Package 'Motif2Site'

Title: Detect binding sites from motifs and ChIP-seq experiments, and compare binding sites across conditions
Description: Detect binding sites using motifs IUPAC sequence or bed coordinates and ChIP-seq experiments in bed or bam format. Combine/compare binding sites across experiments, tissues, or conditions. All normalization and differential steps are done using TMM-GLM method. Signal decomposition is done by setting motifs as the centers of the mixture of normal distribution curves.
Authors: Peyman Zarrineh [cre, aut]
Maintainer: Peyman Zarrineh <[email protected]>
License: GPL-2
Version: 1.11.0
Built: 2024-11-27 05:01:59 UTC
Source: https://github.com/bioc/Motif2Site

Help Index


Read a bed file as Genomic Ranges

Description

Read a bed file as Genomic Ranges.

Usage

Bed2Granges(fileName)

Arguments

fileName

A table delimeted file in bed format

Value

granges format of given coordinates

Examples

yeastExampleFile=system.file("extdata", "YeastSampleMotif.bed",
     package="Motif2Site")
ex <- Bed2Granges(yeastExampleFile)
ex

Combine all IP and Input count table files

Description

Open raw counts IP and Inut files and with given total counts calculate Fold Enrichment values, and combine them into one file

Usage

combine2Table(outputName, replicateNumber, currentDir)

Arguments

outputName

Name of the output table

replicateNumber

Number of the replicates

currentDir

Directory for I/O operations

Value

No return value


Combine motif bed files into a combined ranges

Description

Get motif file names and combine them into a matrix, and keep the indices of original motifs in the combined file.

If the motif type is string the bed files are deleted after being combined to one matrix.

Usage

combineMotifFiles(motifFileNames, motifType = "BioString")

Arguments

motifFileNames

a vector motif file names

motifType

Type of motif string or give bed

Value

No return value


Combine count Table and statistics table

Description

Combine count table and pvalue FE statistics into one file for motifs and regions seperately.

Usage

combineTestResults(
  motifFile,
  acceptedMotifsOutputFile,
  acceptedRegionsOutputFile,
  countTableFile,
  testTableFile,
  fdrCutoff,
  windowSize
)

Arguments

motifFile

File contains motifs

acceptedMotifsOutputFile

File name of accepted motif table inforation

acceptedRegionsOutputFile

File name of accepteted region information

countTableFile

Table of count values file name

testTableFile

negative binomial test table file name

fdrCutoff

Pvalue cut-off related to the used FDR

windowSize

Window size around binding site. The total region would be 2*windowSize+1

Value

The average binding intensity for each ChIP-seq


Compare a set of bed files to a user provided regions set

Description

This function gets user provided bedfiles and compare them with a user provided region.

It returns this comparison to given user binding regions in terms of precision/recall.

Usage

compareBedFiless2UserProvidedRegions(bedfiles, motifnames, givenRegion)

Arguments

bedfiles

a vector of bed files

motifnames

a vector of the names related to bed files

givenRegion

granges of user provided binding regions

Value

A dataframe which includes precision recall values for each bed file

See Also

compareMotifs2UserProvidedRegions

Examples

yeastExampleFile=system.file("extdata", "YeastSampleMotif.bed",
                              package="Motif2Site")
YeastRegionsChIPseq <- Bed2Granges(yeastExampleFile)
bed1 <- system.file("extdata", "YeastBedFile1.bed", package="Motif2Site")
bed2 <- system.file("extdata", "YeastBedFile2.bed", package="Motif2Site")
BedFilesVector <- c(bed1, bed2)
SequenceComparison <- compareBedFiless2UserProvidedRegions(
     givenRegion=YeastRegionsChIPseq,
     bedfiles=BedFilesVector,
     motifnames=c("YeastBed1", "YeastBed2")
     )
SequenceComparison

Compare a set of bed files to a provided regions set

Description

Get combined ranges of bed files and compare them to given

binding regions in terms of precision/recall.

Usage

CompareBeds2GivenRegions(motifName, bindingRegions)

Arguments

motifName

a vector of motif names

bindingRegions

granges of provided binding regions

Value

A dataframe which includes precision recall values for each motif


Comparison motifs locations to a given regions set

Description

Comparison of motifs locations to user provided binding regions.

