
Package: MotifPeeker (via r-universe)
November 26, 2024

Type Package

Title Benchmarking Epigenomic Profiling Methods Using Motif Enrichment

Version 0.99.11

Description MotifPeeker is used to compare and analyse datasets from
epigenomic profiling methods with motif enrichment as the key
benchmark. The package outputs an HTML report consisting of
three sections: (1. General Metrics) Overview of peaks-related
general metrics for the datasets (FRiP scores, peak widths and
motif-summit distances). (2. Known Motif Enrichment Analysis)
Statistics for the frequency of user-provided motifs enriched
in the datasets. (3. De-Novo Motif Enrichment Analysis)
Statistics for the frequency of de-novo discovered motifs
enriched in the datasets and compared with known motifs.

License GPL (>= 3)

URL https://github.com/neurogenomics/MotifPeeker

BugReports https://github.com/neurogenomics/MotifPeeker/issues

Depends R (>= 4.4.0)

Imports BiocFileCache, BiocParallel, DT, ggplot2, plotly,
universalmotif, GenomicRanges, IRanges, rtracklayer, tools,
htmltools, rmarkdown, viridis, SummarizedExperiment,
htmlwidgets, Rsamtools, GenomicAlignments, GenomeInfoDb,
Biostrings, BSgenome, memes, S4Vectors, dplyr, purrr, tidyr,
heatmaply, stats, utils

Suggests BSgenome.Hsapiens.UCSC.hg19, BSgenome.Hsapiens.UCSC.hg38,
downloadthis, knitr, markdown, methods, remotes, rworkflows,
testthat (>= 3.0.0), withr, emoji, curl, jsonlite

VignetteBuilder knitr

biocViews Epigenetics, Genetics, QualityControl, ChIPSeq,
MultipleComparison, FunctionalGenomics, MotifDiscovery,
SequenceMatching, Software, Alignment

Config/testthat/edition 3

Encoding UTF-8

1

https://github.com/neurogenomics/MotifPeeker
https://github.com/neurogenomics/MotifPeeker/issues

2 calc_frip

LazyData FALSE

RoxygenNote 7.3.2

SystemRequirements MEME Suite (v5.3.3 or above)
<http://meme-suite.org/doc/download.html>

Config/pak/sysreqs git make libmagick++-dev gsfonts libgit2-dev
libicu-dev libxml2-dev libssl-dev libx11-dev zlib1g-dev

Repository https://bioc.r-universe.dev

RemoteUrl https://github.com/bioc/MotifPeeker

RemoteRef HEAD

RemoteSha c1f0142626733e5c3af090a820fad91d7c330372

Contents
calc_frip . 2
check_ENCODE . 3
check_genome_build . 4
check_JASPAR . 5
CTCF_ChIP_peaks . 5
CTCF_TIP_peaks . 6
denovo_motifs . 6
find_motifs . 8
get_df_distances . 9
get_df_enrichment . 11
get_JASPARCORE . 14
MotifPeeker . 14
motif_enrichment . 19
motif_MA1102.3 . 20
motif_MA1930.2 . 21
motif_similarity . 21
read_motif_file . 24
read_peak_file . 25
save_peak_file . 26
segregate_seqs . 27
summit_to_motif . 28

Index 31

calc_frip Calculate FRiP score

Description

Calculate the Fraction of Reads in Peak score from the read and peak file of an experiment.

check_ENCODE 3

Usage

calc_frip(read_file, peak_file, single_end = TRUE, total_reads = NULL)

Arguments

read_file A BamFile object.

peak_file A GRanges object.

single_end A logical value. If TRUE, the reads classified as single-ended. (default = TRUE)

total_reads (optional) The total number of reads in the experiment. Skips counting the total
number of reads if provided, saving computation.

Details

The FRiP score is calculated as follows:

FRiP =
(number of reads in peaks)

(total number of reads)

Value

A numeric value indicating the FRiP score.

Examples

read_file <- system.file("extdata", "CTCF_ChIP_alignment.bam",
package = "MotifPeeker")

read_file <- Rsamtools::BamFile(read_file)
data("CTCF_ChIP_peaks", package = "MotifPeeker")

calc_frip(read_file, CTCF_ChIP_peaks)

check_ENCODE Check for ENCODE input

Description

Check and get files from ENCODE project. Requires the input to be in ENCODE ID format. Uses
BiocFileCache to cache downloads. Only works for files.

Usage

check_ENCODE(encode_id, expect_format, verbose = FALSE)

4 check_genome_build

Arguments

encode_id A character string specifying the ENCODE ID.
expect_format A character string (or a vector) specifying the expected format(s) of the file. If

the file is not in the expected format, an error is thrown.
verbose A logical indicating whether to print verbose messages while running the func-

tion. (default = FALSE)

Value

A character string specifying the path to the downloaded file.

Examples

if (requireNamespace("curl", quietly = TRUE) &&
requireNamespace("jsonlite", quietly = TRUE)) {
check_ENCODE("ENCFF920TXI", expect_format = c("bed", "gz"))

}

check_genome_build Check genome build

Description

Check if the genome build is valid and return the appropriate BSGenome object.

Usage

check_genome_build(genome_build)

Arguments

genome_build A character string with the abbreviated genome build name, or a BSGenome
object. At the moment, only hg38 and hg19 are supported as abbreviated input.

Value

A BSGenome object.

See Also

BSgenome-class for more information on BSGenome objects.

Examples

if (requireNamespace("BSgenome.Hsapiens.UCSC.hg38", quietly = TRUE)) {
check_genome_build("hg38")

}

check_JASPAR 5

check_JASPAR Check for JASPAR input

Description

Check and get files from JASPAR. Requires the input to be in JASPAR ID format. Uses BiocFile-
Cache to cache downloads.

