalc(mulcom_scores, 0.2, 2)
Identify the Mulcom candidate feature selection by the m and T defined by the user
mulCAND(eset, Mulcom_P, m, t, ese = "T")
mulCAND(eset, Mulcom_P, m, t, ese = "T")
eset |
an |
Mulcom_P |
an object of class MULCOM |
m |
m: a numeric vector corresponding to log 2 ratio correction |
t |
t: a numeric vector corresponding to the MulCom T values |
ese |
True or False |
mulCAND
Identify the Mulcom candidate feature selection by the m and T defined by the user
Claudio Isella, [email protected]
data(benchVign) mulcom_perm <- mulPerm(Affy, Affy$Groups, 10,2) mulcom_cand <- mulCAND(Affy, mulcom_perm, 0.2, 2)
data(benchVign) mulcom_perm <- mulPerm(Affy, Affy$Groups, 10,2) mulcom_cand <- mulCAND(Affy, mulcom_perm, 0.2, 2)
This is a class representation MulCom test scores permutation
Objects can be created using the function mulScores
on ExpressionSet
.
FC
:Object of class numeric
representing delta between
all experimental groups and the reference groups
MSE_Corrected
:Object of class numeric
representing the
MulCom test estimation of mean square error as described in the formula of
the Dunnett's t-test
FCp
:Object of class numeric
representing delta between
all experimental groups and the reference groups in permutated data
MSE_Correctedp
:Object of class numeric
representing the
MulCom test estimation of mean square error as described in the formula of
the Dunnett's t-test in permutated data
Claudio Isella
data(benchVign) mulcom_scores <- mulScores(Affy, Affy$Groups)
data(benchVign) mulcom_scores <- mulScores(Affy, Affy$Groups)
This is a class representation MulCom test scores
Objects can be created using the function mulScores
on ExpressionSet
.
FC
:Object of class numeric
representing difference between
all experimental groups and the reference groups
HM
:Object of class numeric
representing the harmonic means in all subgroups
MSE_Corrected
:Object of class numeric
representing the
MulCom test estimation of mean square error as described in the formula of
the Dunnett's t-test
Claudio Isella
data(benchVign) mulcom_scores <- mulScores(Affy, Affy$Groups)
data(benchVign) mulcom_scores <- mulScores(Affy, Affy$Groups)
significant gene list with limma in Illumina
Claudio Isella, [email protected]
Computes Delta for all the experimental points in the datasets in respect to control Should not be called directly
mulDELTA(vector, index)
mulDELTA(vector, index)
vector |
vector: numeric vector with data measurements |
index |
a numeric vector with the labels of the samples. 0 are the control samples. number must be progressive |
mulDELTA
An internal function that should not be called directly. It
calculates differential expression in the groups defined in the index class
vector, in respect to the 0 groups
vector |
a numeric vector with data measurements |
index |
a numeric vector with the labels of the samples. 0 are the control samples. number must be progressive |
Claudio Isella, [email protected]
data(benchVign) mulcom_delta <- mulDELTA(exprs(Affy[1,]),Affy$Groups)
data(benchVign) mulcom_delta <- mulDELTA(exprs(Affy[1,]),Affy$Groups)
Identify the differentially expressed features for a specific comparison with given m and t value
mulDiff(eset, Mulcom_P, m, t, ind)
mulDiff(eset, Mulcom_P, m, t, ind)
eset |
An ExpressionSet object from package Biobase |
Mulcom_P |
An object of class Mulcom_P |
m |
the m values for the analysis |
t |
the t values for the analysis |
ind |
and index refeing to te comparison, should be numeric |
eset |
An ExpressionSet object from package Biobase |
Mulcom_P |
An object of class Mulcom_P |
m |
the m values for the analysis |
t |
the t values for the analysis |
ind |
and index refeing to te comparison, should be numeric |
