Package 'MiPP'

Title: Misclassification Penalized Posterior Classification
Description: This package finds optimal sets of genes that seperate samples into two or more classes.
Authors: HyungJun Cho <[email protected]>, Sukwoo Kim <[email protected]>, Mat Soukup <[email protected]>, and Jae K. Lee <[email protected]>
Maintainer: Sukwoo Kim <[email protected]>
License: GPL (>= 2)
Version: 1.79.0
Built: 2024-11-20 06:21:20 UTC
Source: https://github.com/bioc/MiPP

Help Index


Gene expression data for colon cancer

Description

This data set consists of gene expression of colon cancer study.

Usage

data(colon)

Format

A matrix containing 2000 probe sets and 2 classes (T, F)

Source

Alon, U., Barkai, N., Notterman, D.A., Gish, K., Ybarra, S., Mack, D., Levine, A.J. (1999). Broad Patterns of Gene Expression Revealed by Clustering Analysis of Tumor and Normal Colon Tissues probed by Oligonucleotide Arrays, PNAS, 96(12), 6745–6750.


Fitting cross-validaion MiPP

Description

Fits cross-validation MiPP


Choosing a rule

Description

Choose a rule to compute MiPP


Fitting LDA to compute MiPP

Description

Fits LDA to compute MiPP


Fitting logistic model to compute MiPP

Description

Fits logistic model to compute MiPP


Fitting QDA to compute MiPP

Description

Fits QDA to compute MiPP


Fitting SVM (linear) to compute MiPP

Description

Fits SVM (linear) to compute MiPP


Fitting SVM (RBF) to compute MiPP

Description

Fits SVM (RBF) to compute MiPP


Gene expression data for leukemia

Description

This data set consists of gene expression of leukemia study.

Usage

data(leukemia)

Format

A matrix containing 6817 probe sets and 38 samples (2 classes: AML, ALL)

Source

Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, P., Coller, H., Loh, M.L., Downing, J.R., Caliguri, M.A., Bloomfield, C.D., and Lander, E.S. (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 286, 531-537.


Gene expression data for leukemia

Description

This data set consists of gene expression of leukemia study.

Usage

data(leukemia)

Format

A matrix containing 6817 probe sets and 34 samples (2 classes: AML, ALL)

Source

Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, P., Coller, H., Loh, M.L., Downing, J.R., Caliguri, M.A., Bloomfield, C.D., and Lander, E.S. (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 286, 531-537.


Gene expression data for leukemia

Description

This data set consists of gene expression of leukemia study.

Usage

data(leukemia)

Format

A matrix containing 6817 probe sets and 2 classes (AML, ALL)

Source

Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, P., Coller, H., Loh, M.L., Downing, J.R., Caliguri, M.A., Bloomfield, C.D., and Lander, E.S. (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 286, 531-537.


SVM (linear) kernel to compute MiPP

Description

SVM (linear) kernel to compute MiPP


MiPP-based Classification

Description

Finds optimal sets of genes for classification

Usage

mipp(x, y, x.test = NULL, y.test = NULL, probe.ID = NULL, 
    rule = "lda", method.cut = "t.test", percent.cut = 0.01, 
    model.sMiPP.margin = 0.01, min.sMiPP = 0.85, n.drops = 2, 
    n.fold = 5, p.test = 1/3, n.split = 20, 
    n.split.eval = 100)

Arguments

x

data matrix

y

class vector

x.test

test data matrix if available

y.test

test class vector if available

probe.ID

probe set IDs; if NULL, row numbers are assigned.

rule

classification rule: "lda","qda","logistic","svmlin","svmrbf"; the default is "lda".

method.cut

method for pre-selection; t-test is available.

percent.cut

proportion of pre-selected genes; the default is 0.01.

model.sMiPP.margin

smallest set of genes s.t. sMiPP <= (max sMiPP-model.sMiPP.margin); the default is 0.01.

min.sMiPP

Adding genes stops if max sMiPP is at least min.sMiPP; the default is 0.85.

n.drops

Adding genes stops if sMiPP decreases (n.drops) times, in addition to min.sMiPP criterion.; the default is 2.

n.fold

number of folds; default is 5.

p.test

partition percent of train and test samples when test samples are not available; the default is 1/3 for test set.

n.split

number of splits; the default is 20.

n.split.eval

numbr of splits for evalutation; the default is 100.

Value

model

candiadate genes (for each split if no indep set is available

model.eval

Optimal sets of genes for each split when no indep set is available

Author(s)

Soukup M, Cho H, and Lee JK

References

Soukup M, Cho H, and Lee JK (2005). Robust classification modeling on microarray data using misclassification penalized posterior, Bioinformatics, 21 (Suppl): i423-i430.

Soukup M and Lee JK (2004). Developing optimal prediction models for cancer classification using gene expression data, Journal of Bioinformatics and Computational Biology, 1(4) 681-694

Examples

##########
#Example 1: When an independent test set is available

data(leukemia)

#Normalize combined data
leukemia <- cbind(leuk1, leuk2)
leukemia <- mipp.preproc(leukemia, data.type="MAS4")

#Train set
x.train <- leukemia[,1:38]
y.train <- factor(c(rep("ALL",27),rep("AML",11)))

#Test set
x.test <- leukemia[,39:72]
y.test <- factor(c(rep("ALL",20),rep("AML",14)))


#Compute MiPP
out <- mipp(x=x.train, y=y.train, x.test=x.test, y.test=y.test, probe.ID = 1:nrow(x.train), n.fold=5, percent.cut=0.05, rule="lda")

#Print candidate models
out$model



##########
#Example 2: When an independent test set is not available

data(colon)

#Normalize data
x <- mipp.preproc(colon)
y <- factor(c("T", "N", "T", "N", "T", "N", "T", "N", "T", "N", 
       "T", "N", "T", "N", "T", "N", "T", "N", "T", "N",
       "T", "N", "T", "N", "T", "T", "T", "T", "T", "T", 
       "T", "T", "T", "T", "T", "T", "T", "T", "N", "T", 
       "T", "N", "N", "T", "T", "T", "T", "N", "T", "N", 
       "N", "T", "T", "N", "N", "T", "T", "T", "T", "N", 
       "T", "N"))


#Deleting comtaminated chips
x <- x[,-c(51,55,45,49,56)]
y <- y[ -c(51,55,45,49,56)]

#Compute MiPP
out <- mipp(x=x, y=y, probe.ID = 1:nrow(x), n.fold=5, p.test=1/3, n.split=5, n.split.eval=100, 
percent.cut= 0.1, rule="lda")

#Print candidate models for each split
out$model

#Print optimal models and independent evaluation for each split
out$model.eval

Preprocessing

Description

Performs IQR normalization, thesholding, and log2-transformation

Usage

mipp.preproc(x, data.type = "MAS5")

Arguments

x

data

data.type

data type is MAS5, MAS4, or dChip

See Also

mipp

Examples

library(MiPP)

data(colon)
colon.nor <- mipp.preproc(colon)

Computing MiPP

Description

Computes MiPP


MiPP-based Classification

Description

sequentially finds optimal sets of genes for classification

Usage

mipp.seq(x, y, x.test = NULL, y.test = NULL, probe.ID = NULL, 
    rule = "lda", method.cut = "t.test", percent.cut = 0.01, 
    model.sMiPP.margin = 0.01, min.sMiPP = 0.85, n.drops = 2, 
    n.fold = 5, p.test = 1/3, n.split = 20, n.split.eval = 100, 
    n.seq=3, cutoff.sMiPP=0.7, remove.gene.each.model="all")

Arguments

x

data matrix

y

class vector

x.test

test data matrix if available

y.test

test class vector if available

probe.ID

probe set IDs; if NULL, row numbers are assigned.