Usage

check_JASPAR(motif_id, verbose = FALSE)

Arguments

motif_id A character string specifying the JASPAR motif ID.

verbose A logical indicating whether to print verbose messages while running the func-
tion. (default = FALSE)

Value

A character string specifying the path to the downloaded file.

Examples

check_JASPAR("MA1930.2")

CTCF_ChIP_peaks Example ChIP-seq peak file

Description

Human CTCF peak file generated with ChIP-seq using HCT116 cell-line. No control files were
used to generate the peak file.

Usage

data("CTCF_ChIP_peaks")

Format

An object of class GRanges of length 209.

Note

To reduce the size of the package, the included peak file focuses on specific genomic regions. The
subset region included is chr10:65,654,529-74,841,155.

6 denovo_motifs

Source

ENCODE Accession: ENCFF091ODJ

CTCF_TIP_peaks Example TIP-seq peak file

Description

Human CTCF peak file generated with TIP-seq using HCT116 cell-line. The peak file was gener-
ated using the nf-core/cutandrun pipeline. Raw read files were sourced from NIH Sequence Read
Archives (ID: SRR16963166).

Usage

data("CTCF_TIP_peaks")

Format

An object of class GRanges of length 182.

Note

To reduce the size of the package, the included peak file focuses on specific genomic regions. The
subset region included is chr10:65,654,529-74,841,155.

denovo_motifs Discover motifs in sequences

Description

Use STREME from MEME suite to find motifs in the provided sequences. To speed up the process,
the sequences can be optionally trimmed to reduce the search space. The result is then optionally
filtered to remove motifs with a high number of nucleotide repeats

Usage

denovo_motifs(
seqs,
trim_seq_width,
genome_build,
discover_motifs_count = 3,
minw = 8,
maxw = 25,
filter_n = 6,
out_dir = tempdir(),

https://www.encodeproject.org/files/ENCFF091ODJ/
https://nf-co.re/cutandrun/3.2.2
https://trace.ncbi.nlm.nih.gov/Traces/index.html?view=run_browser&acc=SRR16963166

denovo_motifs 7

meme_path = NULL,
BPPARAM = BiocParallel::SerialParam(),
verbose = FALSE,
debug = FALSE,
...

)

Arguments

seqs A list of GRanges objects containing sequences to search for motifs.

trim_seq_width An integer specifying the width of the sequence to extract around the summit
(default = NULL). This sequence is used to search for discovered motifs. If
not provided, the entire peak region will be used. This parameter is intended
to reduce the search space and speed up motif discovery; therefore, a value less
than the average peak width is recommended. Peaks are trimmed symmetrically
around the summit while respecting the peak bounds.

genome_build The genome build that the peak sequences should be derived from.
discover_motifs_count

An integer specifying the number of motifs to discover. (default = 3) Note that
higher values take longer to compute.

minw An integer specifying the minimum width of the motif. (default = 8)

maxw An integer specifying the maximum width of the motif. (default = 25)

filter_n An integer specifying the number of consecutive nucleotide repeats a discovered
motif must contain to be filtered out. (default = 6)

out_dir A character vector of output directory to save STREME results to. (default =
tempdir())

meme_path path to "meme/bin/" (default: NULL). Will use default search behavior as de-
scribed in check_meme_install() if unset.

BPPARAM A BiocParallelParam-class object specifying run parameters. (default = Se-
rialParam(), single core run)

verbose A logical indicating whether to print verbose messages while running the func-
tion. (default = FALSE)

debug A logical indicating whether to print debug messages while running the function.
(default = FALSE)

... Additional arguments to pass to STREME. For more information, refer to the offi-
cial MEME Suite documentation on STREME.

Value

A list of universalmotif objects and associated metadata.

Examples

if (memes::meme_is_installed()) {
data("CTCF_TIP_peaks", package = "MotifPeeker")
if (requireNamespace("BSgenome.Hsapiens.UCSC.hg38", quietly = TRUE)) {

https://meme-suite.org/meme/doc/streme.html

8 find_motifs

genome_build <- BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38

res <- denovo_motifs(list(CTCF_TIP_peaks),
trim_seq_width = 50,
genome_build = genome_build,
discover_motifs_count = 1,
filter_n = 6,
minw = 8,
maxw = 8,
out_dir = tempdir())

print(res[[1]]$consensus)
}
}

find_motifs Find similar motifs

Description

Search through provided motif database to find similar motifs to the input. Light wrapper around
TOMTOM from MEME Suite.

Usage

find_motifs(
streme_out,
motif_db,
out_dir = tempdir(),
meme_path = NULL,
BPPARAM = BiocParallel::bpparam(),
verbose = FALSE,
debug = FALSE,
...

)

Arguments

streme_out Output from denovo_motifs.

motif_db Path to .meme format file to use as reference database, or a list of universalmotif-class
objects. (optional) Results from de-novo motif discovery are searched against
this database to find similar motifs. If not provided, JASPAR CORE database
will be used. NOTE: p-value estimates are inaccurate when the database has
fewer than 50 entries.

out_dir A character vector of output directory to save STREME results to. (default =
tempdir())

meme_path path to "meme/bin/" (default: NULL). Will use default search behavior as de-
scribed in check_meme_install() if unset.

get_df_distances 9

BPPARAM A BiocParallelParam-class object specifying run parameters. (default = bp-
param())

verbose A logical indicating whether to print verbose messages while running the func-
tion. (default = FALSE)

debug A logical indicating whether to print debug messages while running the function.
(default = FALSE)

... Additional arguments to pass to TOMTOM. For more information, refer to the offi-
cial MEME Suite documentation on TOMTOM.

Value

data.frame of match results. Contains best_match_motif column of universalmotif objects with
the matched PWM from the database, a series of best_match_* columns describing the TomTom
results of the match, and a tomtom list column storing the ranked list of possible matches to each
motif. If a universalmotif data.frame is used as input, these columns are appended to the data.frame.
If no matches are returned, tomtom and best_match_motif columns will be set to NA and a message
indicating this will print.

