Title: | A tool kit for dissecting cancer evolution from multi-region derived tumor biopsies via somatic alterations |
---|---|
Description: | MesKit provides commonly used analysis and visualization modules based on mutational data generated by multi-region sequencing (MRS). This package allows to depict mutational profiles, measure heterogeneity within or between tumors from the same patient, track evolutionary dynamics, as well as characterize mutational patterns on different levels. Shiny application was also developed for a need of GUI-based analysis. As a handy tool, MesKit can facilitate the interpretation of tumor heterogeneity and the understanding of evolutionary relationship between regions in MRS study. |
Authors: | Mengni Liu [aut, cre] , Jianyu Chen [aut, ctb] , Xin Wang [aut, ctb] |
Maintainer: | Mengni Liu <[email protected]> |
License: | GPL-3 |
Version: | 1.17.0 |
Built: | 2024-11-14 05:49:34 UTC |
Source: | https://github.com/bioc/MesKit |
Genetic divergence between regions of subclonal sSNVs using the Weir and Cockerham method
calFst( maf, patient.id = NULL, min.vaf = 0, min.total.depth = 2, use.adjVAF = FALSE, plot = TRUE, withinTumor = FALSE, use.circle = TRUE, title = NULL, number.cex = 8, number.col = "#C77960", use.tumorSampleLabel = FALSE, ... )
calFst( maf, patient.id = NULL, min.vaf = 0, min.total.depth = 2, use.adjVAF = FALSE, plot = TRUE, withinTumor = FALSE, use.circle = TRUE, title = NULL, number.cex = 8, number.col = "#C77960", use.tumorSampleLabel = FALSE, ... )
maf |
A Maf or MafList object generated by |
patient.id |
Select the specific patients. Default NULL, all patients are included. |
min.vaf |
Specify The minimum VAF to filter variants. Default 0. |
min.total.depth |
The minimum total allele depth for filtering variants. Default 2. |
use.adjVAF |
Use adjusted VAF in analysis when adjusted VAF or CCF is available. Default FALSE. |
plot |
Logical (Default: TRUE). |
withinTumor |
Logical (Default: FALSE). Whether calculate between-region heterogeneity within tumors. |
use.circle |
Logical (Default: TRUE). Whether use "circle" in the plot. as visualization method of correlation matrix |
title |
The title of the plot. Default "Nei's distance" |
number.cex |
The size of text shown in correlation plot. Default 8. |
number.col |
The color of text shown in correlation plot. Default "#C77960". |
use.tumorSampleLabel |
Logical (Default: FALSE). Rename the 'Tumor_Sample_Barcode' by 'Tumor_Sample_Label'. |
... |
Other options passed to |
A list contains Fst value of MRS and Hudson estimator of each sample-pair, respectively.
Sun R, Hu Z, Sottoriva A, et al. Between-region genetic divergence reflects the mode and tempo of tumor evolution. Nat Genet. 2017;49(7):1015-1024.
Bhatia G, Patterson N, Sankararaman S, Price AL. Estimating and interpreting FST: the impact of rare variants. Genomic Res. 2013;23(9):1514-1521.
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") calFst(maf)
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") calFst(maf)
The Jaccard similarity index (JSI) is applied to distinguish monoclonal versus polyclonal seeding in metastases.
calJSI( maf, patient.id = NULL, pairByTumor = FALSE, min.ccf = 0, plot = FALSE, use.circle = TRUE, title = NULL, number.cex = 8, number.col = "#C77960", use.tumorSampleLabel = FALSE, ... )
calJSI( maf, patient.id = NULL, pairByTumor = FALSE, min.ccf = 0, plot = FALSE, use.circle = TRUE, title = NULL, number.cex = 8, number.col = "#C77960", use.tumorSampleLabel = FALSE, ... )
maf |
Maf or MafList object generated by |
patient.id |
Select the specific patients. Default NULL, all patients are included. |
pairByTumor |
Compare JSI between different tumors. Default FALSE. |
min.ccf |
The minimum value of CCF. Default 0. |
plot |
Logical (Default: FALSE). |
use.circle |
Logical (Default: TRUE). Whether to use "circle" as visualization method of correlation matrix. |
title |
Title of the plot Default "Jaccard similarity". |
number.cex |
The size of text shown in correlation plot. Default 8. |
number.col |
The color of text shown in correlation plot. Default "#C77960". |
use.tumorSampleLabel |
Logical (Default: FALSE). Rename the 'Tumor_Sample_Barcode' by 'Tumor_Sample_Label'. |
... |
Other options passed to |
Correlation matrix and heatmap via Jaccard similarity coefficient method
Hu, Z., Li, Z., Ma, Z. et al. Multi-cancer analysis of clonality and the timing of systemic spread in paired primary tumors and metastases. Nat Genet (2020).
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") calJSI(maf)
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") calJSI(maf)
Nei's distance of CCF for sample/tumor pair.
calNeiDist( maf, patient.id = NULL, withinTumor = FALSE, min.ccf = 0, plot = TRUE, use.circle = TRUE, title = NULL, number.cex = 8, number.col = "#C77960", use.tumorSampleLabel = FALSE, ... )
calNeiDist( maf, patient.id = NULL, withinTumor = FALSE, min.ccf = 0, plot = TRUE, use.circle = TRUE, title = NULL, number.cex = 8, number.col = "#C77960", use.tumorSampleLabel = FALSE, ... )
maf |
A Maf or MafList object generated by |
patient.id |
Select the specific patients. Default NULL, all patients are included. |
withinTumor |
Calculate between-region heterogeneity within tumor. (Default: FALSE). |
min.ccf |
Specify the minimum CCF. Default 0. |
plot |
Logical (Default: TRUE). |
use.circle |
Logical (Default: TRUE). Whether to use "circle" as visualization method of correlation matrix. |
title |
The title of the plot. Default "Nei's distance" |
number.cex |
The size of text shown in correlation plot. Default 8. |
number.col |
The color of text shown in correlation plot. Default "#C77960". |
use.tumorSampleLabel |
Logical (Default: FALSE). Rename the 'Tumor_Sample_Barcode' by 'Tumor_Sample_Label'. |
... |
Other options passed to |
Nei's genetic distance matrix and heatmap of sample-pairs from the same patient
Lee JK, Wang J, Sa JK, et al. Spatiotemporal genomic architecture informs precision oncology in glioblastoma. Nat Genet. 2017;49(4):594-599.
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") calNeiDist(maf)
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") calNeiDist(maf)
The tumor heterogeneity was estimated as the area under the curve (AUC) of the cumulative density function from all cancer cell fractions per tumor
ccfAUC( maf, patient.id = NULL, min.ccf = 0, withinTumor = FALSE, plot.density = TRUE, use.tumorSampleLabel = FALSE, ... )
ccfAUC( maf, patient.id = NULL, min.ccf = 0, withinTumor = FALSE, plot.density = TRUE, use.tumorSampleLabel = FALSE, ... )
maf |
A Maf or MafList object generated by |
patient.id |
Select the specific patients. Default NULL, all patients are included. |
min.ccf |
The minimum value of CCF. Default 0. |
withinTumor |
Calculate between-region heterogeneity within tumor. Default FALSE. |
plot.density |
Whether to show the density plot. Default TRUE. |
use.tumorSampleLabel |
Logical (Default: FALSE). Rename the 'Tumor_Sample_Barcode' by 'Tumor_Sample_Label'. |
... |
Other options passed to |
A list containing AUC of CCF and a graph
Charoentong P, Finotello F, et al. Pan-cancer Immunogenomic Analyses Reveal Genotype-Immunophenotype Relationships and Predictors of Response to Checkpoint Blockade. Cell reports 2017, 18:248-262.
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") ccfAUC(maf)
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") ccfAUC(maf)
classifyMut
classifyMut(maf, patient.id = NULL, class = "SP", classByTumor = FALSE, ...)
classifyMut(maf, patient.id = NULL, class = "SP", classByTumor = FALSE, ...)
maf |
Maf or MafList object generated by |
patient.id |
Select the specific patients. Default NULL, all patients are included |
class |
The class which would be represented. Default: "SP" (Shared pattern: Public/Shared/Private), other options: "CS" (Clonal status: Clonal/Subclonl) and "SPCS". |
classByTumor |
Logical (Default: FALSE). Classify mutations based on "Tumor_ID". |
... |
Other options passed to |
A data.frame with classification of mutations for each patient
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") classifyMut(maf, class = "SP")
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") classifyMut(maf, class = "SP")
cna2gene
cna2gene(seg, txdb, min.overlap.len = 50, geneList = NULL)
cna2gene(seg, txdb, min.overlap.len = 50, geneList = NULL)
seg |
seg object generated by |
txdb |
A TxDb object. i.e., TxDb.Hsapiens.UCSC.hg19.knownGene. Default NULL. |
min.overlap.len |
The minimum insertion size of segment and gene. Default 50. |
geneList |
The list of genes used to limit the annotation.Default NULL. |
seg object
segFile <- system.file("extdata", "CRC_HZ.seg.txt", package = "MesKit") gisticAmpGenesFile <- system.file("extdata", "COREAD_amp_genes.conf_99.txt", package = "MesKit") gisticDelGenesFile <- system.file("extdata", "COREAD_del_genes.conf_99.txt", package = "MesKit") gisticAllLesionsFile <- system.file("extdata", "COREAD_all_lesions.conf_99.txt", package = "MesKit") seg <- readSegment(segFile = segFile, gisticAmpGenesFile = gisticAmpGenesFile, gisticDelGenesFile = gisticDelGenesFile, gisticAllLesionsFile = gisticAllLesionsFile) library(TxDb.Hsapiens.UCSC.hg19.knownGene) library(org.Hs.eg.db) cna2gene(seg, txdb = TxDb.Hsapiens.UCSC.hg19.knownGene)
segFile <- system.file("extdata", "CRC_HZ.seg.txt", package = "MesKit") gisticAmpGenesFile <- system.file("extdata", "COREAD_amp_genes.conf_99.txt", package = "MesKit") gisticDelGenesFile <- system.file("extdata", "COREAD_del_genes.conf_99.txt", package = "MesKit") gisticAllLesionsFile <- system.file("extdata", "COREAD_all_lesions.conf_99.txt", package = "MesKit") seg <- readSegment(segFile = segFile, gisticAmpGenesFile = gisticAmpGenesFile, gisticDelGenesFile = gisticDelGenesFile, gisticAllLesionsFile = gisticAllLesionsFile) library(TxDb.Hsapiens.UCSC.hg19.knownGene) library(org.Hs.eg.db) cna2gene(seg, txdb = TxDb.Hsapiens.UCSC.hg19.knownGene)
Compare the CCF between samples/tumor pairs This function requires CCF for clustering
compareCCF( maf, patient.id = NULL, min.ccf = 0, pairByTumor = FALSE, use.tumorSampleLabel = FALSE, ... )
compareCCF( maf, patient.id = NULL, min.ccf = 0, pairByTumor = FALSE, use.tumorSampleLabel = FALSE, ... )
maf |
Maf or MafList object generated by |
patient.id |
Select the specific patients. Default NULL, all patients are included. |
min.ccf |
The minimum value of CCF. Default 0. |
pairByTumor |
Pair by tumor types in each patients. Default FALSE. |
use.tumorSampleLabel |
Logical (Default: FALSE). Rename the 'Tumor_Sample_Barcode' by 'Tumor_Sample_Label'. |
... |
Other options passed to |
a result list of CCF comparing between samples/tumor pairs
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") compareCCF(maf)
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") compareCCF(maf)
Compares two phylogenetic trees and returns a detailed report of several distance methods
compareTree( phyloTree1, phyloTree2, plot = FALSE, min.ratio = 1/20, show.bootstrap = FALSE, use.tumorSampleLabel = FALSE )
compareTree( phyloTree1, phyloTree2, plot = FALSE, min.ratio = 1/20, show.bootstrap = FALSE, use.tumorSampleLabel = FALSE )
phyloTree1 |
A phyloTree object generated by |
phyloTree2 |
A phyloTree object generated by |
plot |
Logical (Default: FALSE). If TRUE, two trees will be plotted on the same device and their similarities will be shown. |
min.ratio |
Double, Default 1/20. If min.ratio is not NULL, all edge length which are smaller than min.ratio*the longest edge length will be reset as min.ratio*longest edge length. |
show.bootstrap |
Logical (Default: FALSE). Whether to add bootstrap value on internal nodes. |
use.tumorSampleLabel |
Logical (Default: FALSE). Rename the 'Tumor_Sample_Barcode' by 'Tumor_Sample_Label'. |
A vector containing the following tree distance methods by R package phangorn Symmetric.difference Robinson-Foulds distance KF-branch distance the branch score distance (Kuhner & Felsenstein 1994) Path.difference difference in the path length, counted as the number of branches Weighted.path.difference difference in the path length, counted using branches lengths
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") phyloTree1 <- getPhyloTree(maf$V402, method = "NJ") phyloTree2 <- getPhyloTree(maf$V402, method = "MP") compareTree(phyloTree1, phyloTree2) compareTree(phyloTree1, phyloTree2, plot = TRUE)
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") phyloTree1 <- getPhyloTree(maf$V402, method = "NJ") phyloTree2 <- getPhyloTree(maf$V402, method = "MP") compareTree(phyloTree1, phyloTree2) compareTree(phyloTree1, phyloTree2, plot = TRUE)
Find nonnegative linear combination of mutation signatures to reconstruct matrix and calculate cosine similarity based on somatic SNVs.
fitSignatures( tri_matrix = NULL, patient.id = NULL, signaturesRef = "cosmic_v2", associated = NULL, min.mut.count = 15, signature.cutoff = 0.1 )
fitSignatures( tri_matrix = NULL, patient.id = NULL, signaturesRef = "cosmic_v2", associated = NULL, min.mut.count = 15, signature.cutoff = 0.1 )
tri_matrix |
A matrix or a list of matrix generated by |
patient.id |
Select the specific patients. Default NULL, all patients are included |
signaturesRef |
Signature reference,Users can upload their own reference. Default "cosmic_v2". Option: "exome_cosmic_v3","nature2013". |
associated |
Associated Vector of associated signatures. If given, will narrow the signatures reference to only the ones listed. Default NULL. |
min.mut.count |
The threshold for the variants in a branch. Default 15. |
signature.cutoff |
Discard any signature relative contributions with a weight less than this amount. Default 0.1. |
A list of data frames, each one contains treeMSOutput, containing information about each set/branch's mutational signature.
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") ## Load a reference genome. library(BSgenome.Hsapiens.UCSC.hg19) phyloTree <- getPhyloTree(maf, patient.id = 'V402') tri_matrix <- triMatrix(phyloTree) fitSignatures(tri_matrix)
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") ## Load a reference genome. library(BSgenome.Hsapiens.UCSC.hg19) phyloTree <- getPhyloTree(maf, patient.id = 'V402') tri_matrix <- triMatrix(phyloTree) fitSignatures(tri_matrix)
getBinaryMatrix
getBinaryMatrix(object) ## S4 method for signature 'phyloTree' getBinaryMatrix(object)
getBinaryMatrix(object) ## S4 method for signature 'phyloTree' getBinaryMatrix(object)
object |
An object of phyloTree |
Binary matrix of phyloTree
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") phyloTree <- getPhyloTree(maf) getBinaryMatrix(phyloTree$V402)
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") phyloTree <- getPhyloTree(maf) getBinaryMatrix(phyloTree$V402)
getBootstrapValue
getBootstrapValue(object) ## S4 method for signature 'phyloTree' getBootstrapValue(object)
getBootstrapValue(object) ## S4 method for signature 'phyloTree' getBootstrapValue(object)
object |
An object of phyloTree |
Bootstrap value of phyloTree
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") phyloTree <- getPhyloTree(maf) getBootstrapValue(phyloTree$V402)
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") phyloTree <- getPhyloTree(maf) getBootstrapValue(phyloTree$V402)
getBranchType
getBranchType(object) ## S4 method for signature 'phyloTree' getBranchType(object)
getBranchType(object) ## S4 method for signature 'phyloTree' getBranchType(object)
object |
An object of phyloTree |
Branch type of phyloTree
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") phyloTree <- getPhyloTree(maf) getBranchType(phyloTree$V402)
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") phyloTree <- getPhyloTree(maf) getBranchType(phyloTree$V402)
getCCFMatrix
getCCFMatrix(object) ## S4 method for signature 'phyloTree' getCCFMatrix(object)
getCCFMatrix(object) ## S4 method for signature 'phyloTree' getCCFMatrix(object)
object |
An object of phyloTree |
CCF matrix of phyloTree
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") phyloTree <- getPhyloTree(maf) getCCFMatrix(phyloTree$V402)
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") phyloTree <- getPhyloTree(maf) getCCFMatrix(phyloTree$V402)
getMafData
getMafData(object) ## S4 method for signature 'Maf' getMafData(object)
getMafData(object) ## S4 method for signature 'Maf' getMafData(object)
object |
An object of Maf |
Maf data
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") getMafData(maf$V402)
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") getMafData(maf$V402)
getMafPatient
getMafPatient(object) ## S4 method for signature 'Maf' getMafPatient(object)
getMafPatient(object) ## S4 method for signature 'Maf' getMafPatient(object)
object |
An object of Maf |
Human reference genome versions of Maf
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") getMafPatient(maf$V402)
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") getMafPatient(maf$V402)
getMafRef
getMafRef(object) ## S4 method for signature 'Maf' getMafRef(object)
getMafRef(object) ## S4 method for signature 'Maf' getMafRef(object)
object |
An object of Maf |
Human reference genome versions of Maf
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") getMafRef(maf$V402)
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") getMafRef(maf$V402)
getMutBranches
getMutBranches(object) ## S4 method for signature 'phyloTree' getMutBranches(object)
getMutBranches(object) ## S4 method for signature 'phyloTree' getMutBranches(object)
object |
An object of phyloTree |
Branches mutation of phyloTree
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") phyloTree <- getPhyloTree(maf) getMutBranches(phyloTree$V402)
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") phyloTree <- getPhyloTree(maf) getMutBranches(phyloTree$V402)
getNonSyn_vc
getNonSyn_vc(object) ## S4 method for signature 'Maf' getNonSyn_vc(object)
getNonSyn_vc(object) ## S4 method for signature 'Maf' getNonSyn_vc(object)
object |
An object of Maf |
A list of Variant classifications which are considered as non-silent.