Claudio Isella, [email protected]
data(benchVign) mulcom_perm <- mulPerm(Affy, Affy$Groups, 10, 7) mulcom_diff <- mulDiff(Affy, mulcom_perm, 0.2, 2)
data(benchVign) mulcom_perm <- mulPerm(Affy, Affy$Groups, 10, 7) mulcom_diff <- mulDiff(Affy, mulcom_perm, 0.2, 2)
Calculate the False Significant Genes for m and t defined by the user
mulFSG(Mulcom_P, m, t)
mulFSG(Mulcom_P, m, t)
Mulcom_P |
an object of class MULCOM |
m |
m: a numeric value corresponding to log 2 ratio correction for MulCom Test |
t |
t: a numeric value corresponding to t values for MulCom Test |
mulFDR
evaluate the False Significant genes on the Mulcom_P object
according to specific m and t parameters. For each permutation
it is calculated the number of positive genes. An estimation of the false
called genes is evaluated with the median for each experimental subgroups
Claudio Isella, [email protected]
data(benchVign) mulcom_perm <- mulPerm(Affy, Affy$Groups, 10, 7) mulcom_fsg <- mulFSG(mulcom_perm, 0.2, 2)
data(benchVign) mulcom_perm <- mulPerm(Affy, Affy$Groups, 10, 7) mulcom_fsg <- mulFSG(mulcom_perm, 0.2, 2)
Random assebly of the groups indices for Monte Carlo Simulation
mulIndex(index, np, seed)
mulIndex(index, np, seed)
index |
the vector with the groups of analysis, must be numeric and 0 correspond to the reference. |
np |
number of permutation in the simulation |
seed |
seed for permtations |
'mulIndex' generates random index for the function mulPerm. it is not directly called by the user.
A matrix with all indices permutations
Claudio Isella, [email protected]
data(benchVign) mulcom_scores <- mulIndex(Affy$Groups, 5, 7)
data(benchVign) mulcom_scores <- mulIndex(Affy$Groups, 5, 7)
generates a consensus matrix from list of genes
mulInt(...)
mulInt(...)
... |
the function requires vector files as imputs |
mulCAND
generates a consensus matrix from list of genes
Claudio Isella, [email protected]
data(benchVign) mulcom_perm <- mulPerm(Affy, Affy$Groups, 10,2) mulcom_opt <- mulOpt(mulcom_perm, vm = seq(0,0.5, 0.1), vt = seq(1,3, 0.1)) h1_opt <- mulParOpt(mulcom_perm, mulcom_opt, ind = 1, th = 0.05) h2_opt <- mulParOpt(mulcom_perm, mulcom_opt, ind = 1, th = 0.05) int <- mulInt(h1_opt, h2_opt)
data(benchVign) mulcom_perm <- mulPerm(Affy, Affy$Groups, 10,2) mulcom_opt <- mulOpt(mulcom_perm, vm = seq(0,0.5, 0.1), vt = seq(1,3, 0.1)) h1_opt <- mulParOpt(mulcom_perm, mulcom_opt, ind = 1, th = 0.05) h2_opt <- mulParOpt(mulcom_perm, mulcom_opt, ind = 1, th = 0.05) int <- mulInt(h1_opt, h2_opt)
Computes Mean Square Error for all the experimental points in the datasets in respect to control. should not be called directly
mulMSE(vector, index, tmp = vector())
mulMSE(vector, index, tmp = vector())
vector |
a numeric vector with data mesurements |
index |
a numeric vector with the labels of the samples. 0 are the control samples. number must be progressive |
tmp |
a vector |
mulMSE
An internal function that should not be called directly. It
calculates within group means square error for the values defined in the x vector
according to the index class
vector
vector |
a numeric vector with data measurements |
index |
a numeric vector with the labels of the samples. 0 are the control samples. number must be progressive |
tmp |
a vector |
Claudio Isella, [email protected]
The function systematically performs the calculation of significant genes and corresponding FDR for all the combination of given list of m and t values.
mulOpt(Mulcom_P, vm, vt)
mulOpt(Mulcom_P, vm, vt)
Mulcom_P |
an object of class Mulcom_P |
vm |
a vector of m values to test |
vt |
a vector of t values to test |
mulOpt
The function systematically performs the calculation of significant genes and corresponding FDR for all the combination of given list of m and t values.
Claudio Isella, [email protected]
data(benchVign) mulcom_perm <- mulPerm(Affy, Affy$Groups, 10, 7) mulcom_opt <- mulOpt(mulcom_perm, seq(0.1, 0.5, 0.1), seq(1, 3, 0.1))
data(benchVign) mulcom_perm <- mulPerm(Affy, Affy$Groups, 10, 7) mulcom_opt <- mulOpt(mulcom_perm, seq(0.1, 0.5, 0.1), seq(1, 3, 0.1))
Function to optimize Mulcom parameter for maximim nuber of genes with a user defined FDR
mulOptPars(opt, ind, ths)
mulOptPars(opt, ind, ths)
opt |
an MulCom optimization object |
ind |
index corresponding to the comparison |
ths |
a threshold for the FDR optimization, default is 0.05 |
mulOptPars
MulCom optimization function to identify best parameters
Claudio Isella, [email protected]
data(benchVign) mulcom_perm <- mulPerm(Affy, Affy$Groups, 10, 7) #mulcom_opt <- mulOpt(mulcom_perm, seq(0.1, 0.5, 0.1), seq(1, 3, 0.1)) #optThs <- mulOptPars(mulcom_opt, 1, 0.05)
data(benchVign) mulcom_perm <- mulPerm(Affy, Affy$Groups, 10, 7) #mulcom_opt <- mulOpt(mulcom_perm, seq(0.1, 0.5, 0.1), seq(1, 3, 0.1)) #optThs <- mulOptPars(mulcom_opt, 1, 0.05)
MulCom optimization Plot to identify best configuration paramters
mulOptPlot(M.Opt, ind, th, smooth = "NO")
mulOptPlot(M.Opt, ind, th, smooth = "NO")
M.Opt |
an MulCom optimization object |
ind |
index corresponding to the comparison to plot |
th |
a threshold for the FDR plot |
smooth |
indicates whether the FDR plot will show a significant threshold or will be continuous. |
mulOptPlot
MulCom optimization Plot
a numeric vector
Claudio Isella, [email protected]
data(benchVign) mulcom_perm <- mulPerm(Affy, Affy$Groups, 10,2) mulcom_opt <- mulOpt(mulcom_perm, vm=seq(0.1, 0.5, 0.1), vt=seq(1, 3,1)) mulOptPlot(mulcom_opt, 1, 0.05)
data(benchVign) mulcom_perm <- mulPerm(Affy, Affy$Groups, 10,2) mulcom_opt <- mulOpt(mulcom_perm, vm=seq(0.1, 0.5, 0.1), vt=seq(1, 3,1)) mulOptPlot(mulcom_opt, 1, 0.05)
MulCom parameter optimization function to identify best combination of t and m providing maximum number of genes at a given FDR
mulParOpt(perm, M.Opt, ind, th, image = "T")
mulParOpt(perm, M.Opt, ind, th, image = "T")
perm |
a object with permutated MulCom Scores |
M.Opt |
an MulCom optimization object |
ind |
index corresponding to the comparison to plot |
th |
a threshold for the FDR plot |
image |
default = "T", indicates is print the MulCom optimization plot |
mulParOpt
The function mulParOpt is designed to identify the optimal m and t values
combination leading to the maximum number of differentially regulated genes
satisfying an user define FDR threshold.
In case of equal number of genes, the combination of m and
t with the lower FDR will be prioritized. In case of both identical number of
genes and FDR, the function will chose the highest t. The function optionally
will define a graphical output to visually inspect the performance of the test at
given m and t parameters for a certain comparison.