rule

classification rule: "lda","qda","logistic","svmlin","svmrbf"; the default is "lda".

method.cut

method for pre-selection; t-test is available.

percent.cut

proportion of pre-selected genes; the default is 0.01.

model.sMiPP.margin

smallest set of genes s.t. sMiPP <= (max sMiPP-model.sMiPP.margin); the default is 0.01.

min.sMiPP

Adding genes stops if max sMiPP is at least min.sMiPP; the default is 0.85.

n.drops

Adding genes stops if sMiPP decreases (n.drops) times, in addition to min.sMiPP criterion.; the default is 2.

n.fold

number of folds; default is 5.

p.test

partition percent of train and test samples when test samples are not available; the default is 1/3 for test set.

n.split

number of splits; the default is 20.

n.split.eval

numbr of splits for evalutation; the default is 100.

n.seq

Number of sequential gene model selection; the default is 3.

cutoff.sMiPP

Cutoff point of 5 percent sMiPP to select gene models

remove.gene.each.model

Re-run after removing all genes in the selected models if "all" and the first gene for each of the selected models if "first"

Value

model

candiadate genes (for each split if no indep set is available

model.eval

Optimal sets of genes for each split when no indep set is available

genes.selected

a list of genes selected by sequential selection

Author(s)

Soukup M, Cho H, and Lee JK

References

Soukup M, Cho H, and Lee JK (2005). Robust classification modeling on microarray data using misclassification penalized posterior, Bioinformatics, 21 (Suppl): i423-i430.

Soukup M and Lee JK (2004). Developing optimal prediction models for cancer classification using gene expression data, Journal of Bioinformatics and Computational Biology, 1(4) 681-694

Examples

##########
#Example 1: When an independent test set is available

data(leukemia)

#Normalize combined data
leukemia <- cbind(leuk1, leuk2)
leukemia <- mipp.preproc(leukemia, data.type="MAS4")

#Train set
x.train <- leukemia[,1:38]
y.train <- factor(c(rep("ALL",27),rep("AML",11)))

#Test set
x.test <- leukemia[,39:72]
y.test <- factor(c(rep("ALL",20),rep("AML",14)))


#Compute MiPP
out <- mipp.seq(x=x.train, y=y.train, x.test=x.test, y.test=y.test, n.fold=5, percent.cut=0.01, rule="lda", n.seq=3)

#Print candidate models
out$model

#Print the genes selected
out$genes.selected


##########
#Example 2: When an independent test set is not available

data(colon)

#Normalize data
x <- mipp.preproc(colon)
y <- factor(c("T", "N", "T", "N", "T", "N", "T", "N", "T", "N", 
       "T", "N", "T", "N", "T", "N", "T", "N", "T", "N",
       "T", "N", "T", "N", "T", "T", "T", "T", "T", "T", 
       "T", "T", "T", "T", "T", "T", "T", "T", "N", "T", 
       "T", "N", "N", "T", "T", "T", "T", "N", "T", "N", 
       "N", "T", "T", "N", "N", "T", "T", "T", "T", "N", 
       "T", "N"))


#Deleting comtaminated chips
x <- x[,-c(51,55,45,49,56)]
y <- y[ -c(51,55,45,49,56)]

#Compute MiPP
out <- mipp.seq(x=x, y=y, n.fold=5, p.test=1/3, n.split=5, n.split.eval=100, 
percent.cut= 0.05, rule="lda", n.seq=2)


#Print candidate models for each split
out$model

#Print optimal models and independent evaluation for each split
out$model.eval

#Print the genes selected
out$genes.selected

Pre-selection

Description

Pre-select genes


Quantile normalization

Description

Performs quantile normalization


Quantile normalization

Description

Performs quantile normalization


SVM (RBF) kernel to compute MiPP

Description

SVM (RBF) kernel to compute MiPP