Title: | In-silico methods for genetic finemapping in inbred mice |
---|---|
Description: | This package provides methods for genetic finemapping in inbred mice by taking advantage of their very high homozygosity rate (>95%). |
Authors: | Matthias Munz [aut, cre] , Inken Wohlers [aut] , Hauke Busch [aut] |
Maintainer: | Matthias Munz <[email protected]> |
License: | GPL-3 |
Version: | 1.17.0 |
Built: | 2024-11-29 07:27:48 UTC |
Source: | https://github.com/bioc/MouseFM |
Request variant consequences from Variant Effect Predictor (VEP) via Ensembl Rest Service. Not recommended for large queries.
annotate_consequences(geno, species)
annotate_consequences(geno, species)
geno |
Data frame or GenomicRanges::GRanges object including columns rsid, ref, alt. |
species |
Species name, e.g. mouse (GRCm38) or human (GRCh38). |
Data frame.
geno = finemap("chr1", start = 5000000, end = 6000000, strain1 = c("C57BL_6J"), strain2 = c("AKR_J", "A_J", "BALB_cJ") ) df = annotate_consequences(geno[seq_len(10), ], "mouse") geno.granges = finemap("chr1", start = 5000000, end = 6000000, strain1 = c("C57BL_6J"), strain2 = c("AKR_J", "A_J", "BALB_cJ"), return_obj = "granges" ) df2 = annotate_consequences(geno.granges[seq_len(10), ], "mouse")
geno = finemap("chr1", start = 5000000, end = 6000000, strain1 = c("C57BL_6J"), strain2 = c("AKR_J", "A_J", "BALB_cJ") ) df = annotate_consequences(geno[seq_len(10), ], "mouse") geno.granges = finemap("chr1", start = 5000000, end = 6000000, strain1 = c("C57BL_6J"), strain2 = c("AKR_J", "A_J", "BALB_cJ"), return_obj = "granges" ) df2 = annotate_consequences(geno.granges[seq_len(10), ], "mouse")
Request mouse genes from Ensembl Biomart.
annotate_mouse_genes(geno, flanking = NULL)
annotate_mouse_genes(geno, flanking = NULL)
geno |
Data frame or GenomicRanges::GRanges object including columns chr, pos. |
flanking |
Size of flanking sequence to be included. |
Data frame.
geno = finemap("chr1", start = 5000000, end = 6000000, strain1 = c("C57BL_6J"), strain2 = c("AKR_J", "A_J", "BALB_cJ") ) genes = annotate_mouse_genes(geno, 50000)
geno = finemap("chr1", start = 5000000, end = 6000000, strain1 = c("C57BL_6J"), strain2 = c("AKR_J", "A_J", "BALB_cJ") ) genes = annotate_mouse_genes(geno, 50000)
Available mouse chromosomes.
avail_chromosomes()
avail_chromosomes()
Data frame
avail_chromosomes()
avail_chromosomes()
Available consequence and impact types.
avail_consequences()
avail_consequences()
Data frame.
avail_consequences()$consequence unique(avail_consequences()$impact)
avail_consequences()$consequence unique(avail_consequences()$impact)
There are 37 strains available.
avail_strains()
avail_strains()
Data frame.
avail_strains()
avail_strains()
Wrapper for GenomicRanges::makeGRangesFromDataFrame().
df2GRanges( geno, chr_name = "chr", start_name = "pos", end_name = "pos", strand_name = NULL, ref_version = ref_genome(), seq_lengths = NULL, is_circular = FALSE )
df2GRanges( geno, chr_name = "chr", start_name = "pos", end_name = "pos", strand_name = NULL, ref_version = ref_genome(), seq_lengths = NULL, is_circular = FALSE )
geno |
Data frame. |
chr_name |
Name of chromosome column. Default is 'chr'. |
start_name |
Name of start position column. Default is 'pos.' |
end_name |
Name of end position column. Default is 'pos' |
strand_name |
Name of end position column. Default is NULL. |
ref_version |
Reference genome version. Default is 'ref_genome()'. |
seq_lengths |
List of sequence lengths with sequence name as key. Default is NULL. |
is_circular |
Whether genome is circular. Default is FALSE. |
GenomicRanges::GRanges object.
