Title: | Detect binding sites from motifs and ChIP-seq experiments, and compare binding sites across conditions |
---|---|
Description: | Detect binding sites using motifs IUPAC sequence or bed coordinates and ChIP-seq experiments in bed or bam format. Combine/compare binding sites across experiments, tissues, or conditions. All normalization and differential steps are done using TMM-GLM method. Signal decomposition is done by setting motifs as the centers of the mixture of normal distribution curves. |
Authors: | Peyman Zarrineh [cre, aut] |
Maintainer: | Peyman Zarrineh <[email protected]> |
License: | GPL-2 |
Version: | 1.11.0 |
Built: | 2024-10-30 08:29:23 UTC |
Source: | https://github.com/bioc/Motif2Site |
Read a bed file as Genomic Ranges.
Bed2Granges(fileName)
Bed2Granges(fileName)
fileName |
A table delimeted file in bed format |
granges format of given coordinates
yeastExampleFile=system.file("extdata", "YeastSampleMotif.bed", package="Motif2Site") ex <- Bed2Granges(yeastExampleFile) ex
yeastExampleFile=system.file("extdata", "YeastSampleMotif.bed", package="Motif2Site") ex <- Bed2Granges(yeastExampleFile) ex
Open raw counts IP and Inut files and with given total counts calculate Fold Enrichment values, and combine them into one file
combine2Table(outputName, replicateNumber, currentDir)
combine2Table(outputName, replicateNumber, currentDir)
outputName |
Name of the output table |
replicateNumber |
Number of the replicates |
currentDir |
Directory for I/O operations |
No return value
Get motif file names and combine them into a matrix, and keep the indices of original motifs in the combined file.
If the motif type is string the bed files are deleted after being combined to one matrix.
combineMotifFiles(motifFileNames, motifType = "BioString")
combineMotifFiles(motifFileNames, motifType = "BioString")
motifFileNames |
a vector motif file names |
motifType |
Type of motif string or give bed |
No return value
Combine count table and pvalue FE statistics into one file for motifs and regions seperately.
combineTestResults( motifFile, acceptedMotifsOutputFile, acceptedRegionsOutputFile, countTableFile, testTableFile, fdrCutoff, windowSize )
combineTestResults( motifFile, acceptedMotifsOutputFile, acceptedRegionsOutputFile, countTableFile, testTableFile, fdrCutoff, windowSize )
motifFile |
File contains motifs |
acceptedMotifsOutputFile |
File name of accepted motif table inforation |
acceptedRegionsOutputFile |
File name of accepteted region information |
countTableFile |
Table of count values file name |
testTableFile |
negative binomial test table file name |
fdrCutoff |
Pvalue cut-off related to the used FDR |
windowSize |
Window size around binding site. The total region would be 2*windowSize+1 |
The average binding intensity for each ChIP-seq
This function gets user provided bedfiles and compare them with a user provided region.
It returns this comparison to given user binding regions in terms of precision/recall.
compareBedFiless2UserProvidedRegions(bedfiles, motifnames, givenRegion)
compareBedFiless2UserProvidedRegions(bedfiles, motifnames, givenRegion)
bedfiles |
a vector of bed files |
motifnames |
a vector of the names related to bed files |
givenRegion |
granges of user provided binding regions |
A dataframe which includes precision recall values for each bed file
compareMotifs2UserProvidedRegions
yeastExampleFile=system.file("extdata", "YeastSampleMotif.bed", package="Motif2Site") YeastRegionsChIPseq <- Bed2Granges(yeastExampleFile) bed1 <- system.file("extdata", "YeastBedFile1.bed", package="Motif2Site") bed2 <- system.file("extdata", "YeastBedFile2.bed", package="Motif2Site") BedFilesVector <- c(bed1, bed2) SequenceComparison <- compareBedFiless2UserProvidedRegions( givenRegion=YeastRegionsChIPseq, bedfiles=BedFilesVector, motifnames=c("YeastBed1", "YeastBed2") ) SequenceComparison
yeastExampleFile=system.file("extdata", "YeastSampleMotif.bed", package="Motif2Site") YeastRegionsChIPseq <- Bed2Granges(yeastExampleFile) bed1 <- system.file("extdata", "YeastBedFile1.bed", package="Motif2Site") bed2 <- system.file("extdata", "YeastBedFile2.bed", package="Motif2Site") BedFilesVector <- c(bed1, bed2) SequenceComparison <- compareBedFiless2UserProvidedRegions( givenRegion=YeastRegionsChIPseq, bedfiles=BedFilesVector, motifnames=c("YeastBed1", "YeastBed2") ) SequenceComparison
Get combined ranges of bed files and compare them to given
binding regions in terms of precision/recall.
CompareBeds2GivenRegions(motifName, bindingRegions)
CompareBeds2GivenRegions(motifName, bindingRegions)
motifName |
a vector of motif names |
bindingRegions |
granges of provided binding regions |
A dataframe which includes precision recall values for each motif
Comparison of motifs locations to user provided binding regions.
It returns this comparison to given user binding regions in terms of precision/recall.
CompareMotifs2GivenRegions(motifs, mismatchNumbers, bindingRegions)
CompareMotifs2GivenRegions(motifs, mismatchNumbers, bindingRegions)
motifs |
a vector of motif characters in nucleotide IUPAC format |
mismatchNumbers |
a vector Number of mismatches allowed to match with motifs |
bindingRegions |
granges of user provided binding regions |
A dataframe which includes precision recall values for each motif
This function gets user provided motifs and related mismatch numbers, it detects motifs and compare them with a user provided region.