Claudio Isella, [email protected]
data(benchVign) mulcom_perm <- mulPerm(Affy, Affy$Groups, 10,2) mulcom_opt <- mulOpt(mulcom_perm, vm=seq(0.1, 0.5, 0.1), vt=seq(1, 3,1)) mulParOpt(mulcom_perm, mulcom_opt, 1, 0.05)
data(benchVign) mulcom_perm <- mulPerm(Affy, Affy$Groups, 10,2) mulcom_opt <- mulOpt(mulcom_perm, vm=seq(0.1, 0.5, 0.1), vt=seq(1, 3,1)) mulParOpt(mulcom_perm, mulcom_opt, 1, 0.05)
Reiterate MulCom Test on permutated data to perform Montecarlo simulation
mulPerm(eset, index, np, seed, segm = "F")
mulPerm(eset, index, np, seed, segm = "F")
eset |
An an |
index |
a numeric vector of length ncol(data) with the labels of the samples. 0 are the reference samples. |
np |
a numeric values indicating the number of permutation to perform. It is set as default to 10 |
seed |
set the seed of the permutaton, default is 1 |
segm |
a default set to F. This parametheres requires to be setted to avoid segmentation fault of C subroutin in the case of very large datasets. |
mulPerm
Claudio Isella, [email protected]
data(benchVign) mulcom_perm <- mulPerm(Affy, Affy$Groups, 10,2)
data(benchVign) mulcom_perm <- mulPerm(Affy, Affy$Groups, 10,2)
R pipe to C function not called directly by user that reiterate MulCom Test on permutated data to perform Monte Carlo simulation
mulPermC(eset, index, means, mse, n, m, nump, ngroups, reference)
mulPermC(eset, index, means, mse, n, m, nump, ngroups, reference)
eset |
An an |
index |
a numeric vector of length ncol(data) with the labels of the samples. 0 are the reference samples. |
means |
entry for the means output. |
mse |
entry for the mean square errors output |
n |
number of rows in obext of class eset |
m |
number of columns |
nump |
number of permutation to perform |
ngroups |
a number corresponding to the number of groups in the analysis. |
reference |
reference for the comparisons. typically it is 0 |
mulPerm
Claudio Isella, [email protected]
data(benchVign)
data(benchVign)
Computes the scores for the MulCom test. The function calculates the numerator and the denominator of the test without the parameters m and t
mulScores(eset, index)
mulScores(eset, index)
eset |
An an |
index |
a numeric vector of length ncol(data) with the labels of the samples. 0 are the reference samples. |
'mulScore' computes the scores for the MulCom test for multiple point profile. The Mulcom test is designed to compare each experimental mean with the control mean and it is derived from the "Dunnett's test". Dunnett's test controls the Experiment-wise Error Rate and is more powerful than tests designed to compare each mean with each other mean. The test is conducted by computing a modified t-test between each experimental group and the control group.
An Object of class MULCOM from Mulcom package
Claudio Isella, [email protected]
data(benchVign) mulcom_scores <- mulScores(Affy, Affy$Groups)
data(benchVign) mulcom_scores <- mulScores(Affy, Affy$Groups)
Computes sum of square errors for all the experimental points in the datasets Should not be called directly
mulSSE(vec, index)
mulSSE(vec, index)
vec |
a numeric vector with data measurements |
index |
a numeric vector with the labels of the samples. 0 are the control samples. number should be progressive |
mulSSE
An internal function that should not be called directly. It
calculates sum of square error in the groups defined in the index class
vector.
vec |
a numeric vector with data measurements |
index |
a numeric vector with the labels of the samples. 0 are the control samples. number must be progressive |
Claudio Isella, [email protected]
significant gene list with SAM in Affymetrix
Claudio Isella, [email protected]
significant gene list with SAM in Illumina
Claudio Isella, [email protected]
Function to optimize Sam parameter for maximim nuber of genes with a user defined FDR
samOptPars(opt, ths)
samOptPars(opt, ths)
opt |
an Sam optimization object |
ths |
a threshold for the FDR optimization |
a numeric vector
Claudio Isella, [email protected]