It returns this comparison to given user binding regions in terms of precision/recall.

Usage

CompareMotifs2GivenRegions(motifs, mismatchNumbers, bindingRegions)

Arguments

motifs

a vector of motif characters in nucleotide IUPAC format

mismatchNumbers

a vector Number of mismatches allowed to match with motifs

bindingRegions

granges of user provided binding regions

Value

A dataframe which includes precision recall values for each motif


Compare a set of motifs to a user provided regions set

Description

This function gets user provided motifs and related mismatch numbers, it detects motifs and compare them with a user provided region.

It returns this comparison to given user binding regions in terms of precision/recall.

The genome and build information should be provided and relevant BS genomes packages such as BSgenome.Mmusculus.UCSC.mm10 or BSgenome.Hsapiens.UCSC.hg38 must be installed for the used genome and builds.

Usage

compareMotifs2UserProvidedRegions(
  motifs,
  mismatchNumbers,
  genome,
  genomeBuild,
  DB = "UCSC",
  givenRegion,
  mainCHRs = TRUE
)

Arguments

motifs

a vector of motif characters in nucleotide IUPAC format

mismatchNumbers

a vector Number of mismatches allowed to match with motifs

genome

The genome name such as "Hsapiens", "Mmusculus", "Dmelanogaster"

genomeBuild

The genome build such as "hg38", "hg19", "mm10", "dm3"

DB

The database of genome build. default: "UCSC"

givenRegion

granges of user provided binding regions

mainCHRs

If true only the major chromosome are considered, if FALSE Random, Uncharacterised, and Mithocondrial chromosomes are also considered

Value

A dataframe which includes precision recall values for each motif

See Also

compareBedFiless2UserProvidedRegions

Examples

# Artificial example in Yeast
# install BSgenome.Scerevisiae.UCSC.sacCer3 prior to run this code
 yeastExampleFile=system.file("extdata", "YeastSampleMotif.bed",
                                package="Motif2Site")
YeastRegionsChIPseq <- Bed2Granges(yeastExampleFile)
SequenceComparison <- compareMotifs2UserProvidedRegions(
   givenRegion=YeastRegionsChIPseq,
   motifs=c("TGATTSCAGGANT", "TGATTCCAGGANT", "TGATWSCAGGANT"),
   mismatchNumbers=c(1,0,2),
   genome="Scerevisiae",
   genomeBuild="sacCer3"
   )
SequenceComparison

compute fold enrichment values for an experiment

Description

Open raw counts IP and Inut files and with given total counts calculate Fold Enrichment values for the motifs

Usage

computeFoldEnrichment(
  ipCountFile,
  inputCountFile,
  ipTotalCount,
  inputTotalCount,
  outputName
)

Arguments

ipCountFile

File contains motifs count values for IP experiment

inputCountFile

File contains motifs count values for Input experiment

ipTotalCount

Total short reads number in IP experiment

inputTotalCount

Total short reads number in Input experiment

outputName

Name of the output table

Value

No return value


Synthetic datasets used in the package

Description

Comparison Yeast synthetic motifs and binding sites: Two synthetic motif files in bed fromat are created to compare them with a synthetic binding site set in terms of precision and recall.

Fur binding sites detection in E. coli build NC_000913: Synthetic Fur ChIp-seq in E. coli was generated using real peaks published in Seo et al 2014. The ChIP-seq data are provided in bed format in fe and dpd condition and both contains two replicates. Synthetic Input ChIP-seq datasets were generated by randomly distributing short reads in E. coli genome. User provided candidate binding sites in bed format was generated by combining instances of "GWWTGANAA" motif with 1-mistmatch and "GWWTGAGAAT" with 2-mismatches in E. coli genome.

Format

Three bed files to compare user provided motifs and binding sites in Yeast. Seven bed files to compare Fur ChIP-seq binding sites in E.coli.