Examples

if (memes::meme_is_installed()) {
data("CTCF_TIP_peaks", package = "MotifPeeker")

if (requireNamespace("BSgenome.Hsapiens.UCSC.hg38", quietly = TRUE)) {
genome_build <-

BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38

res <- denovo_motifs(list(CTCF_TIP_peaks),
trim_seq_width = 50,
genome_build = genome_build,
discover_motifs_count = 1,
filter_n = 10,
out_dir = tempdir())

res2 <- find_motifs(res, motif_db = get_JASPARCORE(),
out_dir = tempdir())

print(res2)
}

}

get_df_distances Get dataframe with motif-summit distances

Description

Wrapper for ‘MotifPeeker::summit_to_motif‘ to get motif-summit distances for all peaks and mo-
tifs, generating a data.frame suitable for plots.

https://meme-suite.org/meme/doc/tomtom.html

10 get_df_distances

Usage

get_df_distances(
result,
user_motifs,
genome_build,
out_dir = tempdir(),
BPPARAM = BiocParallel::bpparam(),
meme_path = NULL,
verbose = FALSE

)

Arguments

result A list with the following elements:

peaks A list of peak files generated using read_peak_file.
alignments A list of alignment files.
exp_type A character vector of experiment types.
exp_labels A character vector of experiment labels.
read_count A numeric vector of read counts.
peak_count A numeric vector of peak counts.

user_motifs A list with the following elements:

motifs A list of motif files.
motif_labels A character vector of motif labels.

genome_build A character string with the abbreviated genome build name, or a BSGenome
object. At the moment, only hg38 and hg19 are supported as abbreviated input.

out_dir A character vector of output directory.

BPPARAM A BiocParallelParam-class object enabling parallel execution. (default =
SerialParam(), single-CPU run)

Following are two examples of how to set up parallel processing:

• BPPARAM = BiocParallel::MulticoreParam(4): Uses 4 CPU cores for
parallel processing.

• library("BiocParallel") followed by register(MulticoreParam(4))
sets all subsequent BiocParallel functions to use 4 CPU cores. Motifpeeker()
must be run with BPPARAM = BiocParallel::MulticoreParam().

IMPORTANT: For each worker, please ensure a minimum of 8GB of memory
(RAM) is available as motif_discovery is memory-intensive.

meme_path path to meme/bin/ (optional). Defaut: NULL, searches "MEME_PATH" environ-
ment variable or "meme_path" option for path to "meme/bin/".

verbose A logical indicating whether to print verbose messages while running the func-
tion. (default = FALSE)

get_df_enrichment 11

Value

A data.frame with the following columns:

exp_label Experiment labels.

exp_type Experiment types.

motif_indice Motif indices.

distance Distances between peak summit and motif.

See Also

Other generate data.frames: get_df_enrichment()

Examples

if (memes::meme_is_installed()) {
data("CTCF_ChIP_peaks", package = "MotifPeeker")
data("motif_MA1102.3", package = "MotifPeeker")
data("motif_MA1930.2", package = "MotifPeeker")
input <- list(

peaks = CTCF_ChIP_peaks,
exp_type = "ChIP",
exp_labels = "CTCF",
read_count = 150,
peak_count = 100

)
motifs <- list(

motifs = list(motif_MA1930.2, motif_MA1102.3),
motif_labels = list("MA1930.2", "MA1102.3")

)

if (requireNamespace("BSgenome.Hsapiens.UCSC.hg38")) {
genome_build <- BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38
distances_df <- get_df_distances(input, motifs, genome_build)
print(distances_df)

}
}

get_df_enrichment Get dataframe with motif enrichment values

Description

Wrapper for ‘MotifPeeker::motif_enrichment‘ to get motif enrichment counts and percentages for
all peaks and motifs, generating a data.frame suitable for plots. The data.frame contains values
for all and segregated peaks.

12 get_df_enrichment

Usage

get_df_enrichment(
result,
segregated_peaks,
user_motifs,
genome_build,
reference_index = 1,
out_dir = tempdir(),
BPPARAM = BiocParallel::bpparam(),
meme_path = NULL,
verbose = FALSE

)

Arguments

result A list with the following elements:

peaks A list of peak files generated using read_peak_file.
alignments A list of alignment files.
exp_type A character vector of experiment types.
exp_labels A character vector of experiment labels.
read_count A numeric vector of read counts.
peak_count A numeric vector of peak counts.

segregated_peaks

A list object generated using segregate_seqs.

user_motifs A list with the following elements:

motifs A list of motif files.
motif_labels A character vector of motif labels.

genome_build A character string with the abbreviated genome build name, or a BSGenome
object. At the moment, only hg38 and hg19 are supported as abbreviated input.

reference_index

An integer specifying the index of the peak file to use as the reference dataset
for comparison. Indexing starts from 1. (default = 1)

out_dir A character vector of output directory.

BPPARAM A BiocParallelParam-class object enabling parallel execution. (default =
SerialParam(), single-CPU run)

Following are two examples of how to set up parallel processing:

• BPPARAM = BiocParallel::MulticoreParam(4): Uses 4 CPU cores for
parallel processing.

• library("BiocParallel") followed by register(MulticoreParam(4))
sets all subsequent BiocParallel functions to use 4 CPU cores. Motifpeeker()
must be run with BPPARAM = BiocParallel::MulticoreParam().

IMPORTANT: For each worker, please ensure a minimum of 8GB of memory
(RAM) is available as motif_discovery is memory-intensive.

get_df_enrichment 13

meme_path path to meme/bin/ (optional). Defaut: NULL, searches "MEME_PATH" environ-
ment variable or "meme_path" option for path to "meme/bin/".

verbose A logical indicating whether to print verbose messages while running the func-
tion. (default = FALSE)

Value

A data.frame with the following columns:

exp_label Experiment labels.

exp_type Experiment types.

motif_indice Motif indices.

group1 Segregated group- "all", "Common" or "Unique".

group2 "reference" or "comparison" group.

count_enriched Number of peaks with motif.

count_nonenriched Number of peaks without motif.

perc_enriched Percentage of peaks with motif.

perc_nonenriched Percentage of peaks without motif.

See Also

Other generate data.frames: get_df_distances()

Examples

if (memes::meme_is_installed()) {
data("CTCF_ChIP_peaks", package = "MotifPeeker")
data("CTCF_TIP_peaks", package = "MotifPeeker")
data("motif_MA1102.3", package = "MotifPeeker")
data("motif_MA1930.2", package = "MotifPeeker")
input <- list(

peaks = list(CTCF_ChIP_peaks, CTCF_TIP_peaks),
exp_type = c("ChIP", "TIP"),
exp_labels = c("CTCF_ChIP", "CTCF_TIP"),
read_count = c(150, 200),
peak_count = c(100, 120)

)
segregated_input <- segregate_seqs(input$peaks[[1]], input$peaks[[2]])
motifs <- list(

motifs = list(motif_MA1930.2, motif_MA1102.3),
motif_labels = list("MA1930.2", "MA1102.3")

)
reference_index <- 1

if (requireNamespace("BSgenome.Hsapiens.UCSC.hg38")) {
genome_build <-

BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38

enrichment_df <- get_df_enrichment(

14 MotifPeeker

input, segregated_input, motifs, genome_build,
reference_index = 1

)
}

}

get_JASPARCORE Download JASPAR CORE database

Description

Downloads JASPAR CORE database in meme format for all available taxonomic groups. Uses
BiocFileCache to cache downloads.

Usage

get_JASPARCORE(verbose = FALSE)

Arguments

verbose A logical indicating whether to print verbose messages while running the func-
tion. (default = FALSE)

Value

A character string specifying the path to the downloaded file (meme format).

Examples

get_JASPARCORE()

MotifPeeker Benchmark epigenomic profiling methods using motif enrichment

Description

This function compares different epigenomic datasets using motif enrichment as the key metric.
The output is an easy-to-interpret HTML document with the results. The report contains three
main sections: (1) General Metrics on peak and alignment files (if provided), (2) Known Motif
Enrichment Analysis and (3) Discovered Motif Enrichment Analysis.

MotifPeeker 15

Usage

MotifPeeker(
peak_files,
reference_index = 1,
alignment_files = NULL,
exp_labels = NULL,
exp_type = NULL,
genome_build,
motif_files = NULL,
motif_labels = NULL,
cell_counts = NULL,
motif_discovery = TRUE,
motif_discovery_count = 3,
filter_n = 6,
trim_seq_width = NULL,
motif_db = NULL,
download_buttons = TRUE,
meme_path = NULL,
out_dir = tempdir(),
save_runfiles = FALSE,
display = if (interactive()) "browser",
BPPARAM = BiocParallel::SerialParam(),
quiet = TRUE,
debug = FALSE,
verbose = FALSE

)

Arguments

peak_files A character vector of path to peak files, or a vector of GRanges objects generated
using read_peak_file. Currently, peak files from the following peak-calling
tools are supported:

• MACS2: .narrowPeak files
• SEACR: .bed files

ENCODE file IDs can also be provided to automatically fetch peak file(s) from
the ENCODE database.

reference_index

An integer specifying the index of the peak file to use as the reference dataset
for comparison. Indexing starts from 1. (default = 1)

alignment_files

A character vector of path to alignment files, or a vector of BamFile objects.
(optional) Alignment files are used to calculate read-related metrics like FRiP
score. ENCODE file IDs can also be provided to automatically fetch alignment
file(s) from the ENCODE database.

exp_labels A character vector of labels for each peak file. (optional) If not provided, capital
letters will be used as labels in the report.

16 MotifPeeker

exp_type A character vector of experimental types for each peak file. (optional) Useful for
comparison of different methods. If not provided, all datasets will be classified
as "unknown" experiment types in the report. Supported experimental types are:

• chipseq: ChIP-seq data
• tipseq: TIP-seq data
• cuttag: CUT&Tag data
• cutrun: CUT&Run data

exp_type is used only for labelling. It does not affect the analysis. You can
also input custom strings. Datasets will be grouped as long as they match their
respective exp_type.

genome_build A character string with the abbreviated genome build name, or a BSGenome
object. At the moment, only hg38 and hg19 are supported as abbreviated input.

motif_files A character vector of path to motif files, or a vector of universalmotif-class
objects. (optional) Required to run Known Motif Enrichment Analysis. JASPAR
matrix IDs can also be provided to automatically fetch motifs from the JASPAR.

motif_labels A character vector of labels for each motif file. (optional) Only used if path to
file names are passed in motif_files. If not provided, the motif file names will
be used as labels.

cell_counts An integer vector of experiment cell counts for each peak file. (optional) Creates
additional comparisons based on cell counts.

motif_discovery

A logical indicating whether to perform motif discovery for the third section of
the report. (default = TRUE)

motif_discovery_count

An integer specifying the number of motifs to discover. (default = 3) Note that
higher values take longer to compute.

filter_n An integer specifying the number of consecutive nucleotide repeats a discovered
motif must contain to be filtered out. (default = 6)

trim_seq_width An integer specifying the width of the sequence to extract around the summit
(default = NULL). This sequence is used to search for discovered motifs. If
not provided, the entire peak region will be used. This parameter is intended
to reduce the search space and speed up motif discovery; therefore, a value less
than the average peak width is recommended. Peaks are trimmed symmetrically
around the summit while respecting the peak bounds.

motif_db Path to .meme format file to use as reference database, or a list of universalmotif-class
objects. (optional) Results from de-novo motif discovery are searched against
this database to find similar motifs. If not provided, JASPAR CORE database
will be used. NOTE: p-value estimates are inaccurate when the database has
fewer than 50 entries.

download_buttons

A logical indicating whether to include download buttons for various files within
the HTML report. (default = TRUE)

meme_path path to meme/bin/ (optional). Defaut: NULL, searches "MEME_PATH" environ-
ment variable or "meme_path" option for path to "meme/bin/".

MotifPeeker 17

out_dir A character string specifying the directory to save the output files. (default =
tempdir()) A sub-directory with the output files will be created in this directory.

save_runfiles A logical indicating whether to save intermediate files generated during the run,
such as those from FIMO and AME. (default = FALSE)

display A character vector specifying the display mode for the HTML report once it is
generated. (default = NULL) Options are:

• "browser": Open the report in the default web browser.
• "rstudio": Open the report in the RStudio Viewer.
• NULL: Do not open the report.

BPPARAM A BiocParallelParam-class object enabling parallel execution. (default =
SerialParam(), single-CPU run)

Following are two examples of how to set up parallel processing:

• BPPARAM = BiocParallel::MulticoreParam(4): Uses 4 CPU cores for
parallel processing.

• library("BiocParallel") followed by register(MulticoreParam(4))
sets all subsequent BiocParallel functions to use 4 CPU cores. Motifpeeker()
must be run with BPPARAM = BiocParallel::MulticoreParam().

IMPORTANT: For each worker, please ensure a minimum of 8GB of memory
(RAM) is available as motif_discovery is memory-intensive.

quiet A logical indicating whether to print markdown knit messages. (default = FALSE)

debug A logical indicating whether to print debug/error messages in the HTML report.
(default = FALSE)

verbose A logical indicating whether to print verbose messages while running the func-
tion. (default = FALSE)

Details

Runtime guidance: For 4 datasets, the runtime is approximately 3 minutes with motif_discovery
disabled. However, motif discovery can take hours to complete. To make computation faster, we
highly recommend tuning the following arguments:

BPPARAM=MulticoreParam(x) Running motif discovery in parallel can significantly reduce run-
time, but it is very memory-intensive, consuming 10+GB of RAM per thread. Memory star-
vation can greatly slow the process, so set the number of cores with caution.

motif_discovery_count The number of motifs to discover per sequence group exponentially in-
creases runtime. We recommend no more than 5 motifs to make a meaningful inference.

trim_seq_width Trimming sequences before running motif discovery can significantly reduce the
search space. Sequence length can exponentially increase runtime. We recommend running
the script with motif_discovery = FALSE and studying the motif-summit distance distribu-
tion under general metrics to find the sequence length that captures most motifs. A good
starting point is 150 but it can be reduced further if appropriate.

Value

Path to the output directory.

18 MotifPeeker

Note

Running motif discovery is computationally expensive and can require from minutes to hours.
denovo_motifs can widely affect the runtime (higher values take longer). Setting trim_seq_width
to a lower value can also reduce the runtime significantly.

Examples

peaks <- list(
system.file("extdata", "CTCF_ChIP_peaks.narrowPeak",

package = "MotifPeeker"),
system.file("extdata", "CTCF_TIP_peaks.narrowPeak",

package = "MotifPeeker")
)

alignments <- list(
system.file("extdata", "CTCF_ChIP_alignment.bam",

package = "MotifPeeker"),
system.file("extdata", "CTCF_TIP_alignment.bam",

package = "MotifPeeker")
)

motifs <- list(
system.file("extdata", "motif_MA1930.2.jaspar",

package = "MotifPeeker"),
system.file("extdata", "motif_MA1102.3.jaspar",

package = "MotifPeeker")
)

if (memes::meme_is_installed()) {
MotifPeeker(

peak_files = peaks,
reference_index = 1,
alignment_files = alignments,
exp_labels = c("ChIP", "TIP"),
exp_type = c("chipseq", "tipseq"),
genome_build = "hg38",
motif_files = motifs,
motif_labels = NULL,
cell_counts = NULL,
motif_discovery = TRUE,
motif_discovery_count = 1,
motif_db = NULL,
download_buttons = TRUE,
out_dir = tempdir(),
debug = FALSE,
quiet = TRUE,
verbose = FALSE

)
}

motif_enrichment 19

motif_enrichment Calculate motif enrichment in a set of sequences

Description

motif_enrichment() calculates motif enrichment relative to a set of background sequences using
Analysis of Motif Enrichment (AME) from memes.

Usage

motif_enrichment(
peak_input,
motif,
genome_build,
out_dir = tempdir(),
verbose = FALSE,
meme_path = NULL,
...

)

Arguments

peak_input Either a path to the narrowPeak file or a GRanges peak object generated by
read_peak_file().

motif An object of class universalmotif.

genome_build The genome build that the peak sequences should be derived from.

out_dir Location to save the 0-order background file along with the AME output files.

verbose A logical indicating whether to print verbose messages while running the func-
tion. (default = FALSE)

meme_path path to "meme/bin/" (default: NULL). Will use default search behavior as de-
scribed in check_meme_install() if unset.

... Arguments passed on to memes::runAme

method default: fisher (allowed values: fisher, ranksum, pearson, spearman,
3dmhg, 4dmhg)

sequences logical(1) add results from sequences.tsv to sequences list
column to returned data.frame. Valid only if method = "fisher". See AME
outputs webpage for more information (Default: FALSE).

silent whether to suppress stdout (default: TRUE), useful for debugging.

Value

A list containing a AME results data frame and a numeric referring to the proportion of peaks with
a motif.

http://alternate.meme-suite.org/doc/ame-output-format.html
http://alternate.meme-suite.org/doc/ame-output-format.html

20 motif_MA1102.3

See Also

runAme

Examples

if (memes::meme_is_installed()) {
data("CTCF_TIP_peaks", package = "MotifPeeker")
data("motif_MA1102.3", package = "MotifPeeker")

res <- motif_enrichment(
peak_input = CTCF_TIP_peaks,
motif = motif_MA1102.3,
genome_build =

BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38,

)
print(res)

}

motif_MA1102.3 Example CTCFL JASPAR motif file

Description

The motif file contains the JASPAR motif for CTCFL (MA1102.3) for Homo Sapiens. This is one
of the two motif files used to demonstrate MotifPeeker’s known-motif analysis functionality.

Usage

data("motif_MA1102.3")

Format

An object of class universalmotif of length 1.

Source

JASPAR Matrix ID: MA1102.3

https://jaspar.elixir.no/matrix/MA1102.3/

motif_MA1930.2 21

motif_MA1930.2 Example CTCF JASPAR motif file

Description

The motif file contains the JASPAR motif for CTCF (MA1930.2) for Homo Sapiens. This is one of
the two motif files used to demonstrate MotifPeeker’s known-motif analysis functionality.

Usage

data("motif_MA1930.2")

Format

An object of class universalmotif of length 1.

Source

JASPAR Matrix ID: MA1930.2

motif_similarity Compare motifs from segregated sequences

Description

Compute motif similarity scores between motifs discovered from segregated sequences. Wrapper
around compare_motifs to compare motifs from different groups of sequences. To see the possible
similarity measures available, refer to details.

Usage

motif_similarity(
streme_out,
method = "PCC",
normalise.scores = TRUE,
BPPARAM = BiocParallel::bpparam(),
...

)

https://jaspar.elixir.no/matrix/MA1930.2/

22 motif_similarity

Arguments

streme_out Output from denovo_motifs.

method character(1) One of PCC, EUCL, SW, KL, ALLR, BHAT, HELL, SEUCL,
MAN, ALLR_LL, WEUCL, WPCC. See details.

normalise.scores

logical(1) Favour alignments which leave fewer unaligned positions, as well
as alignments between motifs of similar length. Similarity scores are multiplied
by the ratio of aligned positions to the total number of positions in the larger
motif, and the inverse for distance scores.

BPPARAM A BiocParallelParam-class object specifying run parameters. (default = bp-
param())

... Arguments passed on to universalmotif::compare_motifs

motifs See convert_motifs() for acceptable motif formats.
compare.to numeric If missing, compares all motifs to all other motifs. Oth-

erwise compares all motifs to the specified motif(s).
db.scores data.frame or DataFrame. See details.
use.freq numeric(1). For comparing the multifreq slot.
use.type character(1) One of 'PPM' and 'ICM'. The latter allows for tak-

ing into account the background frequencies if relative_entropy = TRUE.
Note that 'ICM' is not allowed when method = c("ALLR", "ALLR_LL").

tryRC logical(1) Try the reverse complement of the motifs as well, report the
best score.

min.overlap numeric(1) Minimum overlap required when aligning the mo-
tifs. Setting this to a number higher then the width of the motifs will not
allow any overhangs. Can also be a number between 0 and 1, representing
the minimum fraction that the motifs must overlap.

min.mean.ic numeric(1) Minimum mean information content between the
two motifs for an alignment to be scored. This helps prevent scoring align-
ments between low information content regions of two motifs. Note that
this can result in some comparisons failing if no alignment passes the mean
IC threshold. Use average_ic() to filter out low IC motifs to get around
this if you want to avoid getting NAs in your output.

min.position.ic numeric(1) Minimum information content required between
individual alignment positions for it to be counted in the final alignment
score. It is recommended to use this together with normalise.scores =
TRUE, as this will help punish scores resulting from only a fraction of an
alignment.

relative_entropy logical(1) Change the ICM calculation affecting min.position.ic
and min.mean.ic. See convert_type().

max.p numeric(1) Maximum P-value allowed in reporting matches. Only used
if compare.to is set.

max.e numeric(1) Maximum E-value allowed in reporting matches. Only
used if compare.to is set. The E-value is the P-value multiplied by the
number of input motifs times two.

motif_similarity 23

nthreads numeric(1) Run compare_motifs() in parallel with nthreads threads.
nthreads = 0 uses all available threads.

score.strat character(1) How to handle column scores calculated from
motif alignments. "sum": add up all scores. "a.mean": take the arith-
metic mean. "g.mean": take the geometric mean. "median": take the me-
dian. "wa.mean", "wg.mean": weighted arithmetic/geometric mean. "fzt":
Fisher Z-transform. Weights are the total information content shared be-
tween aligned columns.

output.report character(1) Provide a filename for compare_motifs() to
write an html ouput report to. The top matches are shown alongside figures
of the match alignments. This requires the knitr and rmarkdown packages.
(Note: still in development.)

output.report.max.print numeric(1) Maximum number of top matches to
print.

Details

Available metrics:
The following metrics are available:

• Euclidean distance (EUCL) (Choi et al. 2004)
• Weighted Euclidean distance (WEUCL)
• Kullback-Leibler divergence (KL) (Kullback and Leibler 1951; Roepcke et al. 2005)
• Hellinger distance (HELL) (Hellinger 1909)
• Squared Euclidean distance (SEUCL)
• Manhattan distance (MAN)
• Pearson correlation coefficient (PCC)
• Weighted Pearson correlation coefficient (WPCC)
• Sandelin-Wasserman similarity (SW), or sum of squared distances (Sandelin and Wasserman

2004)
• Average log-likelihood ratio (ALLR) (Wang and Stormo 2003)
• Lower limit ALLR (ALLR_LL) (Mahony et al. 2007)
• Bhattacharyya coefficient (BHAT) (Bhattacharyya 1943)

Comparisons are calculated between two motifs at a time. All possible alignments are scored, and
the best score is reported. In an alignment scores are calculated individually between columns.
How those scores are combined to generate the final alignment scores depends on score.strat.
See the "Motif comparisons and P-values" vignette for a description of the various metrics. Note
that PCC, WPCC, SW, ALLR, ALLR_LL and BHAT are similarities; higher values mean more similar
motifs. For the remaining metrics, values closer to zero represent more similar motifs.
Small pseudocounts are automatically added when one of the following methods is used: KL,
ALLR, ALLR_LL, IS. This is avoid zeros in the calculations.

Calculating P-values:
To note regarding p-values: P-values are pre-computed using the make_DBscores() function. If
not given, then uses a set of internal precomputed P-values from the JASPAR2018 CORE motifs.
These precalculated scores are dependent on the length of the motifs being compared. This takes

24 read_motif_file

into account that comparing small motifs with larger motifs leads to higher scores, since the
probability of finding a higher scoring alignment is higher.
The default P-values have been precalculated for regular DNA motifs. They are of little use for
motifs with a different number of alphabet letters (or even the multifreq slot).

Value

A list of matrices containing the similarity scores between motifs from different groups of se-
quences. The order of comparison is as follows, with first element representing the rows and second
element representing the columns of the matrix:

• 1. Common motifs comparison: Common seqs from reference (1) <-> comparison (2)

• 2. Unique motifs comparison: Unique seqs from reference (1) <-> comparison (2)

• 3. Cross motifs comparison 1: Unique seqs from reference (1) <-> comparison (1)

• 4. Cross motifs comparison 2: Unique seqs from comparison (2) <-> reference (1)

The list is repeated for each set of comparison groups in input.

Examples

if (memes::meme_is_installed()) {
data("CTCF_TIP_peaks", package = "MotifPeeker")
data("CTCF_ChIP_peaks", package = "MotifPeeker")

if (requireNamespace("BSgenome.Hsapiens.UCSC.hg38")) {
genome_build <-

BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38
segregated_peaks <- segregate_seqs(CTCF_TIP_peaks, CTCF_ChIP_peaks)
denovo_motifs <- denovo_motifs(unlist(segregated_peaks),

trim_seq_width = 50,
genome_build = genome_build,
discover_motifs_count = 1,
filter_n = 6,
maxw = 8,
minw = 8,
out_dir = tempdir())

similarity_matrices <- motif_similarity(denovo_motifs)
print(similarity_matrices)

}
}

read_motif_file Read a motif file

Description

read_motif_file() reads a motif file and converts to a PWM. The function supports multiple
motif formats, including "homer", "jaspar", "meme", "transfac" and "uniprobe".

read_peak_file 25

Usage

read_motif_file(
motif_file,
motif_id = "Unknown",
file_format = "auto",
verbose = FALSE

)

Arguments

motif_file Path to a motif file or a universalmotif-class object.

motif_id ID of the motif (e.g. "MA1930.1").

file_format Character string specifying the format of the motif file. The options are "homer",
"jaspar", "meme", "transfac" and "uniprobe"

verbose A logical indicating whether to print messages.

Value

A universalmotif motif object.

Examples

motif_file <- system.file("extdata",
"motif_MA1930.2.jaspar",
package = "MotifPeeker")

res <- read_motif_file(motif_file = motif_file,
motif_id = "MA1930.2",
file_format = "jaspar")

print(res)

read_peak_file Read MACS2/3 narrowPeak or SEACR BED peak file

Description

This function reads a MACS2/3 narrowPeak or SEACR BED peak file and returns a GRanges object
with the peak coordinates and summit.

Usage

read_peak_file(peak_file, file_format = "auto", verbose = FALSE)

26 save_peak_file

Arguments

peak_file A character string with the path to the peak file, or a GRanges object created
using read_peak_file().

file_format A character string specifying the format of the peak file.

• "narrowpeak": MACS2/3 narrowPeak format.
• "bed": SEACR BED format.

verbose A logical indicating whether to print messages.

Details

The summit column is the absolute genomic position of the peak, which is relative to the start
position of the sequence range. For SEACR BED files, the summit column is calculated as the
midpoint of the max signal region.

Value

A GRanges-class object with the peak coordinates and summit.

See Also

GRanges-class for more information on GRanges objects.

Examples

macs3_peak_file <- system.file("extdata", "CTCF_ChIP_peaks.narrowPeak",
package = "MotifPeeker")
macs3_peak_read <- read_peak_file(macs3_peak_file)
macs3_peak_read

save_peak_file Minimally save a peak object to a file (BED4)

Description

This function saves a peak object to a file in BED4 format. The included columns are: chr, start,
end, and name. Since no strand data is being included, it is recommended to use this function only
for peak objects that do not have strand information.

Usage

save_peak_file(
peak_obj,
save = TRUE,
filename = random_string(10),
out_dir = tempdir()

)

segregate_seqs 27

Arguments

peak_obj A GRanges object with the peak coordinates. Must include columns: seqnames,
start, end, and name.

save A logical indicating whether to save the peak object to a file.

filename A character string of the file name. If the file extension is not .bed, a warning
is issued and the extension is appended. Alternatively, if the file name does not
have an extension, .bed is appended. (default = random string)

out_dir A character string of the output directory. (default = tempdir())

Value

If save = FALSE, a data frame with the peak coordinates. If save = TRUE, the path to the saved file.

Examples

data("CTCF_ChIP_peaks", package = "MotifPeeker")

out <- save_peak_file(CTCF_ChIP_peaks, save = TRUE, "test_peak_file.bed")
print(out)

segregate_seqs Segregate input sequences into common and unique groups

Description

This function takes two sets of sequences and segregates them into common and unique sequences.
The common sequences are sequences that are present in both sets of sequences. The unique se-
quences are sequences that are present in only one of the sets of sequences.

Usage

segregate_seqs(seqs1, seqs2)

Arguments

seqs1 A set of sequences (GRanges object)

seqs2 A set of sequences (GRanges object)

Details

Sequences are considered common if their base pairs align in any position, even if they vary in
length. Consequently, while the number of common sequences remains consistent between both
sets, but the length and composition of these sequences may differ. As a result, the function returns
distinct sets of common sequences for each input set of sequences.

28 summit_to_motif

Value

A list containing the common sequences and unique sequences for each set of sequences. The list
contains the following GRanges objects:

• common_seqs1: Common sequences in seqs1

• common_seqs2: Common sequences in seqs2

• unique_seqs1: Unique sequences in seqs1

• unique_seqs2: Unique sequences in seqs2

See Also

findOverlaps

Examples

data("CTCF_ChIP_peaks", package = "MotifPeeker")
data("CTCF_TIP_peaks", package = "MotifPeeker")

seqs1 <- CTCF_ChIP_peaks
seqs2 <- CTCF_TIP_peaks
res <- segregate_seqs(seqs1, seqs2)
print(res)

summit_to_motif Calculate the distance between peak summits and motifs

Description

summit_to_motif() calculates the distance between each motif and its nearest peak summit. runFimo
from the memes package is used to recover the locations of each motif.

Usage

summit_to_motif(
peak_input,
motif,
fp_rate = 0.05,
genome_build,
out_dir = tempdir(),
meme_path = NULL,
verbose = FALSE,
...

)

summit_to_motif 29

Arguments

peak_input Either a path to the narrowPeak file or a GRanges peak object generated by
read_peak_file().

motif An object of class universalmotif.

fp_rate The desired false-positive rate. A p-value threshold will be selected based on
this value. The default false-positive rate is 0.05.

genome_build The genome build that the peak sequences should be derived from.

out_dir Location to save the 0-order background file. By default, the background file
will be written to a temporary directory.

meme_path path to "meme/bin/" (default: NULL). Will use default search behavior as de-
scribed in check_meme_install() if unset.

verbose A logical indicating whether to print verbose messages while running the func-
tion. (default = FALSE)

... Arguments passed on to memes::runFimo

parse_genomic_coord logical(1) whether to parse genomic position from
fasta headers. Fasta headers must be UCSC format positions (ie "chr:start-
end"), but base 1 indexed (GRanges format). If names of fasta entries are
genomic coordinates and parse_genomic_coord == TRUE, results will con-
tain genomic coordinates of motif matches, otherwise FIMO will return
relative coordinates (i.e. positions from 1 to length of the fasta entry).

skip_matched_sequence logical(1) whether or not to include the DNA se-
quence of the match. Default: FALSE. Note: jobs will complete faster if set
to TRUE. add_sequence() can be used to lookup the sequence after data
import if parse_genomic_coord is TRUE, so setting this flag is not strictly
needed.

max_strand if match is found on both strands, only report strand with best
match (default: TRUE).

text logical(1) (default: TRUE). No output files will be created on the filesys-
tem. The results are unsorted and no q-values are computed. This setting
allows fast searches on very large inputs. When set to FALSE FIMO will
discard 50% of the lower significance matches if >100,000 matches are de-
tected. text = FALSE will also incur a performance penalty because it must
first read a file to disk, then read it into memory. For these reasons, I suggest
keeping text = TRUE.

silent logical(1) whether to suppress stdout/stderr printing to console (de-
fault: TRUE). If the command is failing or giving unexpected output, setting
silent = FALSE can aid troubleshooting.

Details

To calculate the p-value threshold for a desired false-positive rate, we use the approximate formula:

p ≈ fp_rate
2× average peak width

(Dervied from FIMO documentation)

https://meme-suite.org/meme/doc/fimo-tutorial.html

30 summit_to_motif

Value

A list containing an expanded GRanges peak object with metadata columns relating to motif posi-
tions along with a vector of summit-to-motif distances for each valid peak.

See Also

runAme

Examples

if (memes::meme_is_installed()) {
data("CTCF_TIP_peaks", package = "MotifPeeker")
data("motif_MA1102.3", package = "MotifPeeker")

res <- summit_to_motif(
peak_input = CTCF_TIP_peaks,
motif = motif_MA1102.3,
fp_rate = 5e-02,
genome_build = BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38

)
print(res)
}

Index

∗ datasets
CTCF_ChIP_peaks, 5
CTCF_TIP_peaks, 6
motif_MA1102.3, 20
motif_MA1930.2, 21

∗ generate data.frames
get_df_distances, 9
get_df_enrichment, 11

average_ic(), 22

BamFile, 15
BSgenome-class, 4

calc_frip, 2
check_ENCODE, 3
check_genome_build, 4
check_JASPAR, 5
compare_motifs, 21
compare_motifs(), 23
convert_motifs(), 22
convert_type(), 22
CTCF_ChIP_peaks, 5
CTCF_TIP_peaks, 6

denovo_motifs, 6, 8, 22

find_motifs, 8
findOverlaps, 28

get_df_distances, 9, 13
get_df_enrichment, 11, 11
get_JASPARCORE, 14
GRanges, 7
GRanges-class, 26

make_DBscores(), 23
memes, 19
memes::runAme, 19
memes::runFimo, 29
motif_enrichment, 19

motif_MA1102.3, 20
motif_MA1930.2, 21
motif_similarity, 21
MotifPeeker, 14, 20, 21

read_motif_file, 24
read_peak_file, 10, 12, 15, 25
read_peak_file(), 26
runAme, 20, 30

save_peak_file, 26
segregate_seqs, 12, 27
summit_to_motif, 28

universalmotif, 7
universalmotif::compare_motifs, 22

31

	calc_frip
	check_ENCODE
	check_genome_build
	check_JASPAR
	CTCF_ChIP_peaks
	CTCF_TIP_peaks
	denovo_motifs
	find_motifs
	get_df_distances
	get_df_enrichment
	get_JASPARCORE
	MotifPeeker
	motif_enrichment
	motif_MA1102.3
	motif_MA1930.2
	motif_similarity
	read_motif_file
	read_peak_file
	save_peak_file
	segregate_seqs
	summit_to_motif
	Index