geno = finemap("chr1", start = 5000000, end = 6000000, strain1 = c("C57BL_6J"), strain2 = c("AKR_J", "A_J", "BALB_cJ") ) geno$strand = "+" seq_lengths = stats::setNames( as.list(avail_chromosomes()$length), avail_chromosomes()$chr ) geno.granges = df2GRanges(geno, strand_name = "strand", seq_lengths = seq_lengths )
geno = finemap("chr1", start = 5000000, end = 6000000, strain1 = c("C57BL_6J"), strain2 = c("AKR_J", "A_J", "BALB_cJ") ) geno$strand = "+" seq_lengths = stats::setNames( as.list(avail_chromosomes()$length), avail_chromosomes()$chr ) geno.granges = df2GRanges(geno, strand_name = "strand", seq_lengths = seq_lengths )
Fetch homozygous genotypes for a specified chromosomal region in 37 inbred mouse strains.
fetch( chr, start = NULL, end = NULL, consequence = NULL, impact = NULL, return_obj = "dataframe" )
fetch( chr, start = NULL, end = NULL, consequence = NULL, impact = NULL, return_obj = "dataframe" )
chr |
Vector of chromosome names. |
start |
Optional vector of chromosomal start positions of target regions (GRCm38). |
end |
Optional vector of chromosomal end positions of target regions (GRCm38). |
consequence |
Optional vector of consequence types. |
impact |
Optional vector of impact types. |
return_obj |
The user can choose to get the result to be returned as data frame ("dataframe") or as a GenomicRanges::GRanges ("granges") object. Default value is "dataframe". |
Data frame or GenomicRanges::GRanges object containing result data.
geno = fetch("chr7", start = 5000000, end = 6000000) comment(geno)
geno = fetch("chr7", start = 5000000, end = 6000000) comment(geno)
Finemapping of genetic regions in 37 inbred mice by taking advantage of their very high homozygosity rate (>95 chromosomal regions (GRCm38), this method extracts homozygous SNVs for which the allele differs between two sets of strains (e.g. case vs controls) and outputs respective causal SNV/gene candidates.
finemap( chr, start = NULL, end = NULL, strain1, strain2, consequence = NULL, impact = NULL, thr1 = 0, thr2 = 0, return_obj = "dataframe" )
finemap( chr, start = NULL, end = NULL, strain1, strain2, consequence = NULL, impact = NULL, thr1 = 0, thr2 = 0, return_obj = "dataframe" )
chr |
Vector of chromosome names. |
start |
Optional vector of chromosomal start positions of target regions (GRCm38). |
end |
Optional vector of chromosomal end positions of target regions (GRCm38). |
strain1 |
First strain set with strains from avail_strains(). |
strain2 |
Second strain set with strains from avail_strains(). |
consequence |
Optional vector of consequence types. |
impact |
Optional vector of impact types. |
thr1 |
Number discordant strains in strain1. Between 0 and length(strain1)-1. 0 by default. |
thr2 |
Number discordant strains in strain2. Between 0 and length(strain2)-1. 0 by default. |
return_obj |
The user can choose to get the result to be returned as data frame ("dataframe") or as a GenomicRanges::GRanges ("granges") object. Default value is "dataframe". |
Data frame or GenomicRanges::GRanges object containing result data.
geno = finemap("chr1", start = 5000000, end = 6000000, strain1 = c("C57BL_6J"), strain2 = c( "129S1_SvImJ", "129S5SvEvBrd", "AKR_J" ) ) comment(geno)
geno = finemap("chr1", start = 5000000, end = 6000000, strain1 = c("C57BL_6J"), strain2 = c( "129S1_SvImJ", "129S5SvEvBrd", "AKR_J" ) ) comment(geno)
Get best strain combinations
get_top(red, n_top)
get_top(red, n_top)
red |
Reduction factors data frame. |
n_top |
Number of combinations to be returned. |
Data frame
l = prio("chr1", start = 5000000, end = 6000000, strain1 = "C57BL_6J", strain2 = "AKR_J" ) get_top(l$reduction, 3)
l = prio("chr1", start = 5000000, end = 6000000, strain1 = "C57BL_6J", strain2 = "AKR_J" ) get_top(l$reduction, 3)
Get backend service URL. Default: http://45.85.146.64:9000/rest/finemap/
getURL()
getURL()
URL string.
getURL()
getURL()
Wrapper for as.data.frame().