It returns this comparison to given user binding regions in terms of precision/recall.
The genome and build information should be provided and relevant BS genomes packages such as BSgenome.Mmusculus.UCSC.mm10 or BSgenome.Hsapiens.UCSC.hg38 must be installed for the used genome and builds.
compareMotifs2UserProvidedRegions( motifs, mismatchNumbers, genome, genomeBuild, DB = "UCSC", givenRegion, mainCHRs = TRUE )
compareMotifs2UserProvidedRegions( motifs, mismatchNumbers, genome, genomeBuild, DB = "UCSC", givenRegion, mainCHRs = TRUE )
motifs |
a vector of motif characters in nucleotide IUPAC format |
mismatchNumbers |
a vector Number of mismatches allowed to match with motifs |
genome |
The genome name such as "Hsapiens", "Mmusculus", "Dmelanogaster" |
genomeBuild |
The genome build such as "hg38", "hg19", "mm10", "dm3" |
DB |
The database of genome build. default: "UCSC" |
givenRegion |
granges of user provided binding regions |
mainCHRs |
If true only the major chromosome are considered, if FALSE Random, Uncharacterised, and Mithocondrial chromosomes are also considered |
A dataframe which includes precision recall values for each motif
compareBedFiless2UserProvidedRegions
# Artificial example in Yeast # install BSgenome.Scerevisiae.UCSC.sacCer3 prior to run this code yeastExampleFile=system.file("extdata", "YeastSampleMotif.bed", package="Motif2Site") YeastRegionsChIPseq <- Bed2Granges(yeastExampleFile) SequenceComparison <- compareMotifs2UserProvidedRegions( givenRegion=YeastRegionsChIPseq, motifs=c("TGATTSCAGGANT", "TGATTCCAGGANT", "TGATWSCAGGANT"), mismatchNumbers=c(1,0,2), genome="Scerevisiae", genomeBuild="sacCer3" ) SequenceComparison
# Artificial example in Yeast # install BSgenome.Scerevisiae.UCSC.sacCer3 prior to run this code yeastExampleFile=system.file("extdata", "YeastSampleMotif.bed", package="Motif2Site") YeastRegionsChIPseq <- Bed2Granges(yeastExampleFile) SequenceComparison <- compareMotifs2UserProvidedRegions( givenRegion=YeastRegionsChIPseq, motifs=c("TGATTSCAGGANT", "TGATTCCAGGANT", "TGATWSCAGGANT"), mismatchNumbers=c(1,0,2), genome="Scerevisiae", genomeBuild="sacCer3" ) SequenceComparison
Open raw counts IP and Inut files and with given total counts calculate Fold Enrichment values for the motifs
computeFoldEnrichment( ipCountFile, inputCountFile, ipTotalCount, inputTotalCount, outputName )
computeFoldEnrichment( ipCountFile, inputCountFile, ipTotalCount, inputTotalCount, outputName )
ipCountFile |
File contains motifs count values for IP experiment |
inputCountFile |
File contains motifs count values for Input experiment |
ipTotalCount |
Total short reads number in IP experiment |
inputTotalCount |
Total short reads number in Input experiment |
outputName |
Name of the output table |
No return value
Comparison Yeast synthetic motifs and binding sites: Two synthetic motif files in bed fromat are created to compare them with a synthetic binding site set in terms of precision and recall.
Fur binding sites detection in E. coli build NC_000913: Synthetic Fur ChIp-seq in E. coli was generated using real peaks published in Seo et al 2014. The ChIP-seq data are provided in bed format in fe and dpd condition and both contains two replicates. Synthetic Input ChIP-seq datasets were generated by randomly distributing short reads in E. coli genome. User provided candidate binding sites in bed format was generated by combining instances of "GWWTGANAA" motif with 1-mistmatch and "GWWTGAGAAT" with 2-mismatches in E. coli genome.
Three bed files to compare user provided motifs and binding sites in Yeast. Seven bed files to compare Fur ChIP-seq binding sites in E.coli.