YeastBedFile1.bed

The first synthetic motif set

YeastBedFile2.bed

The second synthetic motif set

YeastSampleMotif.bed

The synthetic binding region

FurMotifs.bed

User provided Fur motif set in E. coli

FUR_fe1.bed

Synthetic Fur ChIP-seq short reads in fe condition rep1

FUR_fe2.bed

Synthetic Fur ChIP-seq short reads in fe condition rep2

FUR_dpd1.bed

Synthetic Fur ChIP-seq short reads in dpd condition rep1

FUR_dpd2.bed

Synthetic Fur ChIP-seq short reads in dpd condition rep2

Input1.bed

The synthetic background Input ChIP-seq rep1

Input2.bed

The synthetic background Input ChIP-seq rep2

Examples

## Data for examplex to compare user provided motifs and binding sites in Yeast 

yeastExampleFile=system.file("extdata", "YeastSampleMotif.bed",
                              package="Motif2Site")
YeastRegionsChIPseq <- Bed2Granges(yeastExampleFile)
bed1 <- system.file("extdata", "YeastBedFile1.bed", package="Motif2Site")
bed2 <- system.file("extdata", "YeastBedFile2.bed", package="Motif2Site")


## Data for examples of binding site detection in E. coli

# FUR candidate motifs in NC_000913 E. coli
FurMotifs = system.file("extdata", "FurMotifs.bed", package="Motif2Site")

# ChIP-seq FUR fe datasets binding sites from user provided bed file 
# ChIP-seq datasets in bed single end format

IPFe <- c(system.file("extdata", "FUR_fe1.bed", package="Motif2Site"),
          system.file("extdata", "FUR_fe2.bed", package="Motif2Site"))


# ChIP-seq FUR dpd datasets binding sites from user provided bed file 
# ChIP-seq datasets in bed single end format

IPDpd <- c(system.file("extdata", "FUR_dpd1.bed", package="Motif2Site"),
           system.file("extdata", "FUR_dpd2.bed", package="Motif2Site"))


# ChIP-seq background

Inputs <- c(system.file("extdata", "Input1.bed", package="Motif2Site"),
            system.file("extdata", "Input2.bed", package="Motif2Site"))

Decompose binding signal among accepted motifs

Description

Gets motif locations and related short reads and select the motifs which are non-skewed: abs(skewness) < 0.3 and more short reads binds closer to site, and show strong binding after decomposition.

Decomposition is performed by using mixtools normalmixEM command fixing mu as motif locations.

Usage

decomposeBindingSignal(
  windowSize,
  replicateNumber,
  acceptedRegionsOutputFile = "BindingRegions",
  acceptedMotifsOutputFile = "BindingMotifsTable",
  currentDir
)

Arguments

windowSize

Window size around binding site. The total region would be 2*windowSize+1

replicateNumber

experiment replicate number

acceptedRegionsOutputFile

File name contains binding regions coordinates and related motifs

acceptedMotifsOutputFile

File name contains motifs coordinates and related information, Pvalue, FE, etc

currentDir

Directory for I/O operations

Value

motifStatistics Ratio of accepted motifs, rejected motifs due to skewnewss, and rejected motifs after decomposition


Delete a vector of files

Description

Delete multiple give files as a vector of characters

Usage

DeleteMultipleFiles(files)

Arguments

files

a vector of files

Value

No return value


build heurisitc distribution around the binding sites

Description

This function generates heuristic distribution of short reads around binding sites which do not need to deconvolve, total numer of short reads and window size as number of neucleotid around binding sites.

It fits a kernel to the distribution and return the distribution as output. The total sum of returned values is equal to one. It plots this kernel.

Also it calculates FRiPs (Fraction of Reads in Peaks) for each

ChIP-seq and returns it. FRiPs and kernel distributions are measures of goodness of ChIP-seq experiments and selected motifs.

Usage

deriveHeuristicBindingDistribution(
  chipSeq,
  averageBindings,
  windowSize,
  acceptedRegionsOutputFile = "BindingRegions",
  currentDir
)

Arguments

chipSeq

ChIP-seq aligned 1nt short reads

averageBindings

expected short reads number aligned to a random location of genes of given size

windowSize

Window size around binding site. The total region would be 2*windowSize+1

acceptedRegionsOutputFile

Accepted binding regions

currentDir

Directory for I/O operations

Value

FRiPs Fraction of Reads in Peaks


Detect binding sites from motif

Description

DETECT Binding sites with given motif and mismatch number as well genome/build, False Discovery Rate for a given experiment name.

This function is called by both DetectBindingSitesBed and DetectBindingSitesMotif with different input.

Usage

DetectBindingSites(
  From,
  BedFile,
  motif,
  mismatchNumber,
  chipSeq,
  genome,
  genomeBuild,
  DB = "UCSC",
  fdrValue = 0.05,
  windowSize = 100,
  GivenRegion = NA,
  currentDir
)

Arguments

From

Type of motif dataset either "Motif" or "Bed"

BedFile

Motif locations in bed format file

motif

motif characters in nucleotide IUPAC format

mismatchNumber

Number of mismatches allowed to match with motifs

chipSeq

ChIP-seq alignment both IP and background in 1nt bed format files

genome

The genome name such as "Hsapiens", "Mmusculus", "Dmelanogaster"

genomeBuild

The genome build such as "hg38", "hg19", "mm10", "dm3"

DB

The database of genome build. default: "UCSC"

fdrValue

FDR value cut-off

windowSize

Window size around binding site. The total region would be 2*windowSize+1

GivenRegion

granges of user provided binding regions

currentDir

Directory for I/O operations

Value

A list of FRiPs, sequence statistics, and Motif statistics


Detect binding sites from bed motif input

Description

Takes user provied bed regions, and check for validity of them. Read bam or bed alignment files and convert to 1 nt bed and call detect binding site from 1nt bed.

Usage

DetectBindingSitesBed(
  BedFile,
  IPfiles,
  BackgroundFiles,
  genome,
  genomeBuild,
  DB = "UCSC",
  fdrValue = 0.05,
  expName = "Motif_Centric_Peaks",
  windowSize = 100,
  format = ""
)

Arguments

BedFile

Motif locations in bed format file

IPfiles

IP ChIP-seq alignment files

BackgroundFiles

Background ChIP-seq alignment files. Can be Input experimetn, DNA whole exctract, etc.

genome

The genome name such as "Hsapiens", "Mmusculus", "Dmelanogaster"

genomeBuild

The genome build such as "hg38", "hg19", "mm10", "dm3"

DB

The database of genome build. default: "UCSC"

fdrValue

FDR value cut-off

expName

The name of the output table

windowSize

Window size around binding site. The total region would be 2*windowSize+1

format

alignment format and should be one of these: "BAMPE", "BAMSE", "BEDPE", "BEDSE"

Value

peakCallingStatistics A list FRiPs, sequence statistics, and Motif statistics

See Also

DetectBindingSitesMotif

Examples

# FUR candidate motifs in NC_000913 E. coli
FurMotifs=system.file("extdata", "FurMotifs.bed", package="Motif2Site")

# ChIP-seq datasets in bed single end format
IPFe <- c(system.file("extdata", "FUR_fe1.bed", package="Motif2Site"),
        system.file("extdata", "FUR_fe2.bed", package="Motif2Site"))
Inputs <- c(system.file("extdata", "Input1.bed", package="Motif2Site"),
            system.file("extdata", "Input2.bed", package="Motif2Site"))
FURfeBedInputStats <- 
  DetectBindingSitesBed(BedFile=FurMotifs,
                        IPfiles=IPFe, 
                        BackgroundFiles=Inputs, 
                        genome="Ecoli",
                        genomeBuild="20080805",
                        DB="NCBI",
                        expName="FUR_Fe_BedInput",
                        format="BEDSE"
                       )

Detect binding sites from sequence motif sequence and mismatchNumber

Description

DETECT Binding sites with given motif and mismatch number as well genome/build, False Discovery Rate for a given experiment name. Read bam or bed alignment files and convert to 1 nt bed and detect binding site among motifs from 1nt bed alignment.

Usage

DetectBindingSitesMotif(
  motif,
  mismatchNumber,
  IPfiles,
  BackgroundFiles,
  genome,
  genomeBuild,
  DB = "UCSC",
  fdrValue = 0.05,
  expName = "Motif_Centric_Peaks",
  windowSize = 100,
  format = "",
  GivenRegion = NA
)

Arguments

motif

motif characters in nucleotide IUPAC format

mismatchNumber

Number of mismatches allowed to match with motifs

IPfiles

IP ChIP-seq alignment files

BackgroundFiles

Background ChIP-seq alignment files. Can be Input experimetn, DNA whole exctract, etc.

genome

The genome name such as "Hsapiens", "Mmusculus", "Dmelanogaster"

genomeBuild

The genome build such as "hg38", "hg19", "mm10", "dm3"

DB

The database of genome build. default: "UCSC"

fdrValue

FDR value cut-off

expName

The name of the output table

windowSize

Window size around binding site. The total region would be 2*windowSize+1

format

alignment format and should be one of these: "BAMPE", "BAMSE", "BEDPE", "BEDSE"

GivenRegion

granges of user provided binding regions

Value

A list FRiPs, sequence statistics, and Motif statistics

See Also

DetectBindingSitesBed

Examples

# ChIP-seq datasets in bed single end format
IPFe <- c(system.file("extdata", "FUR_fe1.bed", package="Motif2Site"),
        system.file("extdata", "FUR_fe2.bed", package="Motif2Site"))
Inputs <- c(system.file("extdata", "Input1.bed", package="Motif2Site"),
            system.file("extdata", "Input2.bed", package="Motif2Site"))

 # Granages region for motif search           
   NC_000913_Coordiante <-
     GenomicRanges::GRanges(seqnames=S4Vectors::Rle("NC_000913"),
                            ranges=IRanges::IRanges(1, 4639675))           
            
FURfeStringInputStats <- 
  DetectBindingSitesMotif(motif="GWWTGAGAA",
   mismatchNumber=1,
   IPfiles=IPFe, 
   BackgroundFiles=Inputs, 
   genome="Ecoli",
   genomeBuild="20080805",
   DB="NCBI",
   expName="FUR_Fe_StringInput",
   format="BEDSE",
   GivenRegion=NC_000913_Coordiante 
   )

FDR cut-off detection Benjamini Hochberg method

Description

Return FDR cut-off for a user provided fdrvalue using Benjamini Hochberg on main motif test data

Usage

DetectFdrCutoffBH(TestTableFile = "TestResults", fdrValue = 0.05)

Arguments

TestTableFile

test table which contains pvalues

fdrValue

FDR cut-off

Value

pvalue cut-off


Find motif instances with a certain mismatch number

Description

Find motif instances in a given genome. It gets motif strings and related allowed mismatchnumbers and returns genomewide motif instances.

The genome and build information should be provided and relevant BS genomes packages such as BSgenome.Mmusculus.UCSC.mm10 or BSgenome.Hsapiens.UCSC.hg38 must be installed for the used genome and builds.

Usage

findMotifs(
  motif,
  mismatchNumber,
  genome,
  genomeBuild,
  DB = "UCSC",
  mainCHRs = TRUE,
  firstCHR = FALSE,
  MotifLocationName = "Motif_Locations",
  limitedRegion = NA
)

Arguments

motif

motif characters in nucleotide IUPAC format

mismatchNumber

Number of mismatch allowed to match with motif

genome

The genome name such as "Hsapiens", "Mmusculus", "Dmelanogaster"

genomeBuild

The genome build such as "hg38", "hg19", "mm10", "dm3"

DB

The database of genome build. default: "UCSC"

mainCHRs

If true only the major chromosome are considered, if FALSE Random, Uncharacterised, and Mithocondrial chromosomes are also considered

firstCHR

If true only Chr1 is used to find motifs. Default is FALSE

MotifLocationName

The name of the file of the motif locations

limitedRegion

If specified the motifs are detected in the provided granges

Value

No return value


Fit a kernel density distribution to the obersever heuristic distribution

Description

This function gets heuristic distribution of short reads around binding sites, total numer of short reads and window size as number of neucleotid around binding sites.

It fits a kernel to the distribution and return the distribution as output. The total sum of returned values is equal to one.

Usage

fitKernelDensity(heuristicDistribution, totalShortReads, windowSize)

Arguments

heuristicDistribution

Original short distribution

totalShortReads

Total number of short reads

windowSize

Window size around binding site. The total region would be 2*windowSize+1

Value

kernel returns fitted kernel distribution of short reads around binding sites


Convert bam and bed files to 1 nucleotide bed

Description

Take alignment files in bam or bed fomat and convert them to 1 nucleotide bed file

Usage

generate1ntBedAlignment(InputFile, bedFile, format = "")

Arguments

InputFile

Original alignment file name

bedFile

Name of output 1nt bed file

format

alignment format and should be one of these: "BAMPE", "BAMSE", "BEDPE", "BEDSE"

Value

No return value


Detect and Recenter binding sites from ChIP-seq experiments

Description

Take ChIP-seq and motifs and detect Binding sites. It also combines/compares binding sites across experiments. Here is a synthetic example of differential Fur binding sites in E.coli:

Examples

# FUR candidate motifs in NC_000913 E. coli
FurMotifs=system.file("extdata", "FurMotifs.bed", package="Motif2Site")

# ChIP-seq datasets fe in bed single end format
IPFe <- c(system.file("extdata", "FUR_fe1.bed", package="Motif2Site"),
        system.file("extdata", "FUR_fe2.bed", package="Motif2Site"))
Inputs <- c(system.file("extdata", "Input1.bed", package="Motif2Site"),
            system.file("extdata", "Input2.bed", package="Motif2Site"))
FURfeBedInputStats <- 
  DetectBindingSitesBed(BedFile=FurMotifs,
                        IPfiles=IPFe, 
                        BackgroundFiles=Inputs, 
                        genome="Ecoli",
                        genomeBuild="20080805",
                        DB="NCBI",
                        expName="FUR_Fe_BedInput",
                        format="BEDSE"
                       )

# ChIP-seq datasets dpd in bed single end format
IPDpd <- c(system.file("extdata", "FUR_dpd1.bed", package="Motif2Site"),
        system.file("extdata", "FUR_dpd2.bed", package="Motif2Site"))
FURdpdBedInputStats <- 
  DetectBindingSitesBed(BedFile=FurMotifs,
                        IPfiles=IPDpd, 
                        BackgroundFiles=Inputs, 
                        genome="Ecoli",
                        genomeBuild="20080805",
                        DB="NCBI",
                        expName="FUR_Dpd_BedInput",
                        format="BEDSE"
                       )
                       

# Combine all FUR binding sites into one table
corMAT <- recenterBindingSitesAcrossExperiments(
  expLocations=c("FUR_Fe_BedInput","FUR_Dpd_BedInput"),
  experimentNames=c("FUR_Fe","FUR_Dpd"),
  expName="combinedFUR",
  )
corMAT

# Differential binding sites across FUR conditions fe vs dpd
diffFUR <- pairwisDifferential(tableOfCountsDir="combinedFUR",
                               exp1="FUR_Fe",
                               exp2="FUR_Dpd",
                               FDRcutoff=0.05,
                               logFCcuttoff=1
                               )

FeUp <- diffFUR[[1]]
DpdUp <- diffFUR[[2]]
TotalComparison <- diffFUR[[3]]
head(TotalComparison)

Model IP and Input count values with negative Binomal

Description

Using edgeR TMM normalization and estimating dispersion as well as Adapting exact test function from edgeR to model IP vs Input counts.

To make this function memory effcient motifs into smaller sets and compute them seperately and combine them at the end.

Usage

motifBindingNegativeBinomialCount(
  countTableFile,
  replicateNumber,
  outputFile,
  currentDir
)

Arguments

countTableFile

Table of counts which contains all IP and Input value raw counts

replicateNumber

experiment replicate number

outputFile

The name of the output file generated by this function

currentDir

Directory for I/O operations

Value

A dataframe includes fold enrichment, pvalue, and normalized count values


count short reads related to each motif for a given ChIPseq file

Description

count 1nt short reads related to each motif for a given ChIPseq file.

Usage

motifChipCount(motifFile, chipFile, windowSize, outputName)

Arguments

motifFile

File contains motifs

chipFile

ChIP-seq 1nt alignment locations in bed format

windowSize

Window size around binding site. The total region would be 2*windowSize+1

outputName

Name of the output table

Value

Total number of short reads in motif reagions


count short reads around motifs for all ChIP-seq experiments

Description

count short reads related to each motif for all ChIPseq files both IP and Input.

Usage

motifCount(motifFile, chipSeq, windowSize, outputName, currentDir)

Arguments

motifFile

File contains motifs

chipSeq

dataframe of ChIP-seq 1nt alignment location

windowSize

Window size around binding site. The total region would be 2*windowSize+1

outputName

Name of the output table

currentDir

Directory for I/O operations

Value

No return value


Process count data and perform negative binomial test

Description

Remove unmmaped regions, low and high binding regions and regions without fold change, and call negative binomial or nb test for the remaining regions.

Usage

motifTablePreProcess(countTableFile, outFile, currentDir)

Arguments

countTableFile

Tabl of count values around motifs for all ChIP-seq experiments

outFile

The name of the output file

currentDir

Directory for I/O operations

Value

sequencingStatitics A dataframe consists of the ratio of non-sequenced, low-sequenced, ang high-sequenced regions.


Negative binomial test of binding using all replicates

Description

Adapted exact test function from edgeR to compare IP vs Input with replicates. Input is a DGELIST with common and tag-wise dispression has been already caluclated by edgeR commands.

It calculates abundaces with mglmOneGroup identical to edgeR. logFE was calculated identiacl to edgeR. For the pvalue test negative binomial test is performed on the calculated abundance.

Usage

NegativeBinomialTestWithReplicate(object, prior.count = 0.125)

Arguments

object

Table of counts which contains all IP and Input value counts, TMM normalized and contains dispersion values

prior.count

edgeR prior value

Value

log fold enrichment, pvalue, and normalized count values


Detect differential motifs

Description

Take combined matrix of motif counts generated by recenterBindingSitesAcrossExperiments, and experiment names. It detect differential motifs using edgeR TMM nomralizaiton with Generalized linear model

Usage

pairwisDifferential(
  tableOfCountsDir = "",
  exp1,
  exp2,
  FDRcutoff = 0.05,
  logFCcuttoff = 1
)

Arguments

tableOfCountsDir

Directory which conatins the combined motifs and ChIP-seq count file

exp1

Experiment name which will be compared in pairwise comparison

exp2

Experiment name which will be compared in pairwise comparison

FDRcutoff

FDR cutoff applies on pvalue distribution

logFCcuttoff

log fold change cutoff

Value

A list of differential motifs, motif1 and motif2 as well as a table of total motifs and log fold changes

See Also

recenterBindingSitesAcrossExperiments

Examples

# FUR candidate motifs in NC_000913 E. coli
FurMotifs=system.file("extdata", "FurMotifs.bed", package="Motif2Site")

# ChIP-seq datasets fe in bed single end format
IPFe <- c(system.file("extdata", "FUR_fe1.bed", package="Motif2Site"),
        system.file("extdata", "FUR_fe2.bed", package="Motif2Site"))
Inputs <- c(system.file("extdata", "Input1.bed", package="Motif2Site"),
            system.file("extdata", "Input2.bed", package="Motif2Site"))
FURfeBedInputStats <- 
  DetectBindingSitesBed(BedFile=FurMotifs,
   IPfiles=IPFe, 
   BackgroundFiles=Inputs, 
   genome="Ecoli",
   genomeBuild="20080805",
   DB="NCBI",
   expName="FUR_Fe_BedInput",
   format="BEDSE"
   )

# ChIP-seq datasets dpd in bed single end format
IPDpd <- c(system.file("extdata", "FUR_dpd1.bed", package="Motif2Site"),
        system.file("extdata", "FUR_dpd2.bed", package="Motif2Site"))
FURdpdBedInputStats <- 
  DetectBindingSitesBed(BedFile=FurMotifs,
   IPfiles=IPDpd, 
   BackgroundFiles=Inputs, 
   genome="Ecoli",
   genomeBuild="20080805",
   DB="NCBI",
   expName="FUR_Dpd_BedInput",
   format="BEDSE"
   )
                       

# Combine all FUR binding sites into one table
corMAT <- recenterBindingSitesAcrossExperiments(
  expLocations=c("FUR_Fe_BedInput","FUR_Dpd_BedInput"),
  experimentNames=c("FUR_Fe","FUR_Dpd"),
  expName="combinedFUR",
  )

# Differential binding sites across FUR conditions fe vs dpd
diffFUR <- pairwisDifferential(tableOfCountsDir="combinedFUR",
   exp1="FUR_Fe",
   exp2="FUR_Dpd",
   FDRcutoff=0.05,
   logFCcuttoff=1
   )

FeUp <- diffFUR[[1]]
DpdUp <- diffFUR[[2]]
TotalComparison <- diffFUR[[3]]
head(TotalComparison)

Suppress messages generated by in external package

Description

mixtools and MASS::fitdistr generates warning by cat which is suppressed by this funcitons

Usage

quiet(func)

Arguments

func

functional input call for which cat messages should be supressed

Value

No return value


Combine binding sites across experiments

Description

Take experiment folder locations and experiment names and combine them into a combined matrix of motifs and ChIP-seq counts

Experiment folders must be generated either by DetectBindingSitesBed or DetectBindingSitesMotif.

Usage

recenterBindingSitesAcrossExperiments(
  expLocations,
  experimentNames,
  expName = "combinedData",
  fdrValue = 0.05,
  fdrCrossExp = 0.001
)

Arguments

expLocations

The path to the experiment folders

experimentNames

Name of the experiment to be used in combined ChIP-seq

expName

Name of the combined matrix

fdrValue

FDR cut-off to accept binding in each ChIP-seq experiments

fdrCrossExp

If no experiment fullfill this cutoff, the motif is not considered

Value

A pariwise Pearson correlation matrix across experiments

See Also

pairwisDifferential

Examples

# FUR candidate motifs in NC_000913 E. coli
FurMotifs=system.file("extdata", "FurMotifs.bed", package="Motif2Site")

# ChIP-seq datasets fe in bed single end format
IPFe <- c(system.file("extdata", "FUR_fe1.bed", package="Motif2Site"),
        system.file("extdata", "FUR_fe2.bed", package="Motif2Site"))
Inputs <- c(system.file("extdata", "Input1.bed", package="Motif2Site"),
            system.file("extdata", "Input2.bed", package="Motif2Site"))
FURfeBedInputStats <- 
  DetectBindingSitesBed(BedFile=FurMotifs,
   IPfiles=IPFe, 
   BackgroundFiles=Inputs, 
   genome="Ecoli",
   genomeBuild="20080805",
   DB="NCBI",
   expName="FUR_Fe_BedInput",
   format="BEDSE"
   )

# ChIP-seq datasets dpd in bed single end format
IPDpd <- c(system.file("extdata", "FUR_dpd1.bed", package="Motif2Site"),
        system.file("extdata", "FUR_dpd2.bed", package="Motif2Site"))
FURdpdBedInputStats <- 
  DetectBindingSitesBed(BedFile=FurMotifs,
   IPfiles=IPDpd, 
   BackgroundFiles=Inputs, 
   genome="Ecoli",
   genomeBuild="20080805",
   DB="NCBI",
   expName="FUR_Dpd_BedInput",
   format="BEDSE"
   )
                       

# Combine all FUR binding sites into one table
corMAT <- recenterBindingSitesAcrossExperiments(
    expLocations=c("FUR_Fe_BedInput","FUR_Dpd_BedInput"),
    experimentNames=c("FUR_Fe","FUR_Dpd"),
    expName="combinedFUR",
    )
corMAT

Remove non-bell shpape motifs prior to binding signal decomposition

Description

Gets motif locations and related short reads and returns the motifs which are non-skewed abs(skewness) < 0.3 and more short reads binds closer to site.

It counts around motif with interval windowSize and windowSize/2, if the smaller window is less than half of the larger one then motif is not considered as Bell-shape

Usage

removeNonBellShapedMotifs(motifLocations, readLocations, windowSize)

Arguments

motifLocations

A vector of motif locations

readLocations

A vector of 1nt short reads

windowSize

Window size around binding site. The total region would be 2*windowSize+1

Value

The coordinates of accepted motifs


Returns the motif with the highest count

Description

Gets motif locations and related short reads and returns the motif which include the highest number of short reads around it.

Usage

strongestMotif(motifLocations, readLocations, windowSize)

Arguments

motifLocations

A vector of motif locations

readLocations

A vector of 1nt short reads

windowSize

Window size around binding site. The total region would be 2*windowSize+1

Value

The strongest motif