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") getNonSyn_vc(maf$V402)
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") getNonSyn_vc(maf$V402)
getPhyloTree
getPhyloTree( maf, patient.id = NULL, method = "NJ", min.vaf = 0, min.ccf = 0, bootstrap.rep.num = 100, ... )
getPhyloTree( maf, patient.id = NULL, method = "NJ", min.vaf = 0, min.ccf = 0, bootstrap.rep.num = 100, ... )
maf |
Maf or MafList object generated by |
patient.id |
Select the specific patients. Default NULL, all patients are included. |
method |
Approach to construct phylogenetic trees. Choose one of "NJ"(Neibor-Joining), "MP"(maximum parsimony), "ML"(maximum likelihood), "FASTME.ols" or "FASTME.bal". |
min.vaf |
The minimum value of vaf. Default 0. |
min.ccf |
The minimum value of CCF. Default 0 |
bootstrap.rep.num |
Bootstrap iterations. Default 100. |
... |
Other options passed to |
PhyloTree or phyloTreeList object
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") phyloTree <- getPhyloTree(maf)
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") phyloTree <- getPhyloTree(maf)
getPhyloTreePatient
getPhyloTreePatient(object) ## S4 method for signature 'phyloTree' getPhyloTreePatient(object)
getPhyloTreePatient(object) ## S4 method for signature 'phyloTree' getPhyloTreePatient(object)
object |
An object of phyloTree |
patientID of phyloTree
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") phyloTree <- getPhyloTree(maf) getPhyloTreePatient(phyloTree$V402)
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") phyloTree <- getPhyloTree(maf) getPhyloTreePatient(phyloTree$V402)
getPhyloTreeRef
getPhyloTreeRef(object) ## S4 method for signature 'phyloTree' getPhyloTreeRef(object) ## S4 method for signature 'phyloTree' getPhyloTreeTsbLabel(object)
getPhyloTreeRef(object) ## S4 method for signature 'phyloTree' getPhyloTreeRef(object) ## S4 method for signature 'phyloTree' getPhyloTreeTsbLabel(object)
object |
An object of phyloTree |
Reference genome versions of phyloTree
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") phyloTree <- getPhyloTree(maf) getPhyloTreeRef(phyloTree$V402)
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") phyloTree <- getPhyloTree(maf) getPhyloTreeRef(phyloTree$V402)
getPhyloTreeRef
getPhyloTreeTsbLabel(object)
getPhyloTreeTsbLabel(object)
object |
An object of phyloTree |
relationship between Tumor_Sample_Barcode and Tumor_Sample_Label
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") phyloTree <- getPhyloTree(maf) getPhyloTreeTsbLabel(phyloTree$V402)
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") phyloTree <- getPhyloTree(maf) getPhyloTreeTsbLabel(phyloTree$V402)
getSampleInfo
getSampleInfo(object) ## S4 method for signature 'Maf' getSampleInfo(object)
getSampleInfo(object) ## S4 method for signature 'Maf' getSampleInfo(object)
object |
An object of Maf |
Sample information
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") getSampleInfo(maf$V402)
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") getSampleInfo(maf$V402)
getTree
getTree(object) ## S4 method for signature 'phyloTree' getTree(object)
getTree(object) ## S4 method for signature 'phyloTree' getTree(object)
object |
An object of phyloTree |
Tree object of phyloTree
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") phyloTree <- getPhyloTree(maf) getTree(phyloTree$V402)
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") phyloTree <- getPhyloTree(maf) getTree(phyloTree$V402)
getTreeMethod
getTreeMethod(object) ## S4 method for signature 'phyloTree' getTreeMethod(object)
getTreeMethod(object) ## S4 method for signature 'phyloTree' getTreeMethod(object)
object |
An object of phyloTree |
Tree construction method of phyloTree
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") phyloTree <- getPhyloTree(maf) getTreeMethod(phyloTree$V402)
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") phyloTree <- getPhyloTree(maf) getTreeMethod(phyloTree$V402)
Maf class.
data
data.table of MAF file containing somatic mutations.
sample.info
data.frame of sample information per patient.
nonSyn.vc
list of variant classifications which are considered as non-silent. Default NULL, use Variant Classifications with "Frame_Shift_Del", "Frame_Shift_Ins", "Splice_Site", "Translation_Start_Site", "Nonsense_Mutation", "Nonstop_Mutation", "In_Frame_Del", "In_Frame_Ins", "Missense_Mutation"
ref.build
human reference genome version. Default 'hg19'. Optional: 'hg18' or 'hg38'.
S4 class for storing a list of Maf objects.
.Data
a list of Maf
objects.
MafList (...)
combine multiple Maf objects supplied in ... into a MafList object.
calculates MATH score of each tumor sample or based on Mutant-Allele Tumor Heterogeneity (MATH) approach.
mathScore( maf, patient.id = NULL, withinTumor = FALSE, min.vaf = 0, use.adjVAF = FALSE, segFile = NULL, use.tumorSampleLabel = FALSE, ... )
mathScore( maf, patient.id = NULL, withinTumor = FALSE, min.vaf = 0, use.adjVAF = FALSE, segFile = NULL, use.tumorSampleLabel = FALSE, ... )
maf |
Maf or MafList object generated by |
patient.id |
Select the specific patients. Default NULL, all patients are included. |
withinTumor |
Calculate between-region heterogeneity within tumor. Default: FALSE. |
min.vaf |
Specify The minimum VAF to filter variants. Default: 0. |
use.adjVAF |
Use adjusted VAF in analysis when adjusted VAF or CCF is available. Default: FALSE. |
segFile |
The segment file. |
use.tumorSampleLabel |
Logical (Default: FALSE). Rename the 'Tumor_Sample_Barcode' by 'Tumor_Sample_Label'. |
... |
Other options passed to |
A data.frame of MATH scores
Mroz, Edmund A. et al. Intra-Tumor Genetic Heterogeneity and Mortality in Head and Neck Cancer: Analysis of Data from The Cancer Genome Atlas. Ed. Andrew H. Beck. PLoS Medicine 12.2 (2015): e1001786.