The first synthetic motif set
The second synthetic motif set
The synthetic binding region
User provided Fur motif set in E. coli
Synthetic Fur ChIP-seq short reads in fe condition rep1
Synthetic Fur ChIP-seq short reads in fe condition rep2
Synthetic Fur ChIP-seq short reads in dpd condition rep1
Synthetic Fur ChIP-seq short reads in dpd condition rep2
The synthetic background Input ChIP-seq rep1
The synthetic background Input ChIP-seq rep2
## Data for examplex to compare user provided motifs and binding sites in Yeast yeastExampleFile=system.file("extdata", "YeastSampleMotif.bed", package="Motif2Site") YeastRegionsChIPseq <- Bed2Granges(yeastExampleFile) bed1 <- system.file("extdata", "YeastBedFile1.bed", package="Motif2Site") bed2 <- system.file("extdata", "YeastBedFile2.bed", package="Motif2Site") ## Data for examples of binding site detection in E. coli # FUR candidate motifs in NC_000913 E. coli FurMotifs = system.file("extdata", "FurMotifs.bed", package="Motif2Site") # ChIP-seq FUR fe datasets binding sites from user provided bed file # ChIP-seq datasets in bed single end format IPFe <- c(system.file("extdata", "FUR_fe1.bed", package="Motif2Site"), system.file("extdata", "FUR_fe2.bed", package="Motif2Site")) # ChIP-seq FUR dpd datasets binding sites from user provided bed file # ChIP-seq datasets in bed single end format IPDpd <- c(system.file("extdata", "FUR_dpd1.bed", package="Motif2Site"), system.file("extdata", "FUR_dpd2.bed", package="Motif2Site")) # ChIP-seq background Inputs <- c(system.file("extdata", "Input1.bed", package="Motif2Site"), system.file("extdata", "Input2.bed", package="Motif2Site"))
## Data for examplex to compare user provided motifs and binding sites in Yeast yeastExampleFile=system.file("extdata", "YeastSampleMotif.bed", package="Motif2Site") YeastRegionsChIPseq <- Bed2Granges(yeastExampleFile) bed1 <- system.file("extdata", "YeastBedFile1.bed", package="Motif2Site") bed2 <- system.file("extdata", "YeastBedFile2.bed", package="Motif2Site") ## Data for examples of binding site detection in E. coli # FUR candidate motifs in NC_000913 E. coli FurMotifs = system.file("extdata", "FurMotifs.bed", package="Motif2Site") # ChIP-seq FUR fe datasets binding sites from user provided bed file # ChIP-seq datasets in bed single end format IPFe <- c(system.file("extdata", "FUR_fe1.bed", package="Motif2Site"), system.file("extdata", "FUR_fe2.bed", package="Motif2Site")) # ChIP-seq FUR dpd datasets binding sites from user provided bed file # ChIP-seq datasets in bed single end format IPDpd <- c(system.file("extdata", "FUR_dpd1.bed", package="Motif2Site"), system.file("extdata", "FUR_dpd2.bed", package="Motif2Site")) # ChIP-seq background Inputs <- c(system.file("extdata", "Input1.bed", package="Motif2Site"), system.file("extdata", "Input2.bed", package="Motif2Site"))
Gets motif locations and related short reads and select the motifs which are non-skewed: abs(skewness) < 0.3 and more short reads binds closer to site, and show strong binding after decomposition.
Decomposition is performed by using mixtools normalmixEM command fixing mu as motif locations.
decomposeBindingSignal( windowSize, replicateNumber, acceptedRegionsOutputFile = "BindingRegions", acceptedMotifsOutputFile = "BindingMotifsTable", currentDir )
decomposeBindingSignal( windowSize, replicateNumber, acceptedRegionsOutputFile = "BindingRegions", acceptedMotifsOutputFile = "BindingMotifsTable", currentDir )
windowSize |
Window size around binding site. The total region would be 2*windowSize+1 |
replicateNumber |
experiment replicate number |
acceptedRegionsOutputFile |
File name contains binding regions coordinates and related motifs |
acceptedMotifsOutputFile |
File name contains motifs coordinates and related information, Pvalue, FE, etc |
currentDir |
Directory for I/O operations |
motifStatistics Ratio of accepted motifs, rejected motifs due to skewnewss, and rejected motifs after decomposition
Delete multiple give files as a vector of characters
DeleteMultipleFiles(files)
DeleteMultipleFiles(files)
files |
a vector of files |
No return value
This function generates heuristic distribution of short reads around binding sites which do not need to deconvolve, total numer of short reads and window size as number of neucleotid around binding sites.
It fits a kernel to the distribution and return the distribution as output. The total sum of returned values is equal to one. It plots this kernel.
Also it calculates FRiPs (Fraction of Reads in Peaks) for each
ChIP-seq and returns it. FRiPs and kernel distributions are measures of goodness of ChIP-seq experiments and selected motifs.
deriveHeuristicBindingDistribution( chipSeq, averageBindings, windowSize, acceptedRegionsOutputFile = "BindingRegions", currentDir )
deriveHeuristicBindingDistribution( chipSeq, averageBindings, windowSize, acceptedRegionsOutputFile = "BindingRegions", currentDir )
chipSeq |
ChIP-seq aligned 1nt short reads |
averageBindings |
expected short reads number aligned to a random location of genes of given size |
windowSize |
Window size around binding site. The total region would be 2*windowSize+1 |
acceptedRegionsOutputFile |
Accepted binding regions |
currentDir |
Directory for I/O operations |
FRiPs Fraction of Reads in Peaks
DETECT Binding sites with given motif and mismatch number as well genome/build, False Discovery Rate for a given experiment name.
This function is called by both
DetectBindingSitesBed
and
DetectBindingSitesMotif
with different input.
DetectBindingSites( From, BedFile, motif, mismatchNumber, chipSeq, genome, genomeBuild, DB = "UCSC", fdrValue = 0.05, windowSize = 100, GivenRegion = NA, currentDir )
DetectBindingSites( From, BedFile, motif, mismatchNumber, chipSeq, genome, genomeBuild, DB = "UCSC", fdrValue = 0.05, windowSize = 100, GivenRegion = NA, currentDir )
From |
Type of motif dataset either "Motif" or "Bed" |
BedFile |
Motif locations in bed format file |
motif |
motif characters in nucleotide IUPAC format |
mismatchNumber |
Number of mismatches allowed to match with motifs |
chipSeq |
ChIP-seq alignment both IP and background in 1nt bed format files |
genome |
The genome name such as "Hsapiens", "Mmusculus", "Dmelanogaster" |
genomeBuild |
The genome build such as "hg38", "hg19", "mm10", "dm3" |
DB |
The database of genome build. default: "UCSC" |
fdrValue |
FDR value cut-off |
windowSize |
Window size around binding site. The total region would be 2*windowSize+1 |
GivenRegion |
granges of user provided binding regions |
currentDir |
Directory for I/O operations |
A list of FRiPs, sequence statistics, and Motif statistics
Takes user provied bed regions, and check for validity of them. Read bam or bed alignment files and convert to 1 nt bed and call detect binding site from 1nt bed.
DetectBindingSitesBed( BedFile, IPfiles, BackgroundFiles, genome, genomeBuild, DB = "UCSC", fdrValue = 0.05, expName = "Motif_Centric_Peaks", windowSize = 100, format = "" )
DetectBindingSitesBed( BedFile, IPfiles, BackgroundFiles, genome, genomeBuild, DB = "UCSC", fdrValue = 0.05, expName = "Motif_Centric_Peaks", windowSize = 100, format = "" )
BedFile |
Motif locations in bed format file |
IPfiles |
IP ChIP-seq alignment files |
BackgroundFiles |
Background ChIP-seq alignment files. Can be Input experimetn, DNA whole exctract, etc. |
genome |
The genome name such as "Hsapiens", "Mmusculus", "Dmelanogaster" |
genomeBuild |
The genome build such as "hg38", "hg19", "mm10", "dm3" |
DB |
The database of genome build. default: "UCSC" |
fdrValue |
FDR value cut-off |
expName |
The name of the output table |
windowSize |
Window size around binding site. The total region would be 2*windowSize+1 |
format |
alignment format and should be one of these: "BAMPE", "BAMSE", "BEDPE", "BEDSE" |
peakCallingStatistics A list FRiPs, sequence statistics, and Motif statistics
# FUR candidate motifs in NC_000913 E. coli FurMotifs=system.file("extdata", "FurMotifs.bed", package="Motif2Site") # ChIP-seq datasets in bed single end format IPFe <- c(system.file("extdata", "FUR_fe1.bed", package="Motif2Site"), system.file("extdata", "FUR_fe2.bed", package="Motif2Site")) Inputs <- c(system.file("extdata", "Input1.bed", package="Motif2Site"), system.file("extdata", "Input2.bed", package="Motif2Site")) FURfeBedInputStats <- DetectBindingSitesBed(BedFile=FurMotifs, IPfiles=IPFe, BackgroundFiles=Inputs, genome="Ecoli", genomeBuild="20080805", DB="NCBI", expName="FUR_Fe_BedInput", format="BEDSE" )
# FUR candidate motifs in NC_000913 E. coli FurMotifs=system.file("extdata", "FurMotifs.bed", package="Motif2Site") # ChIP-seq datasets in bed single end format IPFe <- c(system.file("extdata", "FUR_fe1.bed", package="Motif2Site"), system.file("extdata", "FUR_fe2.bed", package="Motif2Site")) Inputs <- c(system.file("extdata", "Input1.bed", package="Motif2Site"), system.file("extdata", "Input2.bed", package="Motif2Site")) FURfeBedInputStats <- DetectBindingSitesBed(BedFile=FurMotifs, IPfiles=IPFe, BackgroundFiles=Inputs, genome="Ecoli", genomeBuild="20080805", DB="NCBI", expName="FUR_Fe_BedInput", format="BEDSE" )
DETECT Binding sites with given motif and mismatch number as well genome/build, False Discovery Rate for a given experiment name. Read bam or bed alignment files and convert to 1 nt bed and detect binding site among motifs from 1nt bed alignment.
DetectBindingSitesMotif( motif, mismatchNumber, IPfiles, BackgroundFiles, genome, genomeBuild, DB = "UCSC", fdrValue = 0.05, expName = "Motif_Centric_Peaks", windowSize = 100, format = "", GivenRegion = NA )
DetectBindingSitesMotif( motif, mismatchNumber, IPfiles, BackgroundFiles, genome, genomeBuild, DB = "UCSC", fdrValue = 0.05, expName = "Motif_Centric_Peaks", windowSize = 100, format = "", GivenRegion = NA )
motif |
motif characters in nucleotide IUPAC format |
mismatchNumber |
Number of mismatches allowed to match with motifs |
IPfiles |
IP ChIP-seq alignment files |
BackgroundFiles |
Background ChIP-seq alignment files. Can be Input experimetn, DNA whole exctract, etc. |
genome |
The genome name such as "Hsapiens", "Mmusculus", "Dmelanogaster" |
genomeBuild |
The genome build such as "hg38", "hg19", "mm10", "dm3" |
DB |
The database of genome build. default: "UCSC" |
fdrValue |
FDR value cut-off |
expName |
The name of the output table |
windowSize |
Window size around binding site. The total region would be 2*windowSize+1 |
format |
alignment format and should be one of these: "BAMPE", "BAMSE", "BEDPE", "BEDSE" |
GivenRegion |
granges of user provided binding regions |
A list FRiPs, sequence statistics, and Motif statistics
# ChIP-seq datasets in bed single end format IPFe <- c(system.file("extdata", "FUR_fe1.bed", package="Motif2Site"), system.file("extdata", "FUR_fe2.bed", package="Motif2Site")) Inputs <- c(system.file("extdata", "Input1.bed", package="Motif2Site"), system.file("extdata", "Input2.bed", package="Motif2Site")) # Granages region for motif search NC_000913_Coordiante <- GenomicRanges::GRanges(seqnames=S4Vectors::Rle("NC_000913"), ranges=IRanges::IRanges(1, 4639675)) FURfeStringInputStats <- DetectBindingSitesMotif(motif="GWWTGAGAA", mismatchNumber=1, IPfiles=IPFe, BackgroundFiles=Inputs, genome="Ecoli", genomeBuild="20080805", DB="NCBI", expName="FUR_Fe_StringInput", format="BEDSE", GivenRegion=NC_000913_Coordiante )
# ChIP-seq datasets in bed single end format IPFe <- c(system.file("extdata", "FUR_fe1.bed", package="Motif2Site"), system.file("extdata", "FUR_fe2.bed", package="Motif2Site")) Inputs <- c(system.file("extdata", "Input1.bed", package="Motif2Site"), system.file("extdata", "Input2.bed", package="Motif2Site")) # Granages region for motif search NC_000913_Coordiante <- GenomicRanges::GRanges(seqnames=S4Vectors::Rle("NC_000913"), ranges=IRanges::IRanges(1, 4639675)) FURfeStringInputStats <- DetectBindingSitesMotif(motif="GWWTGAGAA", mismatchNumber=1, IPfiles=IPFe, BackgroundFiles=Inputs, genome="Ecoli", genomeBuild="20080805", DB="NCBI", expName="FUR_Fe_StringInput", format="BEDSE", GivenRegion=NC_000913_Coordiante )
Return FDR cut-off for a user provided fdrvalue using Benjamini Hochberg on main motif test data
DetectFdrCutoffBH(TestTableFile = "TestResults", fdrValue = 0.05)
DetectFdrCutoffBH(TestTableFile = "TestResults", fdrValue = 0.05)
TestTableFile |
test table which contains pvalues |
fdrValue |
FDR cut-off |
pvalue cut-off
Find motif instances in a given genome. It gets motif strings and related allowed mismatchnumbers and returns genomewide motif instances.
The genome and build information should be provided and relevant BS genomes packages such as BSgenome.Mmusculus.UCSC.mm10 or BSgenome.Hsapiens.UCSC.hg38 must be installed for the used genome and builds.
findMotifs( motif, mismatchNumber, genome, genomeBuild, DB = "UCSC", mainCHRs = TRUE, firstCHR = FALSE, MotifLocationName = "Motif_Locations", limitedRegion = NA )
findMotifs( motif, mismatchNumber, genome, genomeBuild, DB = "UCSC", mainCHRs = TRUE, firstCHR = FALSE, MotifLocationName = "Motif_Locations", limitedRegion = NA )
motif |
motif characters in nucleotide IUPAC format |
mismatchNumber |
Number of mismatch allowed to match with motif |
genome |
The genome name such as "Hsapiens", "Mmusculus", "Dmelanogaster" |
genomeBuild |
The genome build such as "hg38", "hg19", "mm10", "dm3" |
DB |
The database of genome build. default: "UCSC" |
mainCHRs |
If true only the major chromosome are considered, if FALSE Random, Uncharacterised, and Mithocondrial chromosomes are also considered |
firstCHR |
If true only Chr1 is used to find motifs. Default is FALSE |
MotifLocationName |
The name of the file of the motif locations |
limitedRegion |
If specified the motifs are detected in the provided granges |
No return value
This function gets heuristic distribution of short reads around binding sites, total numer of short reads and window size as number of neucleotid around binding sites.
It fits a kernel to the distribution and return the distribution as output. The total sum of returned values is equal to one.
fitKernelDensity(heuristicDistribution, totalShortReads, windowSize)
fitKernelDensity(heuristicDistribution, totalShortReads, windowSize)
heuristicDistribution |
Original short distribution |
totalShortReads |
Total number of short reads |
windowSize |
Window size around binding site. The total region would be 2*windowSize+1 |
kernel returns fitted kernel distribution of short reads around binding sites
Take alignment files in bam or bed fomat and convert them to 1 nucleotide bed file
generate1ntBedAlignment(InputFile, bedFile, format = "")
generate1ntBedAlignment(InputFile, bedFile, format = "")
InputFile |
Original alignment file name |
bedFile |
Name of output 1nt bed file |
format |
alignment format and should be one of these: "BAMPE", "BAMSE", "BEDPE", "BEDSE" |
No return value
Take ChIP-seq and motifs and detect Binding sites. It also combines/compares binding sites across experiments. Here is a synthetic example of differential Fur binding sites in E.coli:
# FUR candidate motifs in NC_000913 E. coli FurMotifs=system.file("extdata", "FurMotifs.bed", package="Motif2Site") # ChIP-seq datasets fe in bed single end format IPFe <- c(system.file("extdata", "FUR_fe1.bed", package="Motif2Site"), system.file("extdata", "FUR_fe2.bed", package="Motif2Site")) Inputs <- c(system.file("extdata", "Input1.bed", package="Motif2Site"), system.file("extdata", "Input2.bed", package="Motif2Site")) FURfeBedInputStats <- DetectBindingSitesBed(BedFile=FurMotifs, IPfiles=IPFe, BackgroundFiles=Inputs, genome="Ecoli", genomeBuild="20080805", DB="NCBI", expName="FUR_Fe_BedInput", format="BEDSE" ) # ChIP-seq datasets dpd in bed single end format IPDpd <- c(system.file("extdata", "FUR_dpd1.bed", package="Motif2Site"), system.file("extdata", "FUR_dpd2.bed", package="Motif2Site")) FURdpdBedInputStats <- DetectBindingSitesBed(BedFile=FurMotifs, IPfiles=IPDpd, BackgroundFiles=Inputs, genome="Ecoli", genomeBuild="20080805", DB="NCBI", expName="FUR_Dpd_BedInput", format="BEDSE" ) # Combine all FUR binding sites into one table corMAT <- recenterBindingSitesAcrossExperiments( expLocations=c("FUR_Fe_BedInput","FUR_Dpd_BedInput"), experimentNames=c("FUR_Fe","FUR_Dpd"), expName="combinedFUR", ) corMAT # Differential binding sites across FUR conditions fe vs dpd diffFUR <- pairwisDifferential(tableOfCountsDir="combinedFUR", exp1="FUR_Fe", exp2="FUR_Dpd", FDRcutoff=0.05, logFCcuttoff=1 ) FeUp <- diffFUR[[1]] DpdUp <- diffFUR[[2]] TotalComparison <- diffFUR[[3]] head(TotalComparison)
# FUR candidate motifs in NC_000913 E. coli FurMotifs=system.file("extdata", "FurMotifs.bed", package="Motif2Site") # ChIP-seq datasets fe in bed single end format IPFe <- c(system.file("extdata", "FUR_fe1.bed", package="Motif2Site"), system.file("extdata", "FUR_fe2.bed", package="Motif2Site")) Inputs <- c(system.file("extdata", "Input1.bed", package="Motif2Site"), system.file("extdata", "Input2.bed", package="Motif2Site")) FURfeBedInputStats <- DetectBindingSitesBed(BedFile=FurMotifs, IPfiles=IPFe, BackgroundFiles=Inputs, genome="Ecoli", genomeBuild="20080805", DB="NCBI", expName="FUR_Fe_BedInput", format="BEDSE" ) # ChIP-seq datasets dpd in bed single end format IPDpd <- c(system.file("extdata", "FUR_dpd1.bed", package="Motif2Site"), system.file("extdata", "FUR_dpd2.bed", package="Motif2Site")) FURdpdBedInputStats <- DetectBindingSitesBed(BedFile=FurMotifs, IPfiles=IPDpd, BackgroundFiles=Inputs, genome="Ecoli", genomeBuild="20080805", DB="NCBI", expName="FUR_Dpd_BedInput", format="BEDSE" ) # Combine all FUR binding sites into one table corMAT <- recenterBindingSitesAcrossExperiments( expLocations=c("FUR_Fe_BedInput","FUR_Dpd_BedInput"), experimentNames=c("FUR_Fe","FUR_Dpd"), expName="combinedFUR", ) corMAT # Differential binding sites across FUR conditions fe vs dpd diffFUR <- pairwisDifferential(tableOfCountsDir="combinedFUR", exp1="FUR_Fe", exp2="FUR_Dpd", FDRcutoff=0.05, logFCcuttoff=1 ) FeUp <- diffFUR[[1]] DpdUp <- diffFUR[[2]] TotalComparison <- diffFUR[[3]] head(TotalComparison)
Using edgeR TMM normalization and estimating dispersion as well as Adapting exact test function from edgeR to model IP vs Input counts.
To make this function memory effcient motifs into smaller sets and compute them seperately and combine them at the end.
motifBindingNegativeBinomialCount( countTableFile, replicateNumber, outputFile, currentDir )
motifBindingNegativeBinomialCount( countTableFile, replicateNumber, outputFile, currentDir )
countTableFile |
Table of counts which contains all IP and Input value raw counts |
replicateNumber |
experiment replicate number |
outputFile |
The name of the output file generated by this function |
currentDir |
Directory for I/O operations |
A dataframe includes fold enrichment, pvalue, and normalized count values
count 1nt short reads related to each motif for a given ChIPseq file.
motifChipCount(motifFile, chipFile, windowSize, outputName)
motifChipCount(motifFile, chipFile, windowSize, outputName)
motifFile |
File contains motifs |
chipFile |
ChIP-seq 1nt alignment locations in bed format |
windowSize |
Window size around binding site. The total region would be 2*windowSize+1 |
outputName |
Name of the output table |
Total number of short reads in motif reagions
count short reads related to each motif for all ChIPseq files both IP and Input.
motifCount(motifFile, chipSeq, windowSize, outputName, currentDir)
motifCount(motifFile, chipSeq, windowSize, outputName, currentDir)
motifFile |
File contains motifs |
chipSeq |
dataframe of ChIP-seq 1nt alignment location |
windowSize |
Window size around binding site. The total region would be 2*windowSize+1 |
outputName |
Name of the output table |
currentDir |
Directory for I/O operations |
No return value
Remove unmmaped regions, low and high binding regions and regions without fold change, and call negative binomial or nb test for the remaining regions.
motifTablePreProcess(countTableFile, outFile, currentDir)
motifTablePreProcess(countTableFile, outFile, currentDir)
countTableFile |
Tabl of count values around motifs for all ChIP-seq experiments |
outFile |
The name of the output file |
currentDir |
Directory for I/O operations |
sequencingStatitics A dataframe consists of the ratio of non-sequenced, low-sequenced, ang high-sequenced regions.
Adapted exact test function from edgeR to compare IP vs Input with replicates. Input is a DGELIST with common and tag-wise dispression has been already caluclated by edgeR commands.
It calculates abundaces with mglmOneGroup identical to edgeR. logFE was calculated identiacl to edgeR. For the pvalue test negative binomial test is performed on the calculated abundance.
NegativeBinomialTestWithReplicate(object, prior.count = 0.125)
NegativeBinomialTestWithReplicate(object, prior.count = 0.125)
object |
Table of counts which contains all IP and Input value counts, TMM normalized and contains dispersion values |
prior.count |
edgeR prior value |
log fold enrichment, pvalue, and normalized count values
Take combined matrix of motif counts generated by
recenterBindingSitesAcrossExperiments
, and experiment names.
It detect differential motifs using edgeR TMM nomralizaiton with Generalized
linear model
pairwisDifferential( tableOfCountsDir = "", exp1, exp2, FDRcutoff = 0.05, logFCcuttoff = 1 )
pairwisDifferential( tableOfCountsDir = "", exp1, exp2, FDRcutoff = 0.05, logFCcuttoff = 1 )
tableOfCountsDir |
Directory which conatins the combined motifs and ChIP-seq count file |
exp1 |
Experiment name which will be compared in pairwise comparison |
exp2 |
Experiment name which will be compared in pairwise comparison |
FDRcutoff |
FDR cutoff applies on pvalue distribution |
logFCcuttoff |
log fold change cutoff |
A list of differential motifs, motif1 and motif2 as well as a table of total motifs and log fold changes
recenterBindingSitesAcrossExperiments
# FUR candidate motifs in NC_000913 E. coli FurMotifs=system.file("extdata", "FurMotifs.bed", package="Motif2Site") # ChIP-seq datasets fe in bed single end format IPFe <- c(system.file("extdata", "FUR_fe1.bed", package="Motif2Site"), system.file("extdata", "FUR_fe2.bed", package="Motif2Site")) Inputs <- c(system.file("extdata", "Input1.bed", package="Motif2Site"), system.file("extdata", "Input2.bed", package="Motif2Site")) FURfeBedInputStats <- DetectBindingSitesBed(BedFile=FurMotifs, IPfiles=IPFe, BackgroundFiles=Inputs, genome="Ecoli", genomeBuild="20080805", DB="NCBI", expName="FUR_Fe_BedInput", format="BEDSE" ) # ChIP-seq datasets dpd in bed single end format IPDpd <- c(system.file("extdata", "FUR_dpd1.bed", package="Motif2Site"), system.file("extdata", "FUR_dpd2.bed", package="Motif2Site")) FURdpdBedInputStats <- DetectBindingSitesBed(BedFile=FurMotifs, IPfiles=IPDpd, BackgroundFiles=Inputs, genome="Ecoli", genomeBuild="20080805", DB="NCBI", expName="FUR_Dpd_BedInput", format="BEDSE" ) # Combine all FUR binding sites into one table corMAT <- recenterBindingSitesAcrossExperiments( expLocations=c("FUR_Fe_BedInput","FUR_Dpd_BedInput"), experimentNames=c("FUR_Fe","FUR_Dpd"), expName="combinedFUR", ) # Differential binding sites across FUR conditions fe vs dpd diffFUR <- pairwisDifferential(tableOfCountsDir="combinedFUR", exp1="FUR_Fe", exp2="FUR_Dpd", FDRcutoff=0.05, logFCcuttoff=1 ) FeUp <- diffFUR[[1]] DpdUp <- diffFUR[[2]] TotalComparison <- diffFUR[[3]] head(TotalComparison)
# FUR candidate motifs in NC_000913 E. coli FurMotifs=system.file("extdata", "FurMotifs.bed", package="Motif2Site") # ChIP-seq datasets fe in bed single end format IPFe <- c(system.file("extdata", "FUR_fe1.bed", package="Motif2Site"), system.file("extdata", "FUR_fe2.bed", package="Motif2Site")) Inputs <- c(system.file("extdata", "Input1.bed", package="Motif2Site"), system.file("extdata", "Input2.bed", package="Motif2Site")) FURfeBedInputStats <- DetectBindingSitesBed(BedFile=FurMotifs, IPfiles=IPFe, BackgroundFiles=Inputs, genome="Ecoli", genomeBuild="20080805", DB="NCBI", expName="FUR_Fe_BedInput", format="BEDSE" ) # ChIP-seq datasets dpd in bed single end format IPDpd <- c(system.file("extdata", "FUR_dpd1.bed", package="Motif2Site"), system.file("extdata", "FUR_dpd2.bed", package="Motif2Site")) FURdpdBedInputStats <- DetectBindingSitesBed(BedFile=FurMotifs, IPfiles=IPDpd, BackgroundFiles=Inputs, genome="Ecoli", genomeBuild="20080805", DB="NCBI", expName="FUR_Dpd_BedInput", format="BEDSE" ) # Combine all FUR binding sites into one table corMAT <- recenterBindingSitesAcrossExperiments( expLocations=c("FUR_Fe_BedInput","FUR_Dpd_BedInput"), experimentNames=c("FUR_Fe","FUR_Dpd"), expName="combinedFUR", ) # Differential binding sites across FUR conditions fe vs dpd diffFUR <- pairwisDifferential(tableOfCountsDir="combinedFUR", exp1="FUR_Fe", exp2="FUR_Dpd", FDRcutoff=0.05, logFCcuttoff=1 ) FeUp <- diffFUR[[1]] DpdUp <- diffFUR[[2]] TotalComparison <- diffFUR[[3]] head(TotalComparison)
mixtools and MASS::fitdistr generates warning by cat which is suppressed by this funcitons
quiet(func)
quiet(func)
func |
functional input call for which cat messages should be supressed |
No return value
Take experiment folder locations and experiment names and combine them into a combined matrix of motifs and ChIP-seq counts
Experiment folders must be generated either by
DetectBindingSitesBed
or DetectBindingSitesMotif
.
recenterBindingSitesAcrossExperiments( expLocations, experimentNames, expName = "combinedData", fdrValue = 0.05, fdrCrossExp = 0.001 )
recenterBindingSitesAcrossExperiments( expLocations, experimentNames, expName = "combinedData", fdrValue = 0.05, fdrCrossExp = 0.001 )
expLocations |
The path to the experiment folders |
experimentNames |
Name of the experiment to be used in combined ChIP-seq |
expName |
Name of the combined matrix |
fdrValue |
FDR cut-off to accept binding in each ChIP-seq experiments |
fdrCrossExp |
If no experiment fullfill this cutoff, the motif is not considered |
A pariwise Pearson correlation matrix across experiments
# FUR candidate motifs in NC_000913 E. coli FurMotifs=system.file("extdata", "FurMotifs.bed", package="Motif2Site") # ChIP-seq datasets fe in bed single end format IPFe <- c(system.file("extdata", "FUR_fe1.bed", package="Motif2Site"), system.file("extdata", "FUR_fe2.bed", package="Motif2Site")) Inputs <- c(system.file("extdata", "Input1.bed", package="Motif2Site"), system.file("extdata", "Input2.bed", package="Motif2Site")) FURfeBedInputStats <- DetectBindingSitesBed(BedFile=FurMotifs, IPfiles=IPFe, BackgroundFiles=Inputs, genome="Ecoli", genomeBuild="20080805", DB="NCBI", expName="FUR_Fe_BedInput", format="BEDSE" ) # ChIP-seq datasets dpd in bed single end format IPDpd <- c(system.file("extdata", "FUR_dpd1.bed", package="Motif2Site"), system.file("extdata", "FUR_dpd2.bed", package="Motif2Site")) FURdpdBedInputStats <- DetectBindingSitesBed(BedFile=FurMotifs, IPfiles=IPDpd, BackgroundFiles=Inputs, genome="Ecoli", genomeBuild="20080805", DB="NCBI", expName="FUR_Dpd_BedInput", format="BEDSE" ) # Combine all FUR binding sites into one table corMAT <- recenterBindingSitesAcrossExperiments( expLocations=c("FUR_Fe_BedInput","FUR_Dpd_BedInput"), experimentNames=c("FUR_Fe","FUR_Dpd"), expName="combinedFUR", ) corMAT
# FUR candidate motifs in NC_000913 E. coli FurMotifs=system.file("extdata", "FurMotifs.bed", package="Motif2Site") # ChIP-seq datasets fe in bed single end format IPFe <- c(system.file("extdata", "FUR_fe1.bed", package="Motif2Site"), system.file("extdata", "FUR_fe2.bed", package="Motif2Site")) Inputs <- c(system.file("extdata", "Input1.bed", package="Motif2Site"), system.file("extdata", "Input2.bed", package="Motif2Site")) FURfeBedInputStats <- DetectBindingSitesBed(BedFile=FurMotifs, IPfiles=IPFe, BackgroundFiles=Inputs, genome="Ecoli", genomeBuild="20080805", DB="NCBI", expName="FUR_Fe_BedInput", format="BEDSE" ) # ChIP-seq datasets dpd in bed single end format IPDpd <- c(system.file("extdata", "FUR_dpd1.bed", package="Motif2Site"), system.file("extdata", "FUR_dpd2.bed", package="Motif2Site")) FURdpdBedInputStats <- DetectBindingSitesBed(BedFile=FurMotifs, IPfiles=IPDpd, BackgroundFiles=Inputs, genome="Ecoli", genomeBuild="20080805", DB="NCBI", expName="FUR_Dpd_BedInput", format="BEDSE" ) # Combine all FUR binding sites into one table corMAT <- recenterBindingSitesAcrossExperiments( expLocations=c("FUR_Fe_BedInput","FUR_Dpd_BedInput"), experimentNames=c("FUR_Fe","FUR_Dpd"), expName="combinedFUR", ) corMAT
Gets motif locations and related short reads and returns the motifs which are non-skewed abs(skewness) < 0.3 and more short reads binds closer to site.
It counts around motif with interval windowSize and windowSize/2, if the smaller window is less than half of the larger one then motif is not considered as Bell-shape
removeNonBellShapedMotifs(motifLocations, readLocations, windowSize)
removeNonBellShapedMotifs(motifLocations, readLocations, windowSize)
motifLocations |
A vector of motif locations |
readLocations |
A vector of 1nt short reads |
windowSize |
Window size around binding site. The total region would be 2*windowSize+1 |
The coordinates of accepted motifs
Gets motif locations and related short reads and returns the motif which include the highest number of short reads around it.
strongestMotif(motifLocations, readLocations, windowSize)
strongestMotif(motifLocations, readLocations, windowSize)
motifLocations |
A vector of motif locations |
readLocations |
A vector of 1nt short reads |
windowSize |
Window size around binding site. The total region would be 2*windowSize+1 |
The strongest motif