GRanges2df(granges)
GRanges2df(granges)
granges |
GenomicRanges::GRanges object |
Data frame.
geno.granges = finemap("chr1", start = 5000000, end = 6000000, strain1 = c("C57BL_6J"), strain2 = c("AKR_J", "A_J", "BALB_cJ"), return_obj = "granges" ) geno = GRanges2df(geno.granges)
geno.granges = finemap("chr1", start = 5000000, end = 6000000, strain1 = c("C57BL_6J"), strain2 = c("AKR_J", "A_J", "BALB_cJ"), return_obj = "granges" ) geno = GRanges2df(geno.granges)
This method allows to select strain combinations which best refine a specified genetic region (GRCm38). E.g. if a crossing experiment with two inbred mouse strains 'strain1' and 'strain2' resulted in a QTL, the outputted strain combinations can be used to refine the respective region in further crossing experiments.
prio( chr, start = NULL, end = NULL, strain1 = NULL, strain2 = NULL, consequence = NULL, impact = NULL, min_strain_benef = 0.1, max_set_size = 3, return_obj = "dataframe" )
prio( chr, start = NULL, end = NULL, strain1 = NULL, strain2 = NULL, consequence = NULL, impact = NULL, min_strain_benef = 0.1, max_set_size = 3, return_obj = "dataframe" )
chr |
Vector of chromosome names. |
start |
Optional vector of chromosomal start positions of target regions (GRCm38). |
end |
Optional vector of chromosomal end positions of target regions (GRCm38). |
strain1 |
First strain set with strains from avail_strains(). |
strain2 |
Second strain set with strains from avail_strains(). |
consequence |
Optional vector of consequence types. |
impact |
Optional vector of impact types. |
min_strain_benef |
Minimum reduction factor (min) of a single strain. |
max_set_size |
Maximum set of strains. |
return_obj |
The user can choose to get the result to be returned as data frame ("dataframe") or as a GenomicRanges::GRanges ("granges") object. Default value is "data frame". |
Data frame
res = prio("chr1", start = 5000000, end = 6000000, strain1 = "C57BL_6J", strain2 = "AKR_J" ) comment(res$genotypes)
res = prio("chr1", start = 5000000, end = 6000000, strain1 = "C57BL_6J", strain2 = "AKR_J" ) comment(res$genotypes)
Returns version of reference genome used in package MouseFM.
ref_genome()
ref_genome()
Vector.
ref_genome()
ref_genome()
Set backend service URL. Default: http://45.85.146.64:9000/rest/finemap/
setURL(url)
setURL(url)
url |
URL of backend service. With backslash at the end. |
No return value.
setURL("http://45.85.146.64:9000/rest/finemap/")
setURL("http://45.85.146.64:9000/rest/finemap/")
Visualize reduction factors
vis_reduction_factors(geno, red, n_top)
vis_reduction_factors(geno, red, n_top)
geno |
Genotype data frame or GenomicRanges::GRanges object. |
red |
Reduction factor data frame. |
n_top |
Number if combinations to be returned. |
Data frame
l = prio(c("chr1", "chr2"), start = c(5000000, 5000000), end = c(6000000, 6000000), strain1 = c("C3H_HeH"), strain2 = "AKR_J" ) plots = vis_reduction_factors(l$genotypes, l$reduction, 2) plots[[1]] plots[[2]]
l = prio(c("chr1", "chr2"), start = c(5000000, 5000000), end = c(6000000, 6000000), strain1 = c("C3H_HeH"), strain2 = "AKR_J" ) plots = vis_reduction_factors(l$genotypes, l$reduction, 2) plots[[1]] plots[[2]]