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") mathScore(maf)
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") mathScore(maf)
Cluster mutations based on variant allele frequencies (VAFs) or cancer cell fractions (CCFs).
mutCluster( maf, patient.id = NULL, use.ccf = FALSE, segFile = NULL, withinTumor = FALSE, use.tumorSampleLabel = FALSE, ... )
mutCluster( maf, patient.id = NULL, use.ccf = FALSE, segFile = NULL, withinTumor = FALSE, use.tumorSampleLabel = FALSE, ... )
maf |
Maf or MafList object generated by |
patient.id |
Select the specific patients. Default NULL, all patients are included. |
use.ccf |
Cluster CCF. Default FALSE. |
segFile |
The segment file. |
withinTumor |
Cluster Tumor average CCF within tumors in each patients. Default FALSE. |
use.tumorSampleLabel |
Logical (Default: FALSE). Rename the 'Tumor_Sample_Barcode' by 'Tumor_Sample_Label'. |
... |
Other options passed to |
clustering plots of vaf
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") mutCluster(maf, patient.id = 'V402')
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") mutCluster(maf, patient.id = 'V402')
plot binary or CCF heatmap of somatic mutations.
mutHeatmap( maf, patient.id = NULL, min.vaf = 0, min.ccf = 0, use.adjVAF = FALSE, use.ccf = FALSE, geneList = NULL, plot.geneList = FALSE, show.geneList = TRUE, mut.threshold = 50, sample.text.size = 9, legend.title.size = 10, gene.text.size = 9, sampleOrder = NULL, use.tumorSampleLabel = FALSE, classByTumor = FALSE, ... )
mutHeatmap( maf, patient.id = NULL, min.vaf = 0, min.ccf = 0, use.adjVAF = FALSE, use.ccf = FALSE, geneList = NULL, plot.geneList = FALSE, show.geneList = TRUE, mut.threshold = 50, sample.text.size = 9, legend.title.size = 10, gene.text.size = 9, sampleOrder = NULL, use.tumorSampleLabel = FALSE, classByTumor = FALSE, ... )
maf |
Maf or MafList object generated by |
patient.id |
Select the specific patients. Default NULL, all patients are included. |
min.vaf |
The minimum value of VAF. Default 0. Option: on the scale of 0 to 1. |
min.ccf |
The minimum value of CCF. Default 0. Option: on the scale of 0 to 1. |
use.adjVAF |
Use adjusted VAF in analysis when adjusted VAF or CCF is available. Default FALSE. |
use.ccf |
Logical. If FALSE (Default: FALSE), print a binary heatmap of mutations. Otherwise, print a cancer cell frequency (CCF) heatmap. |
geneList |
List of genes to restrict the analysis. Default NULL. |
plot.geneList |
Logical (Default: FALSE). If TRUE, plot heatmap with genes on geneList when geneList is not NULL. |
show.geneList |
Show the names of gene on the geneList. Default TRUE. |
mut.threshold |
show.gene and show.geneList will be FALSE when patient have more mutations than threshold. Default 150. |
sample.text.size |
Size of sample name.Default 9. |
legend.title.size |
Size of legend title.Default 10. |
gene.text.size |
Size of gene text. Default 9. |
sampleOrder |
A named list which contains the sample order used in plotting the heatmap. Default NULL. |
use.tumorSampleLabel |
Logical (Default: FALSE). Rename the 'Tumor_Sample_Barcode' by 'Tumor_Sample_Label'. |
classByTumor |
Logical Default: FALSE. Classify mutations based on "Tumor_ID". |
... |
Other options passed to |
heatmap of somatic mutations
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") mutHeatmap(maf)
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") mutHeatmap(maf)
Summarize and conduct paired Fisher test of mutations of trunk/branches in a phylogenetic tree.
mutTrunkBranch( phyloTree, patient.id = NULL, CT = FALSE, pvalue = 0.05, plot = TRUE )
mutTrunkBranch( phyloTree, patient.id = NULL, CT = FALSE, pvalue = 0.05, plot = TRUE )
phyloTree |
phyloTree or phyloTreeList object generated by |
patient.id |
Select the specific patients. Default NULL, all patients are included |
CT |
Distinction between C>T at CpG and C>T at other sites. (Default: FALSE). |
pvalue |
Confidence level of the interval for Fisher test. Default 0.05. |
plot |
Logical. (Default: TRUE). |
a list of box plots based on mutational categories
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") ## Load a reference genome. library(BSgenome.Hsapiens.UCSC.hg19) phyloTree <- getPhyloTree(maf, patient.id = 'V402') mutTrunkBranch(phyloTree, plot = TRUE)
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") ## Load a reference genome. library(BSgenome.Hsapiens.UCSC.hg19) phyloTree <- getPhyloTree(maf, patient.id = 'V402') mutTrunkBranch(phyloTree, plot = TRUE)
S4 class for storing informations about phylogenetic tree.
patientID
patient ID.
tree
a object of class "phylo".
bootstrap.value
a numeric vector of bootstrap values.
method
approach to construct a phylogenetic tree.
binary.matrix
a presense/absent binary matrix of mutations.
ccf.matrix
a ccf matrix of mutations.
mut.branches
a data.frame of mutations per trunk/branch.
branch.type
a data.frame of trunk/branch types based on shared pattern.
ref.build
human reference genome version. Default: 'hg19'. Optional: 'hg18' or 'hg38'.
tsb.label
store relationship between Tumor_Sample_Barcode and Tumor_Sample_Label if Tumor_Sample_Label is provided in clinical data.
S4 class for storing a list of phyloTree objects.
.Data
a list of phyloTree
objects.
phyloTreeList (...)
combine multiple phyloTree objects supplied in ... into a phyloTreeList object.
plotCNA
plotCNA( seg, patient.id = NULL, sampleOrder = NULL, chrSilent = NULL, refBuild = "hg19", sample.text.size = 11, chrom.text.size = 3, legend.text.size = 9, legend.title.size = 11, annot.text.size = 3, sample.bar.height = 0.5, chrom.bar.height = 0.5, showRownames = TRUE, removeEmptyChr = TRUE, showCytoband = FALSE, showGene = FALSE, use.tumorSampleLabel = FALSE )
plotCNA( seg, patient.id = NULL, sampleOrder = NULL, chrSilent = NULL, refBuild = "hg19", sample.text.size = 11, chrom.text.size = 3, legend.text.size = 9, legend.title.size = 11, annot.text.size = 3, sample.bar.height = 0.5, chrom.bar.height = 0.5, showRownames = TRUE, removeEmptyChr = TRUE, showCytoband = FALSE, showGene = FALSE, use.tumorSampleLabel = FALSE )
seg |
Object generated by |
patient.id |
Select the specific patients. Default NULL, all patients are included. |
sampleOrder |
A named list which contains the sample order used in plotting the final profile. Default NULL. |
chrSilent |
Chromosomes excluded in the analysis. e.g, 1, 2, 3. Default NULL. |
refBuild |
Human reference genome versions of hg18, hg19 or hg38 by UCSC. Default "hg19". |
sample.text.size |
Fontsize of sample name. Default 11. |
chrom.text.size |
Fontsize of chromosome text. Default 3. |
legend.text.size |
Fontsize of legend text. Default 9. |
legend.title.size |
Fontsize of legend title. Default 11. |
annot.text.size |
Fontsize of cytoband or gene symbols. Default 3. |
sample.bar.height |
Bar height of each sample. Default 0.5. |
chrom.bar.height |
Bar height of each chromosome. Default 0.5. |
showRownames |
Logical (Default: TRUE). Show sample names of rows. |
removeEmptyChr |
Remove empty chromosomes that do not exist in all samples. Default TRUE. |
showCytoband |
Logical (Default: FALSE). Show cytobands on the plot. Only when the seg object is created with GISTIC results, this parameter can be TRUE. |
showGene |
Logical (Default: FALSE). Show gene symbols on the plot. Only when the seg object is created with txdb, this parameter can be TRUE. |
use.tumorSampleLabel |
Logical (Default: FALSE). Rename the 'Tumor_Sample_Barcode' with 'Tumor_Sample_Label'. |
a heatmap plot of CNA profile
segFile <- system.file("extdata", "CRC_HZ.seg.txt", package = "MesKit") seg <- readSegment(segFile = segFile) plotCNA(seg) ## showCytoband gisticAmpGenesFile <- system.file("extdata", "COREAD_amp_genes.conf_99.txt", package = "MesKit") gisticDelGenesFile <- system.file("extdata", "COREAD_del_genes.conf_99.txt", package = "MesKit") gisticAllLesionsFile <- system.file("extdata", "COREAD_all_lesions.conf_99.txt", package = "MesKit") seg <- readSegment(segFile = segFile, gisticAmpGenesFile = gisticAmpGenesFile, gisticDelGenesFile = gisticDelGenesFile, gisticAllLesionsFile = gisticAllLesionsFile) plotCNA(seg, showCytoband = TRUE)
segFile <- system.file("extdata", "CRC_HZ.seg.txt", package = "MesKit") seg <- readSegment(segFile = segFile) plotCNA(seg) ## showCytoband gisticAmpGenesFile <- system.file("extdata", "COREAD_amp_genes.conf_99.txt", package = "MesKit") gisticDelGenesFile <- system.file("extdata", "COREAD_del_genes.conf_99.txt", package = "MesKit") gisticAllLesionsFile <- system.file("extdata", "COREAD_all_lesions.conf_99.txt", package = "MesKit") seg <- readSegment(segFile = segFile, gisticAmpGenesFile = gisticAmpGenesFile, gisticDelGenesFile = gisticDelGenesFile, gisticAllLesionsFile = gisticAllLesionsFile) plotCNA(seg, showCytoband = TRUE)
plotMutProfile
plotMutProfile( maf, patient.id = NULL, class = "SP", classByTumor = FALSE, topGenesCount = 10, geneList = NULL, sample.text.size = 11, gene.text.size = 11, legend.text.size = 11, legend.title.size = 11, bgCol = "#f0f0f0", patientsCol = NULL, removeEmptyCols = TRUE, removeEmptyRows = TRUE, showColnames = TRUE, sampleOrder = NULL, use.tumorSampleLabel = FALSE, ... )
plotMutProfile( maf, patient.id = NULL, class = "SP", classByTumor = FALSE, topGenesCount = 10, geneList = NULL, sample.text.size = 11, gene.text.size = 11, legend.text.size = 11, legend.title.size = 11, bgCol = "#f0f0f0", patientsCol = NULL, removeEmptyCols = TRUE, removeEmptyRows = TRUE, showColnames = TRUE, sampleOrder = NULL, use.tumorSampleLabel = FALSE, ... )
maf |
Maf or MafList object generated by |
patient.id |
Select or reorder the patients. Default NULL, all patients are included. Classify SSNVs/Indels into Shared/P-shared/Private, Clonal/Subclonl or Shared-Clonal/P-shared-Clonal/Private-Clonal/Shared-Subclonal/P-shared-SubClonal/Private-SubClonal |
class |
The class which would be represented. Default "SP" (Shared pattern: Public/Shared/Private), other options: "CS" (Clonal status: Clonal/Subclonl) and "SPCS". |
classByTumor |
Logical (Default: FALSE). Define shared pattern of mutations based on tumor types (TRUE) or samples (FALSE) |
topGenesCount |
The number of genes print, Default 10. |
geneList |
A list of genes to restrict the analysis. Default NULL. |
sample.text.size |
Fontsize of sample name. Default 11. |
gene.text.size |
Fontsize of gene text. Default 11. |
legend.text.size |
Fontsize of legend text. Default 11. |
legend.title.size |
Fontsize of legend title. Default 11. |
bgCol |
Background grid color. Default "#f0f0f0". |
patientsCol |
A list containing customized colors for distinct patients. Default NULL. |
removeEmptyCols |
Logical (Default: TRUE). Whether remove the samples without alterations. |
removeEmptyRows |
Logical (Default: TRUE). Whether remove the genes without alterations. |
showColnames |
Logical (Default: TRUE). Show sample names of columns. |
sampleOrder |
A named list which contains the sample order used in plotting the final profile. Default NULL. |
use.tumorSampleLabel |
Logical (Default: FALSE). Rename the 'Tumor_Sample_Barcode' with 'Tumor_Sample_Label'. |
... |
Other options passed to |
Mutational profile
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") plotMutProfile(maf, class = "SP")
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") plotMutProfile(maf, class = "SP")
plotMutSigProfile
plotMutSigProfile( sig_input, patient.id = NULL, mode = NULL, contribution.type = "relative", use.tumorSampleLabel = FALSE )
plotMutSigProfile( sig_input, patient.id = NULL, mode = NULL, contribution.type = "relative", use.tumorSampleLabel = FALSE )
sig_input |
Result generated by function |
patient.id |
Select the specific patients. Default NULL, all patients are included. |
mode |
Type of mutation spectrum. Default NULL. Options:'Original','Reconstructed' or 'Difference' |
contribution.type |
Type of Signature contribution. Default 'realative'. Options:'realative' or 'absolute'. |
use.tumorSampleLabel |
Logical (Default: FALSE). Rename the 'Tumor_Sample_Barcode' by 'Tumor_Sample_Label'. |
Mutational signature profile of patients
## input from fitSignatures maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") phyloTree <- getPhyloTree(maf, patient.id = 'V402') ## Load a reference genome. library(BSgenome.Hsapiens.UCSC.hg19) tri_matrix <- triMatrix(phyloTree) fit_out <- fitSignatures(tri_matrix) plotMutSigProfile(fit_out) ## input from treeMatrix plotMutSigProfile(tri_matrix)
## input from fitSignatures maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") phyloTree <- getPhyloTree(maf, patient.id = 'V402') ## Load a reference genome. library(BSgenome.Hsapiens.UCSC.hg19) tri_matrix <- triMatrix(phyloTree) fit_out <- fitSignatures(tri_matrix) plotMutSigProfile(fit_out) ## input from treeMatrix plotMutSigProfile(tri_matrix)
plotPhyloTree
plotPhyloTree( phyloTree, patient.id = NULL, branchCol = "mutType", show.bootstrap = TRUE, min.ratio = 1/20, signaturesRef = "cosmic_v2", min.mut.count = 15, use.tumorSampleLabel = FALSE, show.scale.bar = FALSE, scale.bar.x = NULL, scale.bar.y = NULL )
plotPhyloTree( phyloTree, patient.id = NULL, branchCol = "mutType", show.bootstrap = TRUE, min.ratio = 1/20, signaturesRef = "cosmic_v2", min.mut.count = 15, use.tumorSampleLabel = FALSE, show.scale.bar = FALSE, scale.bar.x = NULL, scale.bar.y = NULL )
phyloTree |
phyloTree or phyloTreeList object generated by |
patient.id |
Select the specific patients. Default NULL, all patients are included. |
branchCol |
Specify the colors of branches Default 'mutType'. Other options: "mutSig" for coloring branches by branch mutation signature; |
show.bootstrap |
Logical (Default: TRUE). Whether to add bootstrap value on internal nodes. |
min.ratio |
Double. Default 1/20. If min.ratio is not NULL, all edge length of a phylogenetic tree should be greater than min.ratio*the longest edge length. If not, the edge length will be reset as min.ratio*longest edge length. |
signaturesRef |
Signature reference,Users can upload their own reference. Default "cosmic_v2". Option:"exome_cosmic_v3","nature2013". |
min.mut.count |
The threshold for the variants in a branch. Default 15. |
use.tumorSampleLabel |
Logical (Default: FALSE). Rename the 'Tumor_Sample_Barcode' with 'Tumor_Sample_Label'. |
show.scale.bar |
Logical (Default: FALSE). Whether to show scale bar.This function adds a horizontal bar giving the scale of the branch lengths to a plot on the current graphical device. |
scale.bar.x |
The x location of scale bar. |
scale.bar.y |
The y location of scale bar. |
return a list of phylotree graph .
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") phyloTree <- getPhyloTree(maf, patient.id = 'V402') plotPhyloTree(phyloTree)
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") phyloTree <- getPhyloTree(maf, patient.id = 'V402') plotPhyloTree(phyloTree)
Read tab delimited MAF (can be plain text or *.gz compressed) file along with sample information file.
readMaf( mafFile, clinicalFile, ccfFile = NULL, adjusted.VAF = FALSE, nonSyn.vc = NULL, use.indel.ccf = FALSE, ccf.conf.level = 0.95, refBuild = "hg19" )
readMaf( mafFile, clinicalFile, ccfFile = NULL, adjusted.VAF = FALSE, nonSyn.vc = NULL, use.indel.ccf = FALSE, ccf.conf.level = 0.95, refBuild = "hg19" )
mafFile |
A tab delimited MAF file (plain text or *.gz compressed). Required. |
clinicalFile |
A clinical data file includes Tumor_Sample_Barcode, Tumor_ID, Patient_ID. Tumor_Sample_Label is optional. Default NULL. |
ccfFile |
A CCF file of somatic mutations. Default NULL. |
adjusted.VAF |
Whether adjusted VAF is included in mafFile. Default FALSE. |
nonSyn.vc |
List of Variant classifications which are considered as non-silent. Default NULL, use Variant Classifications with "Frame_Shift_Del","Frame_Shift_Ins","Splice_Site","Translation_Start_Site","Nonsense_Mutation","Nonstop_Mutation","In_Frame_Del","In_Frame_Ins","Missense_Mutation" |
use.indel.ccf |
Whether include indels in ccfFile. Default FALSE. |
ccf.conf.level |
The confidence level of CCF to identify clonal or subclonal. Only works when "CCF_std" or "CCF_CI_high" is provided in ccfFile. Default 0.95. |
refBuild |
Human reference genome version. Default 'hg19'. Optional: 'hg18' or 'hg38'. |
an object of Maf or MafList.
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File,clinicalFile = clin.File, refBuild="hg19") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19")
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File,clinicalFile = clin.File, refBuild="hg19") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19")
readSegment
readSegment( segFile, gisticAmpGenesFile = NULL, gisticDelGenesFile = NULL, gisticAllLesionsFile = NULL, gistic.qval = 0.25, min.seg.size = 500, txdb = NULL, min.overlap.len = 50, verbose = TRUE, ... )
readSegment( segFile, gisticAmpGenesFile = NULL, gisticDelGenesFile = NULL, gisticAllLesionsFile = NULL, gistic.qval = 0.25, min.seg.size = 500, txdb = NULL, min.overlap.len = 50, verbose = TRUE, ... )
segFile |
The segment file. |
gisticAmpGenesFile |
Amplification Genes file generated by GISTIC. Default NULL. |
gisticDelGenesFile |
Deletion Genes file generated by GISTIC. Default NULL. |
gisticAllLesionsFile |
Information of all lesions generated by GISTIC. Default NULL. |
gistic.qval |
The threshold of gistic Q value. Default 0.25. |
min.seg.size |
The smallest size of segments. Default 500. |
txdb |
A TxDb object. i.e., TxDb.Hsapiens.UCSC.hg19.knownGene. Default NULL. |
min.overlap.len |
The minimum insertion size of segment and gene. Default 50. |
verbose |
Whether to display details in the console. Default TRUE. |
... |
... Other options passed to |
a list of segmentation data frame
segFile <- system.file("extdata", "CRC_HZ.seg.txt", package = "MesKit") gisticAmpGenesFile <- system.file("extdata", "COREAD_amp_genes.conf_99.txt", package = "MesKit") gisticDelGenesFile <- system.file("extdata", "COREAD_del_genes.conf_99.txt", package = "MesKit") gisticAllLesionsFile <- system.file("extdata", "COREAD_all_lesions.conf_99.txt", package = "MesKit") seg <- readSegment(segFile = segFile, gisticAmpGenesFile = gisticAmpGenesFile, gisticDelGenesFile = gisticDelGenesFile, gisticAllLesionsFile = gisticAllLesionsFile)
segFile <- system.file("extdata", "CRC_HZ.seg.txt", package = "MesKit") gisticAmpGenesFile <- system.file("extdata", "COREAD_amp_genes.conf_99.txt", package = "MesKit") gisticDelGenesFile <- system.file("extdata", "COREAD_del_genes.conf_99.txt", package = "MesKit") gisticAllLesionsFile <- system.file("extdata", "COREAD_all_lesions.conf_99.txt", package = "MesKit") seg <- readSegment(segFile = segFile, gisticAmpGenesFile = gisticAmpGenesFile, gisticDelGenesFile = gisticDelGenesFile, gisticAllLesionsFile = gisticAllLesionsFile)
runMesKit
run MesKit locally
runMesKit()
runMesKit()
a shiny app window
Mengni Liu
runMesKit()
runMesKit()
Subset Maf object
subMaf( maf, mafObj = FALSE, patient.id = NULL, geneList = NULL, chrSilent = NULL, mutType = "All", use.indel = TRUE, min.vaf = 0, max.vaf = 1, min.average.vaf = 0, min.ccf = 0, min.ref.depth = 0, min.alt.depth = 0, min.total.depth = 0, clonalStatus = NULL, use.adjVAF = FALSE, use.tumorSampleLabel = FALSE )
subMaf( maf, mafObj = FALSE, patient.id = NULL, geneList = NULL, chrSilent = NULL, mutType = "All", use.indel = TRUE, min.vaf = 0, max.vaf = 1, min.average.vaf = 0, min.ccf = 0, min.ref.depth = 0, min.alt.depth = 0, min.total.depth = 0, clonalStatus = NULL, use.adjVAF = FALSE, use.tumorSampleLabel = FALSE )
maf |
Maf or MafList object generated by |
mafObj |
return Maf class. (Default: FALSE). |
patient.id |
Select the specific patients. Default NULL, all patients are included. |
geneList |
A list of genes to restrict the analysis. Default NULL. |
chrSilent |
Chromosomes excluded in the analysis. e.g, 1, 2, X, Y. Default NULL. |
mutType |
Select Proper variant classification you need. Default "All". Option: "nonSyn". |
use.indel |
Logical value. Whether to use INDELs besides somatic SNVs. (Default: TRUE). |
min.vaf |
The minimum VAF for filtering variants. Default 0. |
max.vaf |
The maximum VAF for filtering variants. Default 1. |
min.average.vaf |
The minimum tumor average VAF for filtering variants. Default 0. |
min.ccf |
The minimum CCF for filtering variants. Default NULL. |
min.ref.depth |
The minimum reference allele depth for filtering variants. Default 0. |
min.alt.depth |
The minimum alteratation allele depth for filtering variants. Default 0. |
min.total.depth |
The minimum total allele depth for filtering variants. Default 0. |
clonalStatus |
Subset by clonal status. Default NULL. Option: "Clonal","Subclonal". |
use.adjVAF |
Use adjusted VAF in analysis when adjusted VAF or CCF is available. Default FALSE. |
use.tumorSampleLabel |
Logical (Default: FALSE). Rename the 'Tumor_Sample_Barcode' by 'Tumor_Sample_Label'. |
Maf object or Maf data.
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") maf_data <- subMaf(maf)
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") maf_data <- subMaf(maf)
Evaluate whether a tumor follows neutral evolution or under strong selection during the growth based on variant frequency distribution (VAF) of subclonal mutations. The subclonal mutant allele frequencies of a follow a simple power-law distribution predicted by neutral growth.
testNeutral( maf, patient.id = NULL, withinTumor = FALSE, min.total.depth = 2, min.vaf = 0.1, max.vaf = 0.3, R2.threshold = 0.98, min.mut.count = 20, plot = TRUE, use.tumorSampleLabel = FALSE, ... )
testNeutral( maf, patient.id = NULL, withinTumor = FALSE, min.total.depth = 2, min.vaf = 0.1, max.vaf = 0.3, R2.threshold = 0.98, min.mut.count = 20, plot = TRUE, use.tumorSampleLabel = FALSE, ... )
maf |
Maf or MafList object generated by |
patient.id |
Select the specific patients. Default NULL, all patients are included. |
withinTumor |
Test neutral within tumros in each patients. Default FALSE. |
min.total.depth |
The minimun total depth of coverage. Defalut 2 |
min.vaf |
The minimum value of adjusted VAF value. Default 0.1 |
max.vaf |
The maximum value of adjusted VAF value. Default 0.3 |
R2.threshold |
The threshod of R2 to decide whether a tumor follows neutral evolution. Default 0.98 |
min.mut.count |
The minimun number of subclonal mutations used to fit model. Default 20 |
plot |
Logical, whether to print model fitting plot of each sample. Default TRUE. |
use.tumorSampleLabel |
Let Tumor_Sample_Barcode replace Tumor_Sample_Label if Tumor Label is provided in clinical data. Default FALSE. |
... |
Other options passed to |
the neutrality metrics and model fitting plots
Williams, M., Werner, B. et al. Identification of neutral tumor evolution across cancer types. Nat Genet 48, 238-244 (2016)
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") testNeutral(maf)
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") testNeutral(maf)
Calculate the frequency of 96 trinucleotide mutation based on somatic SNVs.
triMatrix(phyloTree, patient.id = NULL, level = 2)
triMatrix(phyloTree, patient.id = NULL, level = 2)
phyloTree |
phyloTree or phyloTreeList object generated by |
patient.id |
Select the specific patients. Default NULL, all patients are included |
level |
Calculate the frequency of 96 trinucleotide mutatio on different levels. 1: patient-level, 2: tumor-level, 3: sample-level, 4: branch-level, 5: shared pattern (public/shared/private) of each tumor. 6: trunk/branch-level. Default 2. |
The frequency of 96 trinucleotide mutation.
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") ## Load a reference genome. library(BSgenome.Hsapiens.UCSC.hg19) phyloTree <- getPhyloTree(maf, patient.id = 'V402') triMatrix(phyloTree)
maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit") clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit") ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit") maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19") ## Load a reference genome. library(BSgenome.Hsapiens.UCSC.hg19) phyloTree <- getPhyloTree(maf, patient.id = 'V402') triMatrix(phyloTree)