Title: | Integrative network analysis of omics data |
---|---|
Description: | The Mergeomics pipeline serves as a flexible framework for integrating multidimensional omics-disease associations, functional genomics, canonical pathways and gene-gene interaction networks to generate mechanistic hypotheses. It includes two main parts, 1) Marker set enrichment analysis (MSEA); 2) Weighted Key Driver Analysis (wKDA). |
Authors: | Ville-Petteri Makinen, Le Shu, Yuqi Zhao, Zeyneb Kurt, Bin Zhang, Xia Yang |
Maintainer: | Zeyneb Kurt <[email protected]> |
License: | GPL (>= 2) |
Version: | 1.35.0 |
Built: | 2024-12-29 06:10:00 UTC |
Source: | https://github.com/bioc/Mergeomics |
The Mergeomics pipeline serves as a flexible framework for integrating multidimensional omics-disease associations, functional genomics, canonical pathways and gene-gene interaction networks to generate mechanistic hypotheses. It includes two main parts, 1) Marker set enrichment analysis (MSEA); 2) Weighted Key Driver Analysis (wKDA).
Package: | Mergeomics |
Type: | Package |
Version: | 1.1.10 |
Date: | 2016-01-04 |
License: | GPL (>= 2) |
Depends: R (>= 3.0.1) | |
URL: | http://mergeomics.research.idre.ucla.edu/ |
Mergeomics amalgamates disease association information derived from multidimensional omics data (e.g., genome, epigenome, transcriptome, metablome) with functional genomics (e.g., eQTLs, ENCODE), canonical pathways (e.g., KEGG, Reactome), and molecular networks (e.g., gene regulatory networks, protein-protein interaction networks). Two main steps of the pipeline are: Marker set enrichment analysis (MSEA) and weighted key driver analysis (wKDA). MSEA takes the following data as input: i) disease association data (GWAS, EWAS, TWAS...), ii) functional genomics (eQTLs and/or ENCODE information), and iii) functionally related genes information extracted from knowledge-based biological pathways or data-driven network modules (e.g., coexpressed genes in a given tissue relevant to a disease of interest). These datasets are integrated via MSEA to return gene sets that are significantly enriched for markers showing low p value associations with a given disease. Then, the disease related gene sets are examined to detect the key drivers by using the wKDA step of the pipeline, which requires pre-defined directional networks such as tissue-specific Bayesian networks, protein-protein interaction networks, etc. wKDA maps the disease related gene sets to the pre-defined directional networks to identify key driver genes that are more likely regulators of the disease gene sets based on their central positions in the gene networks. The key drivers and their local network topology can be viewed and downloaded after the completion of the analysis via Visualization step. Our pipeline provides users to perform MSEA and wKDA together or separately using either their own input data or selecting preloaded sample datasets. The details of the functions and parameter settings are described in the Manual of the package.
Ville-Petteri Makinen, Le Shu, Yuqi Zhao, Zeyneb Kurt, Bin Zhang, Xia Yang Maintainer: <[email protected]>
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
Key Driver Analysis (KDA) applied data object. "modules.mousecoexpr.liver.human.txt" including the coexpression modules and "network.mouseliver.mouse.txt" including the network (graph) information files (under the extdata folder) were used for the KDA.
The format is: list
data(job.kda)
data(job.kda)
Finds the statistics (enrichment score, p-value, FDR, etc.) of the key driver (hub) genes belonging to the specified modules based on the graph topology. The enrichment score of a hub node based on the shared nodes between this hub's neighbor nodes in the graph and the member nodes of the hub's module. The hub node enrichment P-values reflect the degree of observed enrichment of the hub, when compared to the null distribution of randomly expected enrichment of this hub within graph's nodes. Permutation test is used to obtain these statistics.
kda.analyze(job)
kda.analyze(job)
job |
The data list that will be subjected to KDA. It involves the modules, member genes belonging to each module, graph (network) topology, hubs of the graph, and sub-graph around each hub (hubnets of the graph). |
kda.analyze
analyzes each module individually and determines
the p-values and FDRs of hub nodes of each module via permutation test.
It returns the hit hub (key driver) gene name and member list of each module.
job |
The KDA applied data list. It involves the modules, hub gene and member genes belonging to each module, and False Discovery Rate (FDR) adjusted p-values of hub nodes for each module. |
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
kda.analyze.exec
, kda.analyze.simulate
,
kda.analyze.test
job.kda <- list() job.kda$label<-"HDLC" ## parent folder for results job.kda$folder<-"Results" ## Input a network ## columns: TAIL HEAD WEIGHT job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt", package="Mergeomics") ## Gene sets derived from ModuleMerge, containing two columns, MODULE, ## NODE, delimited by tab job.kda$modfile<- system.file("extdata","mergedModules.txt", package="Mergeomics") ## "0" means we do not consider edge weights while 1 is opposite. job.kda$edgefactor<-0.0 ## The searching depth for the KDA job.kda$depth<-1 ## 0 means we do not consider the directions of the regulatory interactions ## while 1 is opposite. job.kda$direction <- 1 job.kda$nperm <- 20 # the default value is 2000, use 20 for unit tests ## kda.start() process takes long time while seeking hubs in the given net ## Here, we used a very small subset of the module list (1st 10 mods ## from the original module file): moddata <- tool.read(job.kda$modfile) mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] ## save this to a temporary file and set its path as new job.kda$modfile: tool.save(moddata, "subsetof.supersets.txt") job.kda$modfile <- "subsetof.supersets.txt" ## Let's run KDA! job.kda <- kda.configure(job.kda) job.kda <- kda.start(job.kda) job.kda <- kda.prepare(job.kda) job.kda <- kda.analyze(job.kda) job.kda <- kda.finish(job.kda) ## Remove the temporary files used for the test: file.remove("subsetof.supersets.txt") ## remove the results folder unlink("Results", recursive = TRUE)
job.kda <- list() job.kda$label<-"HDLC" ## parent folder for results job.kda$folder<-"Results" ## Input a network ## columns: TAIL HEAD WEIGHT job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt", package="Mergeomics") ## Gene sets derived from ModuleMerge, containing two columns, MODULE, ## NODE, delimited by tab job.kda$modfile<- system.file("extdata","mergedModules.txt", package="Mergeomics") ## "0" means we do not consider edge weights while 1 is opposite. job.kda$edgefactor<-0.0 ## The searching depth for the KDA job.kda$depth<-1 ## 0 means we do not consider the directions of the regulatory interactions ## while 1 is opposite. job.kda$direction <- 1 job.kda$nperm <- 20 # the default value is 2000, use 20 for unit tests ## kda.start() process takes long time while seeking hubs in the given net ## Here, we used a very small subset of the module list (1st 10 mods ## from the original module file): moddata <- tool.read(job.kda$modfile) mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] ## save this to a temporary file and set its path as new job.kda$modfile: tool.save(moddata, "subsetof.supersets.txt") job.kda$modfile <- "subsetof.supersets.txt" ## Let's run KDA! job.kda <- kda.configure(job.kda) job.kda <- kda.start(job.kda) job.kda <- kda.prepare(job.kda) job.kda <- kda.analyze(job.kda) job.kda <- kda.finish(job.kda) ## Remove the temporary files used for the test: file.remove("subsetof.supersets.txt") ## remove the results folder unlink("Results", recursive = TRUE)
Obtains the enrichment scores (and p-values of these scores) of the hub nodes by the module member genes for a given module. The hub node enrichment P-values reflect the degree of enrichment of hub's neighbor nodes within the member genes of the module, to whom this hub belongs to, when compared to the null distribution of randomly expected enrichment of hub within graph's nodes.
kda.analyze.exec(memb, graph, nsim)
kda.analyze.exec(memb, graph, nsim)
memb |
Member nodes of the given module. |
graph |
Entire graph (network) of the dataset. |
nsim |
Number of the simulations for the permutation test to obtain p-values of the enrichment scores belonging to the hub nodes for a given module. |
kda.analyze.exec
obtains the p-values of the enrichment scores
belonging to the hub nodes for a given module. Enrichment score of a hub node
for a given module is obtained by the overlapped (shared) nodes between this
hub's neighbor nodes and the member nodes of the given module. If a hub node
does not have at least a particular number of neighbors, its enrichment score
is assigned as 0.0.
pvals |
P-values of the enrichment scores belonging to the hub nodes for the given module. |
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
kda.analyze
, kda.analyze.simulate
,
kda.analyze.test
## This auxiliary function is called by kda.analyze(), ## see this main function for more details job.kda <- list() job.kda$label<-"HDLC" ## parent folder for results job.kda$folder<-"Results" ## Input a network ## columns: TAIL HEAD WEIGHT job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt", package="Mergeomics") ## Gene sets derived from ModuleMerge, containing two columns, MODULE, ## NODE, delimited by tab job.kda$modfile<- system.file("extdata","mergedModules.txt", package="Mergeomics") ## "0" means we do not consider edge weights while 1 is opposite. job.kda$edgefactor<-0.0 ## The searching depth for the KDA job.kda$depth<-1 ## 0 means we do not consider the directions of the regulatory interactions ## while 1 is opposite. job.kda$direction<-1 job.kda$nperm <- 20 # the default value is 2000, use 20 for unit tests ## kda.start() process takes long time while seeking hubs in the given net ## Here, we used a very small subset of the module list (1st 10 mods ## from the original module file): moddata <- tool.read(job.kda$modfile) mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] ## save this to a temporary file and set its path as new job.kda$modfile: tool.save(moddata, "subsetof.supersets.txt") job.kda$modfile <- "subsetof.supersets.txt" ## Let's prepare KDA object for KDA: job.kda <- kda.configure(job.kda) job.kda <- kda.start(job.kda) job.kda <- kda.prepare(job.kda) set.seed(job.kda$seed) i = 1 ## index of the module, whose p-val is calculated: memb <- job.kda$module2nodes[[i]] graph <- job.kda$graph ## we need to import a network nsim <- job.kda$nperm ## number of simulations ## calculate p-vals of KDs for the specified module: # p <- kda.analyze.exec(memb, graph, nsim) ## see kda.analyze() for details ## Remove the temporary files used for the test: file.remove("subsetof.supersets.txt") ## remove the results folder unlink("Results", recursive = TRUE)
## This auxiliary function is called by kda.analyze(), ## see this main function for more details job.kda <- list() job.kda$label<-"HDLC" ## parent folder for results job.kda$folder<-"Results" ## Input a network ## columns: TAIL HEAD WEIGHT job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt", package="Mergeomics") ## Gene sets derived from ModuleMerge, containing two columns, MODULE, ## NODE, delimited by tab job.kda$modfile<- system.file("extdata","mergedModules.txt", package="Mergeomics") ## "0" means we do not consider edge weights while 1 is opposite. job.kda$edgefactor<-0.0 ## The searching depth for the KDA job.kda$depth<-1 ## 0 means we do not consider the directions of the regulatory interactions ## while 1 is opposite. job.kda$direction<-1 job.kda$nperm <- 20 # the default value is 2000, use 20 for unit tests ## kda.start() process takes long time while seeking hubs in the given net ## Here, we used a very small subset of the module list (1st 10 mods ## from the original module file): moddata <- tool.read(job.kda$modfile) mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] ## save this to a temporary file and set its path as new job.kda$modfile: tool.save(moddata, "subsetof.supersets.txt") job.kda$modfile <- "subsetof.supersets.txt" ## Let's prepare KDA object for KDA: job.kda <- kda.configure(job.kda) job.kda <- kda.start(job.kda) job.kda <- kda.prepare(job.kda) set.seed(job.kda$seed) i = 1 ## index of the module, whose p-val is calculated: memb <- job.kda$module2nodes[[i]] graph <- job.kda$graph ## we need to import a network nsim <- job.kda$nperm ## number of simulations ## calculate p-vals of KDs for the specified module: # p <- kda.analyze.exec(memb, graph, nsim) ## see kda.analyze() for details ## Remove the temporary files used for the test: file.remove("subsetof.supersets.txt") ## remove the results folder unlink("Results", recursive = TRUE)
Generates simulations for permutation test, which is performed to obtain the p-value for the enrichment score of a given hub for a specified module during the wKDA process.
kda.analyze.simulate(o, g, nmemb, nnodes, nsim)
kda.analyze.simulate(o, g, nmemb, nnodes, nsim)
o |
Observed enrichment score of a hub node assigned for a given module. |
g |
Sub-graph of a given hub and its neighbors (hubnet). |
nmemb |
Number of the members included in a given module. |
nnodes |
Number of the nodes in the whole graph (network) of the dataset. |
nsim |
Number of the iterations (simulations) performed for the permutation test. |
kda.analyze.simulate
performs permutation tests to obtain
p-values for the enrichment score of a given hub node for a given module.
It takes the observed enrichment score of the given hub, hubnet (subgraph
of the hub and its neighbors), number of the members of the given module,
total number of the nodes in the entire graph of the dataset, and number of
the simulations for the permutation test.
In each iteration (simulation), it samples nmemb
nodes randomly
among the entire nodes of the graph. Then, it tests the overlapped nodes
among the randomly chosen nodes and the given node's neigborhood. At the
end, it obtains an enrichment score for each simulation and evaluates these
permuted enrichment scores with respect to the observed enrichment score of
the hub. Among nsim
random simulations; maximally, enrichment scores
of 10 iterations are allowed to be greater than the observed (actual)
enrichment score of the hub. If this limitation is exceeded, simulation
will be finalized at that point and the enrichment score list of the
iterations will be returned.
x |
A list containing enrichment scores of the simulation's iterations |
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
kda.analyze
, kda.analyze.exec
,
kda.analyze.test
job.kda <- list() job.kda$label<-"HDLC" ## parent folder for results job.kda$folder<-"Results" ## Input a network ## columns: TAIL HEAD WEIGHT job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt", package="Mergeomics") ## Gene sets derived from ModuleMerge, containing two columns, MODULE, ## NODE, delimited by tab job.kda$modfile<- system.file("extdata","mergedModules.txt", package="Mergeomics") ## "0" means we do not consider edge weights while 1 is opposite. job.kda$edgefactor<-0.0 ## The searching depth for the KDA job.kda$depth<-1 ## 0 means we do not consider the directions of the regulatory interactions ## while 1 is opposite. job.kda$direction<-1 job.kda$nperm <- 20 # the default value is 2000, use 20 for unit tests ## kda.start() process takes long time while seeking hubs in the given net ## Here, we used a very small subset of the module list (1st 10 mods ## from the original module file): moddata <- tool.read(job.kda$modfile) mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] ## save this to a temporary file and set its path as new job.kda$modfile: tool.save(moddata, "subsetof.supersets.txt") job.kda$modfile <- "subsetof.supersets.txt" ## Let's prepare KDA object for KDA: job.kda <- kda.configure(job.kda) job.kda <- kda.start(job.kda) job.kda <- kda.prepare(job.kda) set.seed(job.kda$seed) i = 1 ## index of the module, whose p-val is calculated: memb <- job.kda$module2nodes[[i]] graph <- job.kda$graph ## we need to import a network nsim <- job.kda$nperm ## number of simulations ## This auxiliary function is called by kda.analyze.exec(), which is called ## by kda.analyze() main function, see this main function for more details hubs <- graph$hubs hubnets <- graph$hubnets nhubs <- length(hubs) nnodes <- length(graph$nodes) nmemb <- length(memb) ## Observed enrichment scores. # obs <- rep(NA, nhubs) # k <- 1 ## actual using: for(k in 1:nhubs){}, for unit test, use the 1st hub # g <- hubnets[[hubs[k]]] # obs[k] <- kda.analyze.test(g$RANK, g$STRENG, memb, nnodes) ## Estimate P-values. # pvals <- rep(NA, nhubs) # for(k in which(obs > 0)) { # g <- hubnets[[hubs[k]]] ## First pass: # x <- kda.analyze.simulate(obs[k], g, nmemb, nnodes, 200) ## Then, use x to estimate preliminary and final P-values. ## See kda.analyze() for more detail ## Remove the temporary files used for the test: file.remove("subsetof.supersets.txt") ## remove the results folder unlink("Results", recursive = TRUE) # } ## finishing for loop
job.kda <- list() job.kda$label<-"HDLC" ## parent folder for results job.kda$folder<-"Results" ## Input a network ## columns: TAIL HEAD WEIGHT job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt", package="Mergeomics") ## Gene sets derived from ModuleMerge, containing two columns, MODULE, ## NODE, delimited by tab job.kda$modfile<- system.file("extdata","mergedModules.txt", package="Mergeomics") ## "0" means we do not consider edge weights while 1 is opposite. job.kda$edgefactor<-0.0 ## The searching depth for the KDA job.kda$depth<-1 ## 0 means we do not consider the directions of the regulatory interactions ## while 1 is opposite. job.kda$direction<-1 job.kda$nperm <- 20 # the default value is 2000, use 20 for unit tests ## kda.start() process takes long time while seeking hubs in the given net ## Here, we used a very small subset of the module list (1st 10 mods ## from the original module file): moddata <- tool.read(job.kda$modfile) mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] ## save this to a temporary file and set its path as new job.kda$modfile: tool.save(moddata, "subsetof.supersets.txt") job.kda$modfile <- "subsetof.supersets.txt" ## Let's prepare KDA object for KDA: job.kda <- kda.configure(job.kda) job.kda <- kda.start(job.kda) job.kda <- kda.prepare(job.kda) set.seed(job.kda$seed) i = 1 ## index of the module, whose p-val is calculated: memb <- job.kda$module2nodes[[i]] graph <- job.kda$graph ## we need to import a network nsim <- job.kda$nperm ## number of simulations ## This auxiliary function is called by kda.analyze.exec(), which is called ## by kda.analyze() main function, see this main function for more details hubs <- graph$hubs hubnets <- graph$hubnets nhubs <- length(hubs) nnodes <- length(graph$nodes) nmemb <- length(memb) ## Observed enrichment scores. # obs <- rep(NA, nhubs) # k <- 1 ## actual using: for(k in 1:nhubs){}, for unit test, use the 1st hub # g <- hubnets[[hubs[k]]] # obs[k] <- kda.analyze.test(g$RANK, g$STRENG, memb, nnodes) ## Estimate P-values. # pvals <- rep(NA, nhubs) # for(k in which(obs > 0)) { # g <- hubnets[[hubs[k]]] ## First pass: # x <- kda.analyze.simulate(obs[k], g, nmemb, nnodes, 200) ## Then, use x to estimate preliminary and final P-values. ## See kda.analyze() for more detail ## Remove the temporary files used for the test: file.remove("subsetof.supersets.txt") ## remove the results folder unlink("Results", recursive = TRUE) # } ## finishing for loop
Obtains the enrichment score of a given hub (center node) belonging to a specified module. Enrichment score of a center node depends on the shared node number between the neighbor nodes of this center node (derived from the provided graph topology) and member nodes of this center node's module. The more a center node has neighbors in the graph among the member genes belonging to the module of this center node, the greater enrichment score it has.
kda.analyze.test(neigh, w, members, nnodes)
kda.analyze.test(neigh, w, members, nnodes)
neigh |
Neighbor nodes of the given hub node (i.e. nodes in the hubnet) |
w |
Weigths of the given hub node based on its in-degree and out-degree edge density in the hubnet |
members |
Node indices -within the entire graph- of the member genes of given hub's module. |
nnodes |
Number of the nodes in the entire graph of the dataset. |
kda.analyze.test
takes a hub node's neigbor list and weight
list; additionally, it takes the member node list of relevant module. It
searches the masses of the shared nodes between hubnet and the given module
(gene set).
The shared edge mass is normalized with respect to number of the expected
match ratio between hubnet and the given node list. This normalized ratio
is assigned as the observed enrichment score of the hubnet according to
the given member node list.
z |
Calculated enrichment score |
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
kda.analyze
, kda.analyze.exec
,
kda.analyze.simulate
job.kda <- list() job.kda$label<-"HDLC" ## parent folder for results job.kda$folder<- "Results" ## Input a network ## columns: TAIL HEAD WEIGHT job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt", package="Mergeomics") ## Gene sets derived from ModuleMerge, containing two columns, MODULE, ## NODE, delimited by tab job.kda$modfile<- system.file("extdata","mergedModules.txt", package="Mergeomics") ## "0" means we do not consider edge weights while 1 is opposite. job.kda$edgefactor<-0.0 ## The searching depth for the KDA job.kda$depth<-1 ## 0 means we do not consider the directions of the regulatory interactions ## while 1 is opposite. job.kda$direction<-1 job.kda$nperm <- 20 # the default value is 2000, use 20 for unit tests ## kda.start() process takes long time while seeking hubs in the given net ## Here, we used a very small subset of the module list (1st 10 mods ## from the original module file): moddata <- tool.read(job.kda$modfile) mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] ## save this to a temporary file and set its path as new job.kda$modfile: tool.save(moddata, "subsetof.supersets.txt") job.kda$modfile <- "subsetof.supersets.txt" ## Let's prepare KDA object for KDA: job.kda <- kda.configure(job.kda) job.kda <- kda.start(job.kda) job.kda <- kda.prepare(job.kda) set.seed(job.kda$seed) i = 1 ## index of the module, whose p-val is calculated: memb <- job.kda$module2nodes[[i]] graph <- job.kda$graph ## we need to import a network nsim <- job.kda$nperm ## number of simulations ## This auxiliary function is called by kda.analyze.exec(), which is called ## by kda.analyze() main function, see this main function for more details hubs <- graph$hubs hubnets <- graph$hubnets nhubs <- length(hubs) nnodes <- length(graph$nodes) nmemb <- length(memb) ## Observed enrichment scores for the hubs of the given module. obs <- rep(NA, nhubs) k <- 1 ## actual using: for(k in 1:nhubs){}, for test, use only the 1st hub g <- hubnets[[hubs[k]]] obs[k] <- kda.analyze.test(g$RANK, g$STRENG, memb, nnodes) ## Then, estimate preliminary and final P-values by kda.analyze.simulate() ## See kda.analyze() for more details ## Remove the temporary files used for the test: file.remove("subsetof.supersets.txt") ## remove the results folder unlink("Results", recursive = TRUE)
job.kda <- list() job.kda$label<-"HDLC" ## parent folder for results job.kda$folder<- "Results" ## Input a network ## columns: TAIL HEAD WEIGHT job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt", package="Mergeomics") ## Gene sets derived from ModuleMerge, containing two columns, MODULE, ## NODE, delimited by tab job.kda$modfile<- system.file("extdata","mergedModules.txt", package="Mergeomics") ## "0" means we do not consider edge weights while 1 is opposite. job.kda$edgefactor<-0.0 ## The searching depth for the KDA job.kda$depth<-1 ## 0 means we do not consider the directions of the regulatory interactions ## while 1 is opposite. job.kda$direction<-1 job.kda$nperm <- 20 # the default value is 2000, use 20 for unit tests ## kda.start() process takes long time while seeking hubs in the given net ## Here, we used a very small subset of the module list (1st 10 mods ## from the original module file): moddata <- tool.read(job.kda$modfile) mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] ## save this to a temporary file and set its path as new job.kda$modfile: tool.save(moddata, "subsetof.supersets.txt") job.kda$modfile <- "subsetof.supersets.txt" ## Let's prepare KDA object for KDA: job.kda <- kda.configure(job.kda) job.kda <- kda.start(job.kda) job.kda <- kda.prepare(job.kda) set.seed(job.kda$seed) i = 1 ## index of the module, whose p-val is calculated: memb <- job.kda$module2nodes[[i]] graph <- job.kda$graph ## we need to import a network nsim <- job.kda$nperm ## number of simulations ## This auxiliary function is called by kda.analyze.exec(), which is called ## by kda.analyze() main function, see this main function for more details hubs <- graph$hubs hubnets <- graph$hubnets nhubs <- length(hubs) nnodes <- length(graph$nodes) nmemb <- length(memb) ## Observed enrichment scores for the hubs of the given module. obs <- rep(NA, nhubs) k <- 1 ## actual using: for(k in 1:nhubs){}, for test, use only the 1st hub g <- hubnets[[hubs[k]]] obs[k] <- kda.analyze.test(g$RANK, g$STRENG, memb, nnodes) ## Then, estimate preliminary and final P-values by kda.analyze.simulate() ## See kda.analyze() for more details ## Remove the temporary files used for the test: file.remove("subsetof.supersets.txt") ## remove the results folder unlink("Results", recursive = TRUE)
takes the configuration (plan) parameter for wKDA process as input and assigns default values if needed. The fields of this parameter are listed in the arguements section in detail.
kda.configure(plan)
kda.configure(plan)
plan |
a parameter including fields about the details of the wKDA process: label: unique identifier for the analysis folder: parent folder for results netfile: path to network file (TAIL HEAD WEIGHT) modfile: path to module file (MODULE GENE) inffile: path to module info file nodfile: path to node selection file depthsearch: depth for subgraph search direction: 0 for undirected, negative for downstream and positive for upstream maxoverlap: maximum allowed overlap between two key driver neighborhoods minsize: minimum module size mindegreeminimum: node degree to qualify as a hub maxdegreemaximum: node degree to include edgefactor: influence of node strengths: 0.0 no influence, 1.0 full influence seed: seed for random number generator |
kda.configure
prepares the environment for wKDA process,
checks the fields of the input plan parameter (that includes paths of
required input files and output folder, min module size, etc.), and
assigns the default values to these fields if they are not specified.
plan |
configured and -if needed updated- plan parameter to be used in wKDA process. |
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
## for KDA the essential parameters should be assigned by user is as follows: plan <- list() ## assign job label: plan$label<-"HDLC" ## specify parent folder for results: plan$folder<-"Results" ## Get an input network (columns: TAIL HEAD WEIGHT) plan$netfile <-"network.mouseliver.mouse.txt" ## Get the gene sets derived from ModuleMerge, containing two columns, ## MODULE and NODE, delimited by tab plan$modfile<- "moddata.txt" ## If above parameters are not assigned by users, code will stop with error: if(is.null(plan$folder)) stop("No parent folder.") if(is.null(plan$label)) stop("No job label.") if(is.null(plan$netfile)) stop("No network file.") if(is.null(plan$modfile)) stop("No module file.") ## other parameters are optional, if they are not specified by user, ## kda.configure assigns their default values: ## graph search depth parameter: if(is.null(plan$depth)) plan$depth <- 1 ## edge directionality in the network: O means undirected if(is.null(plan$direction)) plan$direction <- 0 ## max overlap allowed between two modules if(is.null(plan$maxoverlap)) plan$maxoverlap <- 0.33 ## min size of the modules if(is.null(plan$minsize)) plan$minsize <- 20 ## min and max hub degree to be included: if(is.null(plan$mindegree)) plan$mindegree <- "automatic" if(is.null(plan$maxdegree)) plan$maxdegree <- "automatic" ## number of simulations for permutation test: if(is.null(plan$nperm)) plan$nperm <- 2000 ## seed for random number generator: if(is.null(plan$seed)) plan$seed <- 1 ## these are the main parameters needed to be assigned default values.
## for KDA the essential parameters should be assigned by user is as follows: plan <- list() ## assign job label: plan$label<-"HDLC" ## specify parent folder for results: plan$folder<-"Results" ## Get an input network (columns: TAIL HEAD WEIGHT) plan$netfile <-"network.mouseliver.mouse.txt" ## Get the gene sets derived from ModuleMerge, containing two columns, ## MODULE and NODE, delimited by tab plan$modfile<- "moddata.txt" ## If above parameters are not assigned by users, code will stop with error: if(is.null(plan$folder)) stop("No parent folder.") if(is.null(plan$label)) stop("No job label.") if(is.null(plan$netfile)) stop("No network file.") if(is.null(plan$modfile)) stop("No module file.") ## other parameters are optional, if they are not specified by user, ## kda.configure assigns their default values: ## graph search depth parameter: if(is.null(plan$depth)) plan$depth <- 1 ## edge directionality in the network: O means undirected if(is.null(plan$direction)) plan$direction <- 0 ## max overlap allowed between two modules if(is.null(plan$maxoverlap)) plan$maxoverlap <- 0.33 ## min size of the modules if(is.null(plan$minsize)) plan$minsize <- 20 ## min and max hub degree to be included: if(is.null(plan$mindegree)) plan$mindegree <- "automatic" if(is.null(plan$maxdegree)) plan$maxdegree <- "automatic" ## number of simulations for permutation test: if(is.null(plan$nperm)) plan$nperm <- 2000 ## seed for random number generator: if(is.null(plan$seed)) plan$seed <- 1 ## these are the main parameters needed to be assigned default values.
After wKDA process is accomplished, kda.finish.estimate
sums
up the results and log them to the relevant files and folders. Besides,
return them within the given job parameter.
kda.finish(job)
kda.finish(job)
job |
the data list including label and folder fields to specify a unique identifier for the wKDA process and the output folder for the obtained results, respectively. |
kda.finish.estimate
estimates additional measures if needed,
saves results into relevant files, trims numbers to provide a simpler file
for viewing, and stores a summary file of top hits after the wKDA prcess is
accomplished. It also obtains the overlaps of the modules with hub
neighborhoods, finds co-hubs information, determines the top key driver
for each module and saves the updated and sorted p-values belonging to
them.
job |
updated information including the overlapping hub neighborhoods, co-hubs information, top driver of each module, and their updated and sorted p-values. |
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
kda.finish.estimate
, kda.finish.save
,
kda.finish.summarize
, kda.finish.trim
## get the prepared and KDA applied dataset:(see kda.analyze for details) data(job_kda_analyze) ## set the relevant parameters: job.kda$label<-"HDLC" ## parent folder for results job.kda$folder<-"Results" ## Input a network ## columns: TAIL HEAD WEIGHT job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt", package="Mergeomics") ## Gene sets derived from ModuleMerge, containing two columns, MODULE, ## NODE, delimited by tab job.kda$modfile<- system.file("extdata","mergedModules.txt", package="Mergeomics") ## "0" means we do not consider edge weights while 1 is opposite. job.kda$edgefactor<-0.0 ## The searching depth for the KDA job.kda$depth<-1 ## 0 means we do not consider the directions of the regulatory interactions ## while 1 is opposite. job.kda$direction <- 1 ## finish the KDA process job.kda <- kda.finish(job.kda) ## remove the results folder unlink("Results", recursive = TRUE)
## get the prepared and KDA applied dataset:(see kda.analyze for details) data(job_kda_analyze) ## set the relevant parameters: job.kda$label<-"HDLC" ## parent folder for results job.kda$folder<-"Results" ## Input a network ## columns: TAIL HEAD WEIGHT job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt", package="Mergeomics") ## Gene sets derived from ModuleMerge, containing two columns, MODULE, ## NODE, delimited by tab job.kda$modfile<- system.file("extdata","mergedModules.txt", package="Mergeomics") ## "0" means we do not consider edge weights while 1 is opposite. job.kda$edgefactor<-0.0 ## The searching depth for the KDA job.kda$depth<-1 ## 0 means we do not consider the directions of the regulatory interactions ## while 1 is opposite. job.kda$direction <- 1 ## finish the KDA process job.kda <- kda.finish(job.kda) ## remove the results folder unlink("Results", recursive = TRUE)
Estimates additional measures based on overlapping of module member nodes with hub neighbor nodes in the graph.
kda.finish.estimate(job)
kda.finish.estimate(job)
job |
The data list that was subjected to wKDA. It involves the modules, member genes belonging to each module, graph information of the dataset, hubs and hubnets of the graph. |
kda.finish.save
determines the overlaps of modules with hub
neighborhoods, obtains graph measures based on the ratio of the observed
overlap amounts to the expected overlap amount, and returns the values of
this measure.
res |
Returns the overlapping ratio of the modules with hubnets. |
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
kda.finish
, kda.finish.save
,
kda.finish.summarize
, kda.finish.trim
## get the prepared and KDA applied dataset:(see kda.analyze for details) data(job_kda_analyze) ## finish the KDA process by estimating additional measures for the modules ## such as module sizes, overlaps with hub neighborhoods, etc. # job.kda <- kda.finish(job.kda) # if (nrow(job.kda$results)==0){ # cat("No Key Driver Found!!!!") # } else{ ## Estimate additional measures - see kda.analyze and kda.finish for details # res <- kda.finish.estimate(job.kda) # }
## get the prepared and KDA applied dataset:(see kda.analyze for details) data(job_kda_analyze) ## finish the KDA process by estimating additional measures for the modules ## such as module sizes, overlaps with hub neighborhoods, etc. # job.kda <- kda.finish(job.kda) # if (nrow(job.kda$results)==0){ # cat("No Key Driver Found!!!!") # } else{ ## Estimate additional measures - see kda.analyze and kda.finish for details # res <- kda.finish.estimate(job.kda) # }
kda.finish.save
sorts (according to KD p-values) and saves
the wKDA results into specified files and folders.
kda.finish.save(res, job)
kda.finish.save(res, job)
res |
the results obtained from |
job |
information including the entire graph, nodes, modules, co-hubs,
top key driver of each module, and their updated and sorted p-values.
All the information included |
res |
the results obtained from |
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
kda.finish
, kda.finish.estimate
,
kda.finish.summarize
, kda.finish.trim
## get the prepared and KDA applied dataset:(see kda.analyze for details) data(job_kda_analyze) ## finish the KDA process by estimating additional measures for the modules ## such as module sizes, overlaps with hub neighborhoods, etc. # job.kda <- kda.finish(job.kda) # if (nrow(job.kda$results)==0){ # cat("No Key Driver Found!!!!") # } else{ ## Estimate additional measures - see kda.analyze and kda.finish for details # res <- kda.finish.estimate(job.kda) ## Save full results about modules such as co-hub, nodes, P-values info etc. # res <- kda.finish.save(res, job.kda) # }
## get the prepared and KDA applied dataset:(see kda.analyze for details) data(job_kda_analyze) ## finish the KDA process by estimating additional measures for the modules ## such as module sizes, overlaps with hub neighborhoods, etc. # job.kda <- kda.finish(job.kda) # if (nrow(job.kda$results)==0){ # cat("No Key Driver Found!!!!") # } else{ ## Estimate additional measures - see kda.analyze and kda.finish for details # res <- kda.finish.estimate(job.kda) ## Save full results about modules such as co-hub, nodes, P-values info etc. # res <- kda.finish.save(res, job.kda) # }
Create a summary file of top key drivers. The file includes the key driver of each block of the dataset and their p-values.
kda.finish.summarize(res, job)
kda.finish.summarize(res, job)
res |
the data frame including the p-values, false discovery rates, and fold
scores of the nodes obtained from |
job |
the data frame including the path of output file which will briefly contain top key drivers of the blocks and ranked p-values of those top key drivers |
kda.finish.summarize
determines the ranking scores of blocks,
finds the top node for each block, selects and saves top key drivers, and
stores P-values into file. top drovers of the blocks are also returned to
the user.
res |
data frame including top node for each block |
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
kda.finish
, kda.finish.estimate
,
kda.finish.save
, kda.finish.trim
## get the prepared and KDA applied dataset:(see kda.analyze for details) data(job_kda_analyze) ## finish the KDA process by estimating additional measures for the modules ## such as module sizes, overlaps with hub neighborhoods, etc. # job.kda <- kda.finish(job.kda) # if (nrow(job.kda$results)==0){ # cat("No Key Driver Found!!!!") # } else{ ## Estimate additional measures - see kda.analyze and kda.finish for details # res <- kda.finish.estimate(job.kda) ## Save full results about modules such as co-hub, nodes, P-values info etc. # res <- kda.finish.save(res, job.kda) ## Create a simpler file for viewing by trimming floating numbers # res <- kda.finish.trim(res, job.kda) ## Create a summary file of top hit KDs. # res <- kda.finish.summarize(res, job.kda) # } ## See kda.analyze() and kda.finish() for details
## get the prepared and KDA applied dataset:(see kda.analyze for details) data(job_kda_analyze) ## finish the KDA process by estimating additional measures for the modules ## such as module sizes, overlaps with hub neighborhoods, etc. # job.kda <- kda.finish(job.kda) # if (nrow(job.kda$results)==0){ # cat("No Key Driver Found!!!!") # } else{ ## Estimate additional measures - see kda.analyze and kda.finish for details # res <- kda.finish.estimate(job.kda) ## Save full results about modules such as co-hub, nodes, P-values info etc. # res <- kda.finish.save(res, job.kda) ## Create a simpler file for viewing by trimming floating numbers # res <- kda.finish.trim(res, job.kda) ## Create a summary file of top hit KDs. # res <- kda.finish.summarize(res, job.kda) # } ## See kda.analyze() and kda.finish() for details
kda.finish.trim
trims p-values, false discovery rates, and
fold scores to make them nicer to look at before saving the file. It also
returns trimmed results to the user.
kda.finish.trim(res, job)
kda.finish.trim(res, job)
res |
includes p-values, false discovery rates, and fold scores of the nodes |
job |
data frame including output folder path to store trimmed results |
res |
Trimmed and formatted p-values, false discovery rates, and fold scores of the nodes |
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
kda.finish
, kda.finish.estimate
,
kda.finish.save
, kda.finish.summarize
## get the prepared and KDA applied dataset:(see kda.analyze for details) data(job_kda_analyze) ## finish the KDA process by estimating additional measures for the modules ## such as module sizes, overlaps with hub neighborhoods, etc. # job.kda <- kda.finish(job.kda) # if (nrow(job.kda$results)==0){ # cat("No Key Driver Found!!!!") # } else{ ## Estimate additional measures - see kda.analyze and kda.finish for details # res <- kda.finish.estimate(job.kda) ## Save full results about modules such as co-hub, nodes, P-values info etc. # res <- kda.finish.save(res, job.kda) ## Create a simpler file for viewing by trimming floating numbers # res <- kda.finish.trim(res, job.kda) # } ## See kda.analyze() and kda.finish() for details
## get the prepared and KDA applied dataset:(see kda.analyze for details) data(job_kda_analyze) ## finish the KDA process by estimating additional measures for the modules ## such as module sizes, overlaps with hub neighborhoods, etc. # job.kda <- kda.finish(job.kda) # if (nrow(job.kda$results)==0){ # cat("No Key Driver Found!!!!") # } else{ ## Estimate additional measures - see kda.analyze and kda.finish for details # res <- kda.finish.estimate(job.kda) ## Save full results about modules such as co-hub, nodes, P-values info etc. # res <- kda.finish.save(res, job.kda) ## Create a simpler file for viewing by trimming floating numbers # res <- kda.finish.trim(res, job.kda) # } ## See kda.analyze() and kda.finish() for details
kda.prepare
gets graph topology required by wKDA process,
then provides the information including hub list, hubnets, and overlapping
co-hubs.
kda.prepare(job)
kda.prepare(job)
job |
a parameter including restirictions while determining the graph topology information (such as hubs, hubnets, co-hubs, etc.), which is required by the wKDA process: graph: graph of the dataset depth: search depth for subgraph search direction: use 0 for undirected, negative for downstream and positive for upstream maxoverlap: maximum allowed overlap between two key driver neighborhoods mindegree: minimum hub degree to include edgefactor: influence of node strengths; 0.0 no influence, 1.0 full influence |
kda.prepare
determines minimum hub degree if it is not
specified by the user, finds hubs and their neighborhoods (hubnets),
extracts overlapping co-hubs, returns this information to user, and prints
it to the screen.
job |
Updated data frame including information about the graph topology in terms of hubs, hubnets, and overlapping co-hubs: hubs: hub nodes list hubnets: neighborhoods of hubs (hubnets) cohubsets: overlapping hubs (co-hubs) |
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
kda.analyze
, kda.prepare.overlap
,
kda.prepare.screen
job.kda <- list() job.kda$label<-"HDLC" ## parent folder for results job.kda$folder<- "Results" ## Input a network ## columns: TAIL HEAD WEIGHT job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt", package="Mergeomics") ## Gene sets derived from ModuleMerge, containing two columns, MODULE, ## NODE, delimited by tab job.kda$modfile<- system.file("extdata","mergedModules.txt", package="Mergeomics") ## "0" means we do not consider edge weights while 1 is opposite. job.kda$edgefactor<-0.0 ## The searching depth for the KDA job.kda$depth<-1 ## 0 means we do not consider the directions of the regulatory interactions ## while 1 is opposite. job.kda$direction <- 1 job.kda$nperm <- 20 # the default value is 2000, use 20 for unit tests ## kda.start() process takes long time while seeking hubs in the given net ## Here, we used a very small subset of the module list (1st 10 mods ## from the original module file): moddata <- tool.read(job.kda$modfile) mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] ## save this to a temporary file and set its path as new job.kda$modfile: tool.save(moddata, "subsetof.supersets.txt") job.kda$modfile <- "subsetof.supersets.txt" ## Configure the parameters for KDA: job.kda <- kda.configure(job.kda) ## Create the object properly job.kda <- kda.start(job.kda) ## Find the hubs, co-hubs, and hub neighborhoods (hubnets), etc.: job.kda <- kda.prepare(job.kda) ## After that, we need to call kda.analyze() and kda.finish() ## Remove the temporary files used for the test: file.remove("subsetof.supersets.txt") ## remove the results folder unlink("Results", recursive = TRUE)
job.kda <- list() job.kda$label<-"HDLC" ## parent folder for results job.kda$folder<- "Results" ## Input a network ## columns: TAIL HEAD WEIGHT job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt", package="Mergeomics") ## Gene sets derived from ModuleMerge, containing two columns, MODULE, ## NODE, delimited by tab job.kda$modfile<- system.file("extdata","mergedModules.txt", package="Mergeomics") ## "0" means we do not consider edge weights while 1 is opposite. job.kda$edgefactor<-0.0 ## The searching depth for the KDA job.kda$depth<-1 ## 0 means we do not consider the directions of the regulatory interactions ## while 1 is opposite. job.kda$direction <- 1 job.kda$nperm <- 20 # the default value is 2000, use 20 for unit tests ## kda.start() process takes long time while seeking hubs in the given net ## Here, we used a very small subset of the module list (1st 10 mods ## from the original module file): moddata <- tool.read(job.kda$modfile) mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] ## save this to a temporary file and set its path as new job.kda$modfile: tool.save(moddata, "subsetof.supersets.txt") job.kda$modfile <- "subsetof.supersets.txt" ## Configure the parameters for KDA: job.kda <- kda.configure(job.kda) ## Create the object properly job.kda <- kda.start(job.kda) ## Find the hubs, co-hubs, and hub neighborhoods (hubnets), etc.: job.kda <- kda.prepare(job.kda) ## After that, we need to call kda.analyze() and kda.finish() ## Remove the temporary files used for the test: file.remove("subsetof.supersets.txt") ## remove the results folder unlink("Results", recursive = TRUE)
kda.prepare.overlap
finds overlapping co-hubs of the given
graph.
kda.prepare.overlap(graph, direction, rmax)
kda.prepare.overlap(graph, direction, rmax)
graph |
entire graph, whose overlapping co-hubs will be found |
direction |
the direction of the interactions among graph components. 0 for undirected, negative for downstream, and positive for upstream |
rmax |
maximum allowed overlap between two key driver neighborhoods |
graph |
Updated graph including overlapping co-hubs: cohubsetsco-hubs of the given graph |
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
job.kda <- list() job.kda$label<-"HDLC" ## parent folder for results job.kda$folder<- "Results" ## Input a network ## columns: TAIL HEAD WEIGHT job.kda$netfile<-"network.mouseliver.mouse.txt" ## Gene sets derived from ModuleMerge, containing two columns, MODULE, ## NODE, delimited by tab job.kda$modfile<- "mergedModules.txt" ## The searching depth for the KDA job.kda$depth<-1 ## 0 means we do not consider the directions of the regulatory interactions ## while 1 is opposite. job.kda$direction <- 1 ## Configure the parameters for KDA: # job.kda <- kda.configure(job.kda) ## Create the object properly # job.kda <- kda.start(job.kda) ## Find the hubs, co-hubs, and hub neighborhoods (hubnets) by kda.prepare() ## and its auxiliary functions kda.prepare.screen and kda.prepare.overlap ## First, determine the minimum and maximum hub degrees: # nnodes <- length(job.kda$graph$nodes) # if (job.kda$mindegree == "automatic") { # dmin <- as.numeric(quantile(job.kda$graph$stats$DEGREE,0.75)) # job.kda$mindegree <- dmin # } # if (job.kda$maxdegree == "automatic") { # dmax <- as.numeric(quantile(job.kda$graph$stats$DEGREE,1)) # job.kda$maxdegree <- dmax # } ## Collect neighbors. # job.kda$graph <- kda.prepare.screen(job.kda$graph, job.kda$depth, # job.kda$direction, job.kda$edgefactor, job.kda$mindegree, job.kda$maxdegree) ## Then, extract overlapping co-hubs by kda.prepare.overlap(): ## Collect overlapping co-hubs. # job.kda$graph <- kda.prepare.overlap(job.kda$graph, job.kda$direction, # job.kda$maxoverlap)
job.kda <- list() job.kda$label<-"HDLC" ## parent folder for results job.kda$folder<- "Results" ## Input a network ## columns: TAIL HEAD WEIGHT job.kda$netfile<-"network.mouseliver.mouse.txt" ## Gene sets derived from ModuleMerge, containing two columns, MODULE, ## NODE, delimited by tab job.kda$modfile<- "mergedModules.txt" ## The searching depth for the KDA job.kda$depth<-1 ## 0 means we do not consider the directions of the regulatory interactions ## while 1 is opposite. job.kda$direction <- 1 ## Configure the parameters for KDA: # job.kda <- kda.configure(job.kda) ## Create the object properly # job.kda <- kda.start(job.kda) ## Find the hubs, co-hubs, and hub neighborhoods (hubnets) by kda.prepare() ## and its auxiliary functions kda.prepare.screen and kda.prepare.overlap ## First, determine the minimum and maximum hub degrees: # nnodes <- length(job.kda$graph$nodes) # if (job.kda$mindegree == "automatic") { # dmin <- as.numeric(quantile(job.kda$graph$stats$DEGREE,0.75)) # job.kda$mindegree <- dmin # } # if (job.kda$maxdegree == "automatic") { # dmax <- as.numeric(quantile(job.kda$graph$stats$DEGREE,1)) # job.kda$maxdegree <- dmax # } ## Collect neighbors. # job.kda$graph <- kda.prepare.screen(job.kda$graph, job.kda$depth, # job.kda$direction, job.kda$edgefactor, job.kda$mindegree, job.kda$maxdegree) ## Then, extract overlapping co-hubs by kda.prepare.overlap(): ## Collect overlapping co-hubs. # job.kda$graph <- kda.prepare.overlap(job.kda$graph, job.kda$direction, # job.kda$maxoverlap)
kda.prepare.screen
finds hubs and their neighborhoods
(hubnets) from the given graph.
kda.prepare.screen(graph, depth, direction, efactor, dmin, dmax)
kda.prepare.screen(graph, depth, direction, efactor, dmin, dmax)
graph |
entire graph, whose hubs and hubnets will be obtained |
depth |
search depth for subgraph search |
direction |
the direction of the interactions among graph components. 0 for undirected, negative for downstream, and positive for upstream |
efactor |
influence of node strengths (weights): 0.0 no influence, 1.0 full influence |
dmin |
minimum hub degree to include |
dmax |
maximum hub degree to include |
graph |
Updated graph including obtained hubs and hubnets: hubs: hub nodes list hubnets: neighborhoods of hubs (hubnets) |
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
job.kda <- list() job.kda$label<-"HDLC" ## parent folder for results job.kda$folder<- "Results" ## Input a network ## columns: TAIL HEAD WEIGHT job.kda$netfile<-"network.mouseliver.mouse.txt" ## Gene sets derived from ModuleMerge, containing two columns, MODULE, ## NODE, delimited by tab job.kda$modfile<- "mergedModules.txt" ## The searching depth for the KDA job.kda$depth<-1 ## 0 means we do not consider the directions of the regulatory interactions ## while 1 is opposite. job.kda$direction <- 1 ## Configure the parameters for KDA: # job.kda <- kda.configure(job.kda) ## Create the object properly # job.kda <- kda.start(job.kda) ## Find the hubs, co-hubs, and hub neighborhoods (hubnets) by kda.prepare() ## and its auxiliary functions kda.prepare.screen and kda.prepare.overlap ## First, determine the minimum and maximum hub degrees: # nnodes <- length(job.kda$graph$nodes) # if (job.kda$mindegree == "automatic") { # dmin <- as.numeric(quantile(job.kda$graph$stats$DEGREE,0.75)) # job.kda$mindegree <- dmin # } # if (job.kda$maxdegree == "automatic") { # dmax <- as.numeric(quantile(job.kda$graph$stats$DEGREE,1)) # job.kda$maxdegree <- dmax # } ## Collect neighbors. # job.kda$graph <- kda.prepare.screen(job.kda$graph, job.kda$depth, # job.kda$direction, job.kda$edgefactor, job.kda$mindegree, job.kda$maxdegree) ## Then, extract overlapping co-hubs by kda.prepare.overlap()
job.kda <- list() job.kda$label<-"HDLC" ## parent folder for results job.kda$folder<- "Results" ## Input a network ## columns: TAIL HEAD WEIGHT job.kda$netfile<-"network.mouseliver.mouse.txt" ## Gene sets derived from ModuleMerge, containing two columns, MODULE, ## NODE, delimited by tab job.kda$modfile<- "mergedModules.txt" ## The searching depth for the KDA job.kda$depth<-1 ## 0 means we do not consider the directions of the regulatory interactions ## while 1 is opposite. job.kda$direction <- 1 ## Configure the parameters for KDA: # job.kda <- kda.configure(job.kda) ## Create the object properly # job.kda <- kda.start(job.kda) ## Find the hubs, co-hubs, and hub neighborhoods (hubnets) by kda.prepare() ## and its auxiliary functions kda.prepare.screen and kda.prepare.overlap ## First, determine the minimum and maximum hub degrees: # nnodes <- length(job.kda$graph$nodes) # if (job.kda$mindegree == "automatic") { # dmin <- as.numeric(quantile(job.kda$graph$stats$DEGREE,0.75)) # job.kda$mindegree <- dmin # } # if (job.kda$maxdegree == "automatic") { # dmax <- as.numeric(quantile(job.kda$graph$stats$DEGREE,1)) # job.kda$maxdegree <- dmax # } ## Collect neighbors. # job.kda$graph <- kda.prepare.screen(job.kda$graph, job.kda$depth, # job.kda$direction, job.kda$edgefactor, job.kda$mindegree, job.kda$maxdegree) ## Then, extract overlapping co-hubs by kda.prepare.overlap()
kda.start
converts identities (such as module descriptions,
module identifiers, and module nodes) to indices. It prepares graph
topology and module information for wKDA process.
kda.start(job)
kda.start(job)
job |
a data frame including fields for edges and nodes information of the graph (TAIL, HEAD, WEIGHT). It also involves path of input files including module descriptions and module-gene lists. |
kda.start
imports graph and relevant module descriptor input
files, creates an indexed graph structure, and converts identities to
indices from module descriptions and module-gene lists. Hence, it concludes
with a graph structure and a module set involving member gene IDs for
each module.
job |
Updated data frame including indexed graph topology, modules, and nodes information: graph: indexed topology modules: module identities modinfo: module descriptions (indexed) moddata: module data (indexed) module2nodes: lists of node indices for each module modulesizes: module sizes |
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
kda.analyze
, kda.finish
,
kda.prepare
, kda.start.edges
,
kda.start.identify
, kda.start.modules
job.kda <- list() job.kda$label<-"HDLC" ## parent folder for results job.kda$folder<-"Results" ## Input a network ## columns: TAIL HEAD WEIGHT job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt", package="Mergeomics") ## Gene sets derived from ModuleMerge, containing two columns, MODULE, ## NODE, delimited by tab job.kda$modfile<- system.file("extdata","mergedModules.txt", package="Mergeomics") ## "0" means we do not consider edge weights while 1 is opposite. job.kda$edgefactor<-0.0 ## The searching depth for the KDA job.kda$depth<-1 ## 0 means we do not consider the directions of the regulatory interactions ## while 1 is opposite. job.kda$direction <- 1 job.kda$nperm <- 20 # the default value is 2000, use 20 for unit tests ## kda.start() process takes long time while seeking hubs in the given net ## Here, we used a very small subset of the module list (1st 10 mods ## from the original module file): moddata <- tool.read(job.kda$modfile) mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] ## save this to a temporary file and set its path as new job.kda$modfile: tool.save(moddata, "subsetof.supersets.txt") job.kda$modfile <- "subsetof.supersets.txt" job.kda <- kda.configure(job.kda) ## Import data for weighted key driver analysis: job.kda <- kda.start(job.kda) ## Remove the temporary files used for the test: file.remove("subsetof.supersets.txt") ## remove the results folder unlink("Results", recursive = TRUE)
job.kda <- list() job.kda$label<-"HDLC" ## parent folder for results job.kda$folder<-"Results" ## Input a network ## columns: TAIL HEAD WEIGHT job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt", package="Mergeomics") ## Gene sets derived from ModuleMerge, containing two columns, MODULE, ## NODE, delimited by tab job.kda$modfile<- system.file("extdata","mergedModules.txt", package="Mergeomics") ## "0" means we do not consider edge weights while 1 is opposite. job.kda$edgefactor<-0.0 ## The searching depth for the KDA job.kda$depth<-1 ## 0 means we do not consider the directions of the regulatory interactions ## while 1 is opposite. job.kda$direction <- 1 job.kda$nperm <- 20 # the default value is 2000, use 20 for unit tests ## kda.start() process takes long time while seeking hubs in the given net ## Here, we used a very small subset of the module list (1st 10 mods ## from the original module file): moddata <- tool.read(job.kda$modfile) mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] ## save this to a temporary file and set its path as new job.kda$modfile: tool.save(moddata, "subsetof.supersets.txt") job.kda$modfile <- "subsetof.supersets.txt" job.kda <- kda.configure(job.kda) ## Import data for weighted key driver analysis: job.kda <- kda.start(job.kda) ## Remove the temporary files used for the test: file.remove("subsetof.supersets.txt") ## remove the results folder unlink("Results", recursive = TRUE)
kda.start.edges
imports network file, gets edge data
(in TAIL, HEAD, WEIGHT format), eliminates the nodes -whose degree is
smaller than the maximum allowed node degree-, and returns the edges of
remaining nodes.
kda.start.edges(job)
kda.start.edges(job)
job |
a data frame including information such as network file name,
maximum allowed node degree, edge direction ( |
edgdata |
filtered edge list, i.e. edges of the nodes, whose degree is smaller than the maximum allowed node degree |
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
kda.analyze
, kda.finish
,
kda.prepare
, kda.start
job.kda <- list() job.kda$label<-"HDLC" ## parent folder for results job.kda$folder<-"Results" ## Input a network ## columns: TAIL HEAD WEIGHT job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt", package="Mergeomics") ## Gene sets derived from ModuleMerge, containing two columns, MODULE, ## NODE, delimited by tab job.kda$modfile<- system.file("extdata","mergedModules.txt", package="Mergeomics") ## "0" means we do not consider edge weights while 1 is opposite. job.kda$edgefactor<-0.0 ## The searching depth for the KDA job.kda$depth<-1 ## 0 means we do not consider the directions of the regulatory interactions ## while 1 is opposite. job.kda$direction <- 1 job.kda$nperm <- 20 # the default value is 2000, use 20 for unit tests job.kda <- kda.configure(job.kda) ## Import topology of the graph for KDA ## This is already had been done in the kda.start() main function, due to ## the time constraint while running examples, we did not run it again. # edgdata <- kda.start.edges(job.kda) ## remove the results folder unlink("Results", recursive = TRUE)
job.kda <- list() job.kda$label<-"HDLC" ## parent folder for results job.kda$folder<-"Results" ## Input a network ## columns: TAIL HEAD WEIGHT job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt", package="Mergeomics") ## Gene sets derived from ModuleMerge, containing two columns, MODULE, ## NODE, delimited by tab job.kda$modfile<- system.file("extdata","mergedModules.txt", package="Mergeomics") ## "0" means we do not consider edge weights while 1 is opposite. job.kda$edgefactor<-0.0 ## The searching depth for the KDA job.kda$depth<-1 ## 0 means we do not consider the directions of the regulatory interactions ## while 1 is opposite. job.kda$direction <- 1 job.kda$nperm <- 20 # the default value is 2000, use 20 for unit tests job.kda <- kda.configure(job.kda) ## Import topology of the graph for KDA ## This is already had been done in the kda.start() main function, due to ## the time constraint while running examples, we did not run it again. # edgdata <- kda.start.edges(job.kda) ## remove the results folder unlink("Results", recursive = TRUE)
kda.start.identify
searches the members of dat
among
the members of labels
with respect to the varname
attribute,
returns the matching rows of the dat
.
kda.start.identify(dat, varname, labels)
kda.start.identify(dat, varname, labels)
dat |
data list of the identities that will be searched |
varname |
search will be performed with respect to which attribute (MODULE or NODE) |
labels |
the place, where data list (i.e. |
res |
matched rows of |
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
kda.analyze
, kda.finish
,
kda.prepare
, kda.start
## Converts identities (either module names or gene names) to the indices aa<- data.frame(MODULE=c("Mod1", "Mod1", "Mod2", "Mod2", "Mod3"), NODE=c("GeneA", "GeneC", "GeneB", "GeneC", "GeneA")) aa bb <- kda.start.identify(aa, "MODULE", c("Mod1")) bb cc <- kda.start.identify(aa, "MODULE", c("Mod1", "Mod3")) cc dd <- kda.start.identify(aa, "NODE", c("GeneA")) dd
## Converts identities (either module names or gene names) to the indices aa<- data.frame(MODULE=c("Mod1", "Mod1", "Mod2", "Mod2", "Mod3"), NODE=c("GeneA", "GeneC", "GeneB", "GeneC", "GeneA")) aa bb <- kda.start.identify(aa, "MODULE", c("Mod1")) bb cc <- kda.start.identify(aa, "MODULE", c("Mod1", "Mod3")) cc dd <- kda.start.identify(aa, "NODE", c("GeneA")) dd
kda.start.modules
searches the whole nodes of the modules
within the nodes of edgdata
edgelist, filters out the nodes that
does not exist in the nodes of edgdata
, and deletes the modules,
which does not have enough nodes.
kda.start.modules(job, edgdata)
kda.start.modules(job, edgdata)
job |
a data frame including information such as module data file
name, edge direction, minimum acceptable module size ( |
edgdata |
edge list data obtained from |
moddata |
module descriptions and their member node lists |
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
kda.analyze
, kda.finish
,
kda.prepare
, kda.start
job.kda <- list() job.kda$label<-"HDLC" ## parent folder for results job.kda$folder<-"Results" ## Input a network ## columns: TAIL HEAD WEIGHT job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt", package="Mergeomics") ## Gene sets derived from ModuleMerge, containing two columns, MODULE, ## NODE, delimited by tab job.kda$modfile<- system.file("extdata","mergedModules.txt", package="Mergeomics") ## "0" means we do not consider edge weights while 1 is opposite. job.kda$edgefactor<-0.0 ## The searching depth for the KDA job.kda$depth<-1 ## 0 means we do not consider the directions of the regulatory interactions ## while 1 is opposite. job.kda$direction <- 1 job.kda$nperm <- 20 # the default value is 2000, use 20 for unit tests job.kda <- kda.configure(job.kda) ## Import topology of the graph for KDA, then find the module statistics ## This is already had been done in the kda.start() main function, due to ## the time constraint while running examples, we did not run it again. # edgdata <- kda.start.edges(job.kda) ## Find module memberships of the graph nodes and obtain module statistics: # moddata <- kda.start.modules(job.kda, edgdata) ## remove the results folder unlink("Results", recursive = TRUE)
job.kda <- list() job.kda$label<-"HDLC" ## parent folder for results job.kda$folder<-"Results" ## Input a network ## columns: TAIL HEAD WEIGHT job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt", package="Mergeomics") ## Gene sets derived from ModuleMerge, containing two columns, MODULE, ## NODE, delimited by tab job.kda$modfile<- system.file("extdata","mergedModules.txt", package="Mergeomics") ## "0" means we do not consider edge weights while 1 is opposite. job.kda$edgefactor<-0.0 ## The searching depth for the KDA job.kda$depth<-1 ## 0 means we do not consider the directions of the regulatory interactions ## while 1 is opposite. job.kda$direction <- 1 job.kda$nperm <- 20 # the default value is 2000, use 20 for unit tests job.kda <- kda.configure(job.kda) ## Import topology of the graph for KDA, then find the module statistics ## This is already had been done in the kda.start() main function, due to ## the time constraint while running examples, we did not run it again. # edgdata <- kda.start.edges(job.kda) ## Find module memberships of the graph nodes and obtain module statistics: # moddata <- kda.start.modules(job.kda, edgdata) ## remove the results folder unlink("Results", recursive = TRUE)
kda2cytoscape
generates input files for Cytoscape to visualize the
graph and hubnets after the wKDA process finished. The network
visualization is a streamlined depiction of the module enrichment in hub
neighborhoods.
kda2cytoscape(job, node.list = NULL, modules = NULL, ndrivers = 5, depth = 1)
kda2cytoscape(job, node.list = NULL, modules = NULL, ndrivers = 5, depth = 1)
job |
wKDA result data list as returned by |
node.list |
array of node/gene names to be visualized with their neighbor node.
if this is not specified top |
modules |
array of module names to be visualized |
ndrivers |
maximum number of drivers per module |
depth |
depth for neighborhood search in the graph |
kda2cytoscape
first, selects top scoring key drivers for
each module; then, assigns a colormap to modules, processes each module
separately, finds key nodes' neighborhoods within a particular search
depth, and saves the edge and node lists of the modules to the specified
output folder. Besides, it returns this configuration data to the user.
Created file list for Cytoscape are given below:
kda2cytoscape.top.kds.txt: top key drivers of the modules are listed in this file. Number of the key drivers can be set by user with ndrivers parameter. kda2cytoscape.edges.txt: edge lists of the integrated graph that includes the subnetworks of all modules. kda2cytoscape.nodes.txt: node lists of the integrated graph that includes the subnetworks of all modules. module.color.mapping.txt: color mapping for the modules, i.e. one color is assigned to each module.
job |
updated data list including the node and edge information of the modules converted to Cytoscape format |
Zeyneb Kurt
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
## get the prepared and KDA applied dataset:(see kda.analyze for details) data(job_kda_analyze) ## set the relevant parameters: job.kda$label<-"HDLC" ## parent folder for results job.kda$folder<-"Results" ## Input a network ## columns: TAIL HEAD WEIGHT job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt", package="Mergeomics") ## Gene sets derived from ModuleMerge, containing two columns, MODULE, ## NODE, delimited by tab job.kda$modfile<- system.file("extdata","mergedModules.txt", package="Mergeomics") ## "0" means we do not consider edge weights while 1 is opposite. job.kda$edgefactor<-0.0 ## The searching depth for the KDA job.kda$depth<-1 ## 0 means we do not consider the directions of the regulatory interactions ## while 1 is opposite. job.kda$direction <- 1 ## finish the KDA process job.kda <- kda.finish(job.kda) ## prepare the cytoscape-ready files: job.kda <- kda2cytoscape(job.kda) ## remove the results folder unlink("Results", recursive = TRUE)
## get the prepared and KDA applied dataset:(see kda.analyze for details) data(job_kda_analyze) ## set the relevant parameters: job.kda$label<-"HDLC" ## parent folder for results job.kda$folder<-"Results" ## Input a network ## columns: TAIL HEAD WEIGHT job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt", package="Mergeomics") ## Gene sets derived from ModuleMerge, containing two columns, MODULE, ## NODE, delimited by tab job.kda$modfile<- system.file("extdata","mergedModules.txt", package="Mergeomics") ## "0" means we do not consider edge weights while 1 is opposite. job.kda$edgefactor<-0.0 ## The searching depth for the KDA job.kda$depth<-1 ## 0 means we do not consider the directions of the regulatory interactions ## while 1 is opposite. job.kda$direction <- 1 ## finish the KDA process job.kda <- kda.finish(job.kda) ## prepare the cytoscape-ready files: job.kda <- kda2cytoscape(job.kda) ## remove the results folder unlink("Results", recursive = TRUE)
kda2cytoscape.colorize
assigns color to each node of the given
module. If a node belongs to more than one module, different colors will
be assigned to that node, as each color representing one module (shared
nodes are illustrated as pie charts in the graph).
kda2cytoscape.colorize(noddata, moddata, modpool, palette)
kda2cytoscape.colorize(noddata, moddata, modpool, palette)
noddata |
node information of the entire graph |
moddata |
module data including node (member gene) list |
modpool |
unique module list including significant key drivers |
palette |
assigned unique color map for all modules |
res |
data frame including the assigned color labels for the nodes of the given module. If a node is concurrently member of many modules, multiple colors will be assigned to that node (one color for each of these modules) |
Zeyneb Kurt
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
## Trace module memberships for each KD and its neighbors ## If a KD (and its neigbor nodes) is member of multiple modules, assign ## multiple colors to these multi-member nodes. ## We need to know data of all possible modules and all possible module ids ## to assign multiple colors to a shared node (between modules) when needed if(exists("valdata")) cat("Marker pvalues will be used to determine node sizes in the network illustration") # noddata <- kda2cytoscape.colorize(neighs, job.kda$moddata, modpool, palette)
## Trace module memberships for each KD and its neighbors ## If a KD (and its neigbor nodes) is member of multiple modules, assign ## multiple colors to these multi-member nodes. ## We need to know data of all possible modules and all possible module ids ## to assign multiple colors to a shared node (between modules) when needed if(exists("valdata")) cat("Marker pvalues will be used to determine node sizes in the network illustration") # noddata <- kda2cytoscape.colorize(neighs, job.kda$moddata, modpool, palette)
kda2cytoscape.colormap
takes number of the modules and assigns a
particular color to each module. Returns the color list (palette).
kda2cytoscape.colormap(ncolors)
kda2cytoscape.colormap(ncolors)
ncolors |
number of the unique modules |
palette |
color list: one color is assigned to each module |
Zeyneb Kurt
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
color.number = 5 ## let us assume we have 5 modules, assign 1 color to each: palette <- kda2cytoscape.colormap(color.number)
color.number = 5 ## let us assume we have 5 modules, assign 1 color to each: palette <- kda2cytoscape.colormap(color.number)
kda2cytoscape.drivers
finds maximally top ndriv
key drivers
for each module with respect to the significance level of the drivers.
kda2cytoscape.drivers(data, modules, ndriv)
kda2cytoscape.drivers(data, modules, ndriv)
data |
data frame including information of the modules (key driver list, p-values, node list, false discovery rates (fdr), and so on.) |
modules |
top scoring modules among KDA results |
ndriv |
maximum number of drivers that can be chosen for per module |
data |
top key drivers (maximally |
Zeyneb Kurt
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
## get the prepared and KDA applied dataset:(see kda.analyze for details) data(job_kda_analyze) ## set the relevant parameters: job.kda$label<-"HDLC" ## parent folder for results job.kda$folder<-"Results" ## Input a network ## columns: TAIL HEAD WEIGHT job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt", package="Mergeomics") ## Gene sets derived from ModuleMerge, containing two columns, MODULE, ## NODE, delimited by tab job.kda$modfile<- system.file("extdata","mergedModules.txt", package="Mergeomics") ## "0" means we do not consider edge weights while 1 is opposite. job.kda$edgefactor<-0.0 ## The searching depth for the KDA job.kda$depth<-1 ## 0 means we do not consider the directions of the regulatory interactions ## while 1 is opposite. job.kda$direction <- 1 ## Finish the KDA process job.kda <- kda.finish(job.kda) ## Select top key drivers from each module. ## First, take module names from kda results modules <- unique(job.kda$results$MODULE) ## Take top 2 KDs: drivers <- kda2cytoscape.drivers(job.kda$results, modules, ndriv=2) ## remove the results folder unlink("Results", recursive = TRUE)
## get the prepared and KDA applied dataset:(see kda.analyze for details) data(job_kda_analyze) ## set the relevant parameters: job.kda$label<-"HDLC" ## parent folder for results job.kda$folder<-"Results" ## Input a network ## columns: TAIL HEAD WEIGHT job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt", package="Mergeomics") ## Gene sets derived from ModuleMerge, containing two columns, MODULE, ## NODE, delimited by tab job.kda$modfile<- system.file("extdata","mergedModules.txt", package="Mergeomics") ## "0" means we do not consider edge weights while 1 is opposite. job.kda$edgefactor<-0.0 ## The searching depth for the KDA job.kda$depth<-1 ## 0 means we do not consider the directions of the regulatory interactions ## while 1 is opposite. job.kda$direction <- 1 ## Finish the KDA process job.kda <- kda.finish(job.kda) ## Select top key drivers from each module. ## First, take module names from kda results modules <- unique(job.kda$results$MODULE) ## Take top 2 KDs: drivers <- kda2cytoscape.drivers(job.kda$results, modules, ndriv=2) ## remove the results folder unlink("Results", recursive = TRUE)
kda2cytoscape.edges
finds the sub-graph (node and edge lists) of a
central node and its neighborhood at a particular search depth. The central
node is a member of a module, which is defined at
kda2cytoscape.exec
.
kda2cytoscape.edges(graph, center, depth, direction)
kda2cytoscape.edges(graph, center, depth, direction)
graph |
entire graph |
center |
the node, whose interactions with neighbors will be searched within
|
depth |
search depth for graph neighborhood |
direction |
edge direction. 0 for undirected, negative for downstream and positive for upstream |
g |
the sub-graph including TAIL, HEAD, WEIGHT information of the central node, which belongs to the specified module. |
Zeyneb Kurt
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
## get the prepared and KDA applied dataset:(see kda.analyze for details) data(job_kda_analyze) ## set the relevant parameters: job.kda$label<-"HDLC" ## parent folder for results job.kda$folder<-"Results" ## Input a network ## columns: TAIL HEAD WEIGHT job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt", package="Mergeomics") ## Gene sets derived from ModuleMerge, containing two columns, MODULE, ## NODE, delimited by tab job.kda$modfile<- system.file("extdata","mergedModules.txt", package="Mergeomics") ## "0" means we do not consider edge weights while 1 is opposite. job.kda$edgefactor<-0.0 ## The searching depth for the KDA job.kda$depth<-1 ## 0 means we do not consider the directions of the regulatory interactions ## while 1 is opposite. job.kda$direction <- 1 ## Finish the KDA process job.kda <- kda.finish(job.kda) ## Select a center node to seek its neighbors in the graph: edges.of.center.node <- kda2cytoscape.edges(job.kda$graph, 1, job.kda$depth, job.kda$direction) ## remove the results folder unlink("Results", recursive = TRUE)
## get the prepared and KDA applied dataset:(see kda.analyze for details) data(job_kda_analyze) ## set the relevant parameters: job.kda$label<-"HDLC" ## parent folder for results job.kda$folder<-"Results" ## Input a network ## columns: TAIL HEAD WEIGHT job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt", package="Mergeomics") ## Gene sets derived from ModuleMerge, containing two columns, MODULE, ## NODE, delimited by tab job.kda$modfile<- system.file("extdata","mergedModules.txt", package="Mergeomics") ## "0" means we do not consider edge weights while 1 is opposite. job.kda$edgefactor<-0.0 ## The searching depth for the KDA job.kda$depth<-1 ## 0 means we do not consider the directions of the regulatory interactions ## while 1 is opposite. job.kda$direction <- 1 ## Finish the KDA process job.kda <- kda.finish(job.kda) ## Select a center node to seek its neighbors in the graph: edges.of.center.node <- kda2cytoscape.edges(job.kda$graph, 1, job.kda$depth, job.kda$direction) ## remove the results folder unlink("Results", recursive = TRUE)
kda2cytoscape.exec
deals with the modules individually; takes a
particular amount of top key drivers of the given module in company with
the top key driver lists and colormap of all modules; traces module
memberships and produces colormap, it finds the edge and node lists for
the top key drivers and their neighborhood for a given module.
kda2cytoscape.exec(job, drivers, modpool, palette, graph.depth = 1)
kda2cytoscape.exec(job, drivers, modpool, palette, graph.depth = 1)
job |
data list including entire graph, nodes, modules information |
drivers |
top key drivers of the specified module |
modpool |
unique key driver list for all modules |
palette |
assigned unique color map for all modules |
graph.depth |
search depth for graph neighborhood |
res |
uniquely identified node and edge lists of the members belonging to the given module |
Zeyneb Kurt
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
## get the prepared and KDA applied dataset:(see kda.analyze for details) data(job_kda_analyze) ## set the relevant parameters: job.kda$label<-"HDLC" ## parent folder for results job.kda$folder<-"Results" ## Input a network ## columns: TAIL HEAD WEIGHT job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt", package="Mergeomics") ## Gene sets derived from ModuleMerge, containing two columns, MODULE, ## NODE, delimited by tab job.kda$modfile<- system.file("extdata","mergedModules.txt", package="Mergeomics") ## "0" means we do not consider edge weights while 1 is opposite. job.kda$edgefactor<-0.0 ## The searching depth for the KDA job.kda$depth<-1 ## 0 means we do not consider the directions of the regulatory interactions ## while 1 is opposite. job.kda$direction <- 1 ## Finish the KDA process job.kda <- kda.finish(job.kda) ## Select top key drivers from each module. ## First, take module names from kda results modules <- unique(job.kda$results$MODULE) ## Take top 2 KDs: drivers <- kda2cytoscape.drivers(job.kda$results, modules, ndriv=2) drivers <- as.data.frame(drivers) colnames(drivers) <- c("MODULE" , "NODE") mods <- unique(drivers$MODULE) modnames <- job.kda$modules[mods] modnames[which(mods == 0)] <- "NON.MODULE" palette <- kda2cytoscape.colormap(length(mods)) palette[,which(mods == 0)] <- c(90,90,90) drivers$MODNAMES <- modnames[match(drivers$MODULE, mods)] drivers$NODNAMES <- job.kda$graph$nodes[drivers$NODE] for(i in 1:nrow(drivers)) drivers$COLOR[i] <- paste(palette[1, match(drivers$MODULE[i], mods)], palette[2, match(drivers$MODULE[i], mods)], palette[3, match(drivers$MODULE[i], mods)], sep=" ") ## Process each module separately. Just perform for the 1st module: i <- 1 rows <- which(drivers$MODULE == mods[i]) if(length(rows) > 0) tmp <- kda2cytoscape.exec(job.kda, drivers[rows,], mods, palette, job.kda$depth) ## remove the results folder unlink("Results", recursive = TRUE)
## get the prepared and KDA applied dataset:(see kda.analyze for details) data(job_kda_analyze) ## set the relevant parameters: job.kda$label<-"HDLC" ## parent folder for results job.kda$folder<-"Results" ## Input a network ## columns: TAIL HEAD WEIGHT job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt", package="Mergeomics") ## Gene sets derived from ModuleMerge, containing two columns, MODULE, ## NODE, delimited by tab job.kda$modfile<- system.file("extdata","mergedModules.txt", package="Mergeomics") ## "0" means we do not consider edge weights while 1 is opposite. job.kda$edgefactor<-0.0 ## The searching depth for the KDA job.kda$depth<-1 ## 0 means we do not consider the directions of the regulatory interactions ## while 1 is opposite. job.kda$direction <- 1 ## Finish the KDA process job.kda <- kda.finish(job.kda) ## Select top key drivers from each module. ## First, take module names from kda results modules <- unique(job.kda$results$MODULE) ## Take top 2 KDs: drivers <- kda2cytoscape.drivers(job.kda$results, modules, ndriv=2) drivers <- as.data.frame(drivers) colnames(drivers) <- c("MODULE" , "NODE") mods <- unique(drivers$MODULE) modnames <- job.kda$modules[mods] modnames[which(mods == 0)] <- "NON.MODULE" palette <- kda2cytoscape.colormap(length(mods)) palette[,which(mods == 0)] <- c(90,90,90) drivers$MODNAMES <- modnames[match(drivers$MODULE, mods)] drivers$NODNAMES <- job.kda$graph$nodes[drivers$NODE] for(i in 1:nrow(drivers)) drivers$COLOR[i] <- paste(palette[1, match(drivers$MODULE[i], mods)], palette[2, match(drivers$MODULE[i], mods)], palette[3, match(drivers$MODULE[i], mods)], sep=" ") ## Process each module separately. Just perform for the 1st module: i <- 1 rows <- which(drivers$MODULE == mods[i]) if(length(rows) > 0) tmp <- kda2cytoscape.exec(job.kda, drivers[rows,], mods, palette, job.kda$depth) ## remove the results folder unlink("Results", recursive = TRUE)
kda2cytoscape.identify
searches the given data list dat
within the labels
according to the specified attribute (variable
name). It returns the matched rows. Hence, it finds identifier numbers
for the searched data list dat
.
kda2cytoscape.identify(dat, varname, labels)
kda2cytoscape.identify(dat, varname, labels)
dat |
node ID list whose symbols or names will be collected from network node name (or symbol) list. |
varname |
specifies that |
labels |
the data list possibly including names or symbols corresponding to
the given IDs in the |
res |
the matching rows of |
Zeyneb Kurt
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
## Converts identities (either module names or gene names) to the indices aa<- data.frame(MODULE=c("Mod1", "Mod1", "Mod2", "Mod2", "Mod3"), NODE=c("GeneA", "GeneC", "GeneB", "GeneC", "GeneA")) aa bb <- kda2cytoscape.identify(aa, "MODULE", c("Mod1")) bb cc <- kda2cytoscape.identify(aa, "MODULE", c("Mod1", "Mod3")) cc dd <- kda2cytoscape.identify(aa, "NODE", c("GeneA")) dd
## Converts identities (either module names or gene names) to the indices aa<- data.frame(MODULE=c("Mod1", "Mod1", "Mod2", "Mod2", "Mod3"), NODE=c("GeneA", "GeneC", "GeneB", "GeneC", "GeneA")) aa bb <- kda2cytoscape.identify(aa, "MODULE", c("Mod1")) bb cc <- kda2cytoscape.identify(aa, "MODULE", c("Mod1", "Mod3")) cc dd <- kda2cytoscape.identify(aa, "NODE", c("GeneA")) dd
kda2himmeli
generates input files for Himmeli to visualize the
graph and hubnets after the wKDA process finished. The network visualization
is a streamlined depiction of the module enrichment in hub neighborhoods.
kda2himmeli(job, modules = NULL, ndrivers = 5)
kda2himmeli(job, modules = NULL, ndrivers = 5)
job |
KDA result data list as returned by |
modules |
array of module names to be visualized |
ndrivers |
maximum number of drivers per module |
kda2himmeli
first, selects top scoring key drivers for each
module; then, assigns a colormap to modules, processes each module
separately, finds key nodes' neighborhoods, and saves the edge and node
lists of the modules to the specified output folder. Besides, it returns
this configuration data to the user.
job |
updated data list including the node and edge information of the modules converted to Himmeli format |
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
## get the prepared and KDA applied dataset:(see kda.analyze for details) data(job_kda_analyze) ## set the relevant parameters: job.kda$label<-"HDLC" ## parent folder for results job.kda$folder<-"Results" ## Input a network ## columns: TAIL HEAD WEIGHT job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt", package="Mergeomics") job.kda$nodfile <- system.file("extdata","msea2kda.nodes.txt", package="Mergeomics") ## Gene sets derived from ModuleMerge, containing two columns, MODULE, ## NODE, delimited by tab job.kda$modfile<- system.file("extdata","mergedModules.txt", package="Mergeomics") ## "0" means we do not consider edge weights while 1 is opposite. job.kda$edgefactor<-0.0 ## The searching depth for the KDA job.kda$depth<-1 ## 0 means we do not consider the directions of the regulatory interactions ## while 1 is opposite. job.kda$direction <- 1 ## finish the KDA process job.kda <- kda.finish(job.kda) ## prepare the cytoscape-ready files: job.kda <- kda2himmeli(job.kda) ## remove the results folder unlink("Results", recursive = TRUE)
## get the prepared and KDA applied dataset:(see kda.analyze for details) data(job_kda_analyze) ## set the relevant parameters: job.kda$label<-"HDLC" ## parent folder for results job.kda$folder<-"Results" ## Input a network ## columns: TAIL HEAD WEIGHT job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt", package="Mergeomics") job.kda$nodfile <- system.file("extdata","msea2kda.nodes.txt", package="Mergeomics") ## Gene sets derived from ModuleMerge, containing two columns, MODULE, ## NODE, delimited by tab job.kda$modfile<- system.file("extdata","mergedModules.txt", package="Mergeomics") ## "0" means we do not consider edge weights while 1 is opposite. job.kda$edgefactor<-0.0 ## The searching depth for the KDA job.kda$depth<-1 ## 0 means we do not consider the directions of the regulatory interactions ## while 1 is opposite. job.kda$direction <- 1 ## finish the KDA process job.kda <- kda.finish(job.kda) ## prepare the cytoscape-ready files: job.kda <- kda2himmeli(job.kda) ## remove the results folder unlink("Results", recursive = TRUE)
kda2himmeli.colorize
assigns color to each node of the given
module. If a node belongs to more than one module, different colors will
be assigned to that node, as each color representing one module (shared
nodes are illustrated as pie charts in the graph).
kda2himmeli.colorize(noddata, moddata, modpool, palette)
kda2himmeli.colorize(noddata, moddata, modpool, palette)
noddata |
node information of the entire graph |
moddata |
module data including node (member gene) list |
modpool |
unique module list including significant key drivers |
palette |
assigned unique color map for all modules |
res |
data frame including the assigned color labels for the nodes of the given module. If a node is concurrently member of many modules, many colors will be assigned to that node (one color for each of these modules) |
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
## Trace module memberships for each KD ## If a KD is member of multiple modules, assign multiple colors to it ## Also consider the locus pval of the top locus of each KD (by valdata) ## We need to know data of all possible modules and all possible module ids ## to assign multiple colors(sectors) to a KD when needed if(exists("valdata")) cat("Marker pvalues will be used to determine node sizes in the network illustration") # noddata <- kda2himmeli.colorize(valdata, job.kda$moddata, modpool, palette)
## Trace module memberships for each KD ## If a KD is member of multiple modules, assign multiple colors to it ## Also consider the locus pval of the top locus of each KD (by valdata) ## We need to know data of all possible modules and all possible module ids ## to assign multiple colors(sectors) to a KD when needed if(exists("valdata")) cat("Marker pvalues will be used to determine node sizes in the network illustration") # noddata <- kda2himmeli.colorize(valdata, job.kda$moddata, modpool, palette)
kda2himmeli.colormap
takes number of the modules and assigns a
particular color to each module. Returns the color list (palette).
kda2himmeli.colormap(ncolors)
kda2himmeli.colormap(ncolors)
ncolors |
number of the unique modules |
palette |
color list: one color is assigned to each module |
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
color.number = 5 ## let us assume we have 5 modules, assign 1 color to each: palette <- kda2himmeli.colormap(color.number)
color.number = 5 ## let us assume we have 5 modules, assign 1 color to each: palette <- kda2himmeli.colormap(color.number)
kda2himmeli.drivers
finds maximally top ndriv
key drivers
for each module with respect to the significance level of the drivers.
kda2himmeli.drivers(data, modules, ndriv)
kda2himmeli.drivers(data, modules, ndriv)
data |
data frame including information of the modules (key driver list, p-values, node list, false discovery rates (fdr), and so on.) |
modules |
top scoring modules among KDA results |
ndriv |
maximum number of drivers that can be chosen for per module |
data |
top key drivers (maximally |
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
## get the prepared and KDA applied dataset:(see kda.analyze for details) data(job_kda_analyze) ## set the relevant parameters: job.kda$label<-"HDLC" ## parent folder for results job.kda$folder<-"Results" ## Input a network ## columns: TAIL HEAD WEIGHT job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt", package="Mergeomics") ## Gene sets derived from ModuleMerge, containing two columns, MODULE, ## NODE, delimited by tab job.kda$modfile<- system.file("extdata","mergedModules.txt", package="Mergeomics") job.kda$nodfile <- system.file("extdata","msea2kda.nodes.txt", package="Mergeomics") ## "0" means we do not consider edge weights while 1 is opposite. job.kda$edgefactor<-0.0 ## The searching depth for the KDA job.kda$depth<-1 ## 0 means we do not consider the directions of the regulatory interactions ## while 1 is opposite. job.kda$direction <- 1 ## Finish the KDA process job.kda <- kda.finish(job.kda) ## Select top key drivers from each module. ## First, take module names from kda results modules <- unique(job.kda$results$MODULE) ## Take top 2 KDs: drivers <- kda2himmeli.drivers(job.kda$results, modules, ndriv=2) ## remove the results folder unlink("Results", recursive = TRUE)
## get the prepared and KDA applied dataset:(see kda.analyze for details) data(job_kda_analyze) ## set the relevant parameters: job.kda$label<-"HDLC" ## parent folder for results job.kda$folder<-"Results" ## Input a network ## columns: TAIL HEAD WEIGHT job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt", package="Mergeomics") ## Gene sets derived from ModuleMerge, containing two columns, MODULE, ## NODE, delimited by tab job.kda$modfile<- system.file("extdata","mergedModules.txt", package="Mergeomics") job.kda$nodfile <- system.file("extdata","msea2kda.nodes.txt", package="Mergeomics") ## "0" means we do not consider edge weights while 1 is opposite. job.kda$edgefactor<-0.0 ## The searching depth for the KDA job.kda$depth<-1 ## 0 means we do not consider the directions of the regulatory interactions ## while 1 is opposite. job.kda$direction <- 1 ## Finish the KDA process job.kda <- kda.finish(job.kda) ## Select top key drivers from each module. ## First, take module names from kda results modules <- unique(job.kda$results$MODULE) ## Take top 2 KDs: drivers <- kda2himmeli.drivers(job.kda$results, modules, ndriv=2) ## remove the results folder unlink("Results", recursive = TRUE)
kda2himmeli.edges
finds the sub-graph (node and edge lists) of a
central node and its neighborhood at a particular search depth. The
central node is a member of a module, which is defined at
kda2himmeli.exec
.
kda2himmeli.edges(graph, center, depth, direction)
kda2himmeli.edges(graph, center, depth, direction)
graph |
entire graph |
center |
the node, whose interactions with neighbors will be searched within
|
depth |
search depth for graph neighborhood |
direction |
edge direction. 0 for undirected, negative for downstream and positive for upstream |
g |
the sub-graph including TAIL, HEAD, WEIGHT information of the central node, which belongs to the specified module. |
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
## get the prepared and KDA applied dataset:(see kda.analyze for details) data(job_kda_analyze) ## set the relevant parameters: job.kda$label<-"HDLC" ## parent folder for results job.kda$folder<-"Results" ## Input a network ## columns: TAIL HEAD WEIGHT job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt", package="Mergeomics") ## Gene sets derived from ModuleMerge, containing two columns, MODULE, ## NODE, delimited by tab job.kda$modfile<- system.file("extdata","mergedModules.txt", package="Mergeomics") job.kda$nodfile <- system.file("extdata","msea2kda.nodes.txt", package="Mergeomics") ## "0" means we do not consider edge weights while 1 is opposite. job.kda$edgefactor<-0.0 ## The searching depth for the KDA job.kda$depth<-1 ## 0 means we do not consider the directions of the regulatory interactions ## while 1 is opposite. job.kda$direction <- 1 ## Finish the KDA process job.kda <- kda.finish(job.kda) ## Select a center node to seek its neighbors in the graph: edges.of.center.node <- kda2himmeli.edges(job.kda$graph, 1, job.kda$depth, job.kda$direction) ## remove the results folder unlink("Results", recursive = TRUE)
## get the prepared and KDA applied dataset:(see kda.analyze for details) data(job_kda_analyze) ## set the relevant parameters: job.kda$label<-"HDLC" ## parent folder for results job.kda$folder<-"Results" ## Input a network ## columns: TAIL HEAD WEIGHT job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt", package="Mergeomics") ## Gene sets derived from ModuleMerge, containing two columns, MODULE, ## NODE, delimited by tab job.kda$modfile<- system.file("extdata","mergedModules.txt", package="Mergeomics") job.kda$nodfile <- system.file("extdata","msea2kda.nodes.txt", package="Mergeomics") ## "0" means we do not consider edge weights while 1 is opposite. job.kda$edgefactor<-0.0 ## The searching depth for the KDA job.kda$depth<-1 ## 0 means we do not consider the directions of the regulatory interactions ## while 1 is opposite. job.kda$direction <- 1 ## Finish the KDA process job.kda <- kda.finish(job.kda) ## Select a center node to seek its neighbors in the graph: edges.of.center.node <- kda2himmeli.edges(job.kda$graph, 1, job.kda$depth, job.kda$direction) ## remove the results folder unlink("Results", recursive = TRUE)
kda2himmeli.exec
deals with the modules individually; takes a
particular amount of top key drivers of the given module in company with
the top key driver lists and colormap of all modules; traces module
memberships and produces colormap, it finds the edge and node lists for
the top key drivers and their neighborhood for a given module.
kda2himmeli.exec(job, valdata, drivers, modpool, palette)
kda2himmeli.exec(job, valdata, drivers, modpool, palette)
job |
data list including entire graph, nodes, modules information |
valdata |
GWAS pvalues of top loci of the nodes - if this information is available, sizes of the nodes in the figure will be correlated with the p-value of the top loci of the nodes - |
drivers |
top key drivers of the specified module |
modpool |
unique key driver list for all modules |
palette |
assigned unique color map for all modules |
res |
uniquely identified node and edge lists of the members belonging to the given module |
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
## get the prepared and KDA applied dataset:(see kda.analyze for details) data(job_kda_analyze) ## set the relevant parameters: job.kda$label<-"HDLC" ## parent folder for results job.kda$folder<-"Results" ## Input a network ## columns: TAIL HEAD WEIGHT job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt", package="Mergeomics") ## Gene sets derived from ModuleMerge, containing two columns, MODULE, ## NODE, delimited by tab job.kda$modfile<- system.file("extdata","mergedModules.txt", package="Mergeomics") job.kda$nodfile <- system.file("extdata","msea2kda.nodes.txt", package="Mergeomics") ## "0" means we do not consider edge weights while 1 is opposite. job.kda$edgefactor<-0.0 ## The searching depth for the KDA job.kda$depth<-1 ## 0 means we do not consider the directions of the regulatory interactions ## while 1 is opposite. job.kda$direction <- 1 ## Finish the KDA process job.kda <- kda.finish(job.kda) ## Get valdata including marker pvals valdata <- tool.read(job.kda$nodfile) z <- as.double(valdata$VALUE) z <- (z/quantile(z, 0.95) + rank(z)/length(z)) valdata$SIZE <- pmin(4.0, z) ## Select subset of genes. valdata <- kda2himmeli.identify(valdata, "NODE", job.kda$graph$nodes) ## Select top key drivers from each module. ## First, take module names from kda results modules <- unique(job.kda$results$MODULE) ## Take top 2 KDs: drivers <- kda2himmeli.drivers(job.kda$results, modules, ndriv=2) drivers <- as.data.frame(drivers) colnames(drivers) <- c("MODULE" , "NODE") mods <- unique(drivers$MODULE) modnames <- job.kda$modules[mods] modnames[which(mods == 0)] <- "NON.MODULE" palette <- kda2himmeli.colormap(length(mods)) palette[,which(mods == 0)] <- c(90,90,90) drivers$MODNAMES <- modnames[match(drivers$MODULE, mods)] drivers$NODNAMES <- job.kda$graph$nodes[drivers$NODE] for(i in 1:nrow(drivers)) drivers$COLOR[i] <- paste(palette[1, match(drivers$MODULE[i], mods)], palette[2, match(drivers$MODULE[i], mods)], palette[3, match(drivers$MODULE[i], mods)], collapse=" ") ## Process each module separately. Just perform for the 1st module: i <- 1 rows <- which(drivers$MODULE == mods[i]) if(length(rows) > 0) tmp <- kda2himmeli.exec(job.kda, valdata, drivers[rows,], mods, palette) ## remove the results folder unlink("Results", recursive = TRUE)
## get the prepared and KDA applied dataset:(see kda.analyze for details) data(job_kda_analyze) ## set the relevant parameters: job.kda$label<-"HDLC" ## parent folder for results job.kda$folder<-"Results" ## Input a network ## columns: TAIL HEAD WEIGHT job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt", package="Mergeomics") ## Gene sets derived from ModuleMerge, containing two columns, MODULE, ## NODE, delimited by tab job.kda$modfile<- system.file("extdata","mergedModules.txt", package="Mergeomics") job.kda$nodfile <- system.file("extdata","msea2kda.nodes.txt", package="Mergeomics") ## "0" means we do not consider edge weights while 1 is opposite. job.kda$edgefactor<-0.0 ## The searching depth for the KDA job.kda$depth<-1 ## 0 means we do not consider the directions of the regulatory interactions ## while 1 is opposite. job.kda$direction <- 1 ## Finish the KDA process job.kda <- kda.finish(job.kda) ## Get valdata including marker pvals valdata <- tool.read(job.kda$nodfile) z <- as.double(valdata$VALUE) z <- (z/quantile(z, 0.95) + rank(z)/length(z)) valdata$SIZE <- pmin(4.0, z) ## Select subset of genes. valdata <- kda2himmeli.identify(valdata, "NODE", job.kda$graph$nodes) ## Select top key drivers from each module. ## First, take module names from kda results modules <- unique(job.kda$results$MODULE) ## Take top 2 KDs: drivers <- kda2himmeli.drivers(job.kda$results, modules, ndriv=2) drivers <- as.data.frame(drivers) colnames(drivers) <- c("MODULE" , "NODE") mods <- unique(drivers$MODULE) modnames <- job.kda$modules[mods] modnames[which(mods == 0)] <- "NON.MODULE" palette <- kda2himmeli.colormap(length(mods)) palette[,which(mods == 0)] <- c(90,90,90) drivers$MODNAMES <- modnames[match(drivers$MODULE, mods)] drivers$NODNAMES <- job.kda$graph$nodes[drivers$NODE] for(i in 1:nrow(drivers)) drivers$COLOR[i] <- paste(palette[1, match(drivers$MODULE[i], mods)], palette[2, match(drivers$MODULE[i], mods)], palette[3, match(drivers$MODULE[i], mods)], collapse=" ") ## Process each module separately. Just perform for the 1st module: i <- 1 rows <- which(drivers$MODULE == mods[i]) if(length(rows) > 0) tmp <- kda2himmeli.exec(job.kda, valdata, drivers[rows,], mods, palette) ## remove the results folder unlink("Results", recursive = TRUE)
kda2himmeli.identify
searches the given data list dat
within the labels
according to the specified attribute (variable
name). It returns the matched rows. Hence, it finds identifier numbers for
the searched data list dat
.
kda2himmeli.identify(dat, varname, labels)
kda2himmeli.identify(dat, varname, labels)
dat |
node ID list whose symbols or names will be collected from network node name (or symbol) list. |
varname |
specifies that |
labels |
the data list possibly including names or symbols corresponding to the
given IDs in the |
res |
the matching labels or names of |
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
## Converts identities (either module names or gene names) to the indices aa<- data.frame(MODULE=c("Mod1", "Mod1", "Mod2", "Mod2", "Mod3"), NODE=c("GeneA", "GeneC", "GeneB", "GeneC", "GeneA")) aa bb <- kda2himmeli.identify(aa, "MODULE", c("Mod1")) bb cc <- kda2himmeli.identify(aa, "MODULE", c("Mod1", "Mod3")) cc dd <- kda2himmeli.identify(aa, "NODE", c("GeneA")) dd
## Converts identities (either module names or gene names) to the indices aa<- data.frame(MODULE=c("Mod1", "Mod1", "Mod2", "Mod2", "Mod3"), NODE=c("GeneA", "GeneC", "GeneB", "GeneC", "GeneA")) aa bb <- kda2himmeli.identify(aa, "MODULE", c("Mod1")) bb cc <- kda2himmeli.identify(aa, "MODULE", c("Mod1", "Mod3")) cc dd <- kda2himmeli.identify(aa, "NODE", c("GeneA")) dd
MSEA.KDA.onestep
performs Marker Set Enrichment Analysis (MSEA)
and/or Key Driver Anlaysis (KDA) processes in one step.
MSEA.KDA.onestep(plan, apply.MSEA=TRUE, apply.KDA=FALSE, maxoverlap.genesets=0.33, symbol.transfer.needed=FALSE, sym.from=c("HUMAN", "MOUSE"), sym.to=c("HUMAN", "MOUSE"))
MSEA.KDA.onestep(plan, apply.MSEA=TRUE, apply.KDA=FALSE, maxoverlap.genesets=0.33, symbol.transfer.needed=FALSE, sym.from=c("HUMAN", "MOUSE"), sym.to=c("HUMAN", "MOUSE"))
plan |
a data list including file and parameter settings for MSEA and/or KDA processes: label: unique identifier for the analysis folder: output folder for results modfile: path to module file (cols: MODULE GENE) genfile: path to gene file (cols: GENE LOCUS) (MSEA-specific) marfile: path to marker file (cols: MARKER VALUE) (MSEA-specific) inffile: path to module info file (cols: MODULE DESCR) seed: seed for random number generator permtype: gene for gene-level, locus for marker-level nperm: max number of random permutations mingenes: min number of genes per module (after merging) maxgenes: max number of genes per module quantiles: cutoffs for test statistic maxoverlap: max overlap allowed between genes netfile: path to network file (TAIL HEAD WEIGHT) (KDA-specific) |
apply.MSEA |
determines whether MSEA will be performed to the given set. Default value is TRUE. |
apply.KDA |
determines whether KDA will be performed to the given set. Default value is FALSE. |
maxoverlap.genesets |
maximum overlapping ratio for the genesets. This is applicable if KDA is performed following the MSEA process in one-step running. Default value is 0.33. |
symbol.transfer.needed |
determines whether gene symbols in the gene sets are needed to be transformed between different species. Default value is FALSE. |
sym.from |
defines the species, whose gene symbols will be converted
to the gene symbols of |
sym.to |
defines the species, whose gene symbols will be converted
from the gene symbols of |
MSEA.KDA.onestep
performs MSEA and/or KDA operations in one
built-in function. Users can run both MSEA and KDA sequentially, or they can
run either MSEA or KDA in one step with the same function.
If MSEA and KDA will be applied sequentially, significantly enriched gene sets
(having FDR < 0.25), coming from MSEA results, will be merged if their
overlapping ratios are larger than a given threshold, i.e.
maxoverlap.genesets
, to proceed the next step with relatively indepent
gene sets. Then, KDA is applied to this relatively independent gene sets.
plan |
the updated data frame after performing MSEA and/or KDA.
If MSEA is performed, results will include standard MSEA results (see
|
Zeyneb Kurt
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
plan <- list() plan$label <- "hdlc" plan$folder <- "Results" plan$genfile <- system.file("extdata", "genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") plan$marfile <- system.file("extdata", "marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") plan$modfile <- system.file("extdata", "modules.mousecoexpr.liver.human.txt", package="Mergeomics") plan$inffile <- system.file("extdata", "coexpr.info.txt", package="Mergeomics") plan$nperm <- 100 ## default value is 20000 plan <- MSEA.KDA.onestep(plan, apply.MSEA=TRUE)
plan <- list() plan$label <- "hdlc" plan$folder <- "Results" plan$genfile <- system.file("extdata", "genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") plan$marfile <- system.file("extdata", "marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") plan$modfile <- system.file("extdata", "modules.mousecoexpr.liver.human.txt", package="Mergeomics") plan$inffile <- system.file("extdata", "coexpr.info.txt", package="Mergeomics") plan$nperm <- 100 ## default value is 20000 plan <- MSEA.KDA.onestep(plan, apply.MSEA=TRUE)
ssea.analyze
finds the enrichment of the pathways or
co-expression modules by a marker set (e.g. associated risk variants
-loci- of a relevant disease).
Association study by mapping markers (e.g. SNPs) to genes (e.g. via
expression QTLs).
Enrichment P-values obtained by the MSEA denote the degree of enrichment
of significantly disease-associated (high ranking) markers (e.g. eSNPs)
within these pathways when compared to the null distribution of expected
uniform distribution of all ranks of the markers.
MSEA is performed with either gene-level or marker-level permutations
based on Gaussian distribution.
ssea.analyze(job, trim_start, trim_end)
ssea.analyze(job, trim_start, trim_end)
job |
the data list including fields: seed for random number generator
|
trim_start |
percentile taken from the beginning for trimming away a defined proportion of genes with significant trait association to avoid signal inflation of null background in gene permutation. Default value is 0.002. |
trim_end |
percentile taken from the ending point for trimming away a defined proportion of genes with significant trait association to avoid signal inflation of null background in gene permutation. Default value is 0.998. |
ssea.analyze
associates the gene sets (pathways or
co-expression modules) with relevant disease (e.g. Coronary Artery Disease)
association data by mapping markers (e.g. SNPs) to genes (e.g. via expression
QTLs).
It performs the MSEA by using observed and estimated enrichment scores.
First, the observed enrichment scores of the pathways by markers (e.g.
loci) are calculated. Then, a Gaussian distribution based simulation is
performed, by using the statistics of the observed scores (mean, std.dev.,
etc.), to obtain the estimated enrichment scores, enrichment frequencies,
and other statistics e.g. p-values for the pathways.
ssea.analyze
trims away a defined proportion of genes with
significant trait association to avoid signal inflation of null background
in gene permutation by using trim_start
and trim_end
.
job |
the updated data frame including results: indexed module identity, enrichment P-values, raw frequencies (raw frequency of a gene set defines the number of the estimated enrichment scores that are larger than this gene set's enrichment score under the null distribution based on Gaussian function) |
.
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
ssea.control
, ssea.finish
,
ssea.prepare
, ssea.start
,
ssea2kda
job.msea <- list() job.msea$label <- "hdlc" job.msea$folder <- "Results" job.msea$genfile <- system.file("extdata", "genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$marfile <- system.file("extdata", "marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$modfile <- system.file("extdata", "modules.mousecoexpr.liver.human.txt", package="Mergeomics") job.msea$inffile <- system.file("extdata", "coexpr.info.txt", package="Mergeomics") job.msea$nperm <- 100 ## default value is 20000 ## ssea.start() process takes long time while merging the genes sharing high ## amounts of markers (e.g. loci). it is performed with full module list in ## the vignettes. Here, we used a very subset of the module list (1st 10 mods ## from the original module file) and we collected the corresponding genes ## and markers belonging to these modules: moddata <- tool.read(job.msea$modfile) gendata <- tool.read(job.msea$genfile) mardata <- tool.read(job.msea$marfile) mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] gendata <- gendata[which(!is.na(match(gendata$GENE, unique(moddata$GENE)))),] mardata <- mardata[which(!is.na(match(mardata$MARKER, unique(gendata$MARKER)))),] ## save this to a temporary file and set its path as new job.msea$modfile: tool.save(moddata, "subsetof.coexpr.modules.txt") tool.save(gendata, "subsetof.genfile.txt") tool.save(mardata, "subsetof.marfile.txt") job.msea$modfile <- "subsetof.coexpr.modules.txt" job.msea$genfile <- "subsetof.genfile.txt" job.msea$marfile <- "subsetof.marfile.txt" ## run ssea.start() and prepare for this small set: (due to the huge runtime) job.msea <- ssea.start(job.msea) job.msea <- ssea.prepare(job.msea) job.msea <- ssea.control(job.msea) job.msea <- ssea.analyze(job.msea) ## Remove the temporary files used for the test: file.remove("subsetof.coexpr.modules.txt") file.remove("subsetof.genfile.txt") file.remove("subsetof.marfile.txt")
job.msea <- list() job.msea$label <- "hdlc" job.msea$folder <- "Results" job.msea$genfile <- system.file("extdata", "genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$marfile <- system.file("extdata", "marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$modfile <- system.file("extdata", "modules.mousecoexpr.liver.human.txt", package="Mergeomics") job.msea$inffile <- system.file("extdata", "coexpr.info.txt", package="Mergeomics") job.msea$nperm <- 100 ## default value is 20000 ## ssea.start() process takes long time while merging the genes sharing high ## amounts of markers (e.g. loci). it is performed with full module list in ## the vignettes. Here, we used a very subset of the module list (1st 10 mods ## from the original module file) and we collected the corresponding genes ## and markers belonging to these modules: moddata <- tool.read(job.msea$modfile) gendata <- tool.read(job.msea$genfile) mardata <- tool.read(job.msea$marfile) mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] gendata <- gendata[which(!is.na(match(gendata$GENE, unique(moddata$GENE)))),] mardata <- mardata[which(!is.na(match(mardata$MARKER, unique(gendata$MARKER)))),] ## save this to a temporary file and set its path as new job.msea$modfile: tool.save(moddata, "subsetof.coexpr.modules.txt") tool.save(gendata, "subsetof.genfile.txt") tool.save(mardata, "subsetof.marfile.txt") job.msea$modfile <- "subsetof.coexpr.modules.txt" job.msea$genfile <- "subsetof.genfile.txt" job.msea$marfile <- "subsetof.marfile.txt" ## run ssea.start() and prepare for this small set: (due to the huge runtime) job.msea <- ssea.start(job.msea) job.msea <- ssea.prepare(job.msea) job.msea <- ssea.control(job.msea) job.msea <- ssea.analyze(job.msea) ## Remove the temporary files used for the test: file.remove("subsetof.coexpr.modules.txt") file.remove("subsetof.genfile.txt") file.remove("subsetof.marfile.txt")
ssea.analyze.observe
obtains the observed enrichment scores
of the pathways or modules by a given marker set (e.g. GWAS loci data of
a disease) depending on the observation frequencies of this markers in
the pathways.
ssea.analyze.observe(db)
ssea.analyze.observe(db)
db |
database including the indexed identities for modules, genes and marker: modulesizes: gene counts for modules. modulelengths: distinct marker counts for modules. moduledensities: ratio between distinct and non-distinct markers. genesizes: marker count for each gene. module2genes: gene lists for each module. gene2loci: marker lists for each gene. locus2row: row indices in the marker data frame for each marker. observed: matrix of observed counts of values that exceed each quantile point for each marker. expected: 1.0 - quantile points. |
scores |
enrichment scores |
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
job.msea <- list() job.msea$label <- "hdlc" job.msea$folder <- "Results" job.msea$genfile <- system.file("extdata", "genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$marfile <- system.file("extdata", "marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$modfile <- system.file("extdata", "modules.mousecoexpr.liver.human.txt", package="Mergeomics") job.msea$inffile <- system.file("extdata", "coexpr.info.txt", package="Mergeomics") job.msea$nperm <- 100 ## default value is 20000 ## ssea.start() process takes long time while merging the genes sharing high ## amounts of markers (e.g. loci). it is performed with full module list in ## the vignettes. Here, we used a very subset of the module list (1st 10 mods ## from the original module file) and we collected the corresponding genes ## and markers belonging to these modules: moddata <- tool.read(job.msea$modfile) gendata <- tool.read(job.msea$genfile) mardata <- tool.read(job.msea$marfile) mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] gendata <- gendata[which(!is.na(match(gendata$GENE, unique(moddata$GENE)))),] mardata <- mardata[which(!is.na(match(mardata$MARKER, unique(gendata$MARKER)))),] ## save this to a temporary file and set its path as new job.msea$modfile: tool.save(moddata, "subsetof.coexpr.modules.txt") tool.save(gendata, "subsetof.genfile.txt") tool.save(mardata, "subsetof.marfile.txt") job.msea$modfile <- "subsetof.coexpr.modules.txt" job.msea$genfile <- "subsetof.genfile.txt" job.msea$marfile <- "subsetof.marfile.txt" ## run ssea.start() and prepare for this small set: (due to the huge runtime) job.msea <- ssea.start(job.msea) job.msea <- ssea.prepare(job.msea) job.msea <- ssea.control(job.msea) ## Observed enrichment scores. db <- job.msea$database scores <- ssea.analyze.observe(db) nmods <- length(scores) ## Remove the temporary files used for the test: file.remove("subsetof.coexpr.modules.txt") file.remove("subsetof.genfile.txt") file.remove("subsetof.marfile.txt")
job.msea <- list() job.msea$label <- "hdlc" job.msea$folder <- "Results" job.msea$genfile <- system.file("extdata", "genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$marfile <- system.file("extdata", "marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$modfile <- system.file("extdata", "modules.mousecoexpr.liver.human.txt", package="Mergeomics") job.msea$inffile <- system.file("extdata", "coexpr.info.txt", package="Mergeomics") job.msea$nperm <- 100 ## default value is 20000 ## ssea.start() process takes long time while merging the genes sharing high ## amounts of markers (e.g. loci). it is performed with full module list in ## the vignettes. Here, we used a very subset of the module list (1st 10 mods ## from the original module file) and we collected the corresponding genes ## and markers belonging to these modules: moddata <- tool.read(job.msea$modfile) gendata <- tool.read(job.msea$genfile) mardata <- tool.read(job.msea$marfile) mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] gendata <- gendata[which(!is.na(match(gendata$GENE, unique(moddata$GENE)))),] mardata <- mardata[which(!is.na(match(mardata$MARKER, unique(gendata$MARKER)))),] ## save this to a temporary file and set its path as new job.msea$modfile: tool.save(moddata, "subsetof.coexpr.modules.txt") tool.save(gendata, "subsetof.genfile.txt") tool.save(mardata, "subsetof.marfile.txt") job.msea$modfile <- "subsetof.coexpr.modules.txt" job.msea$genfile <- "subsetof.genfile.txt" job.msea$marfile <- "subsetof.marfile.txt" ## run ssea.start() and prepare for this small set: (due to the huge runtime) job.msea <- ssea.start(job.msea) job.msea <- ssea.prepare(job.msea) job.msea <- ssea.control(job.msea) ## Observed enrichment scores. db <- job.msea$database scores <- ssea.analyze.observe(db) nmods <- length(scores) ## Remove the temporary files used for the test: file.remove("subsetof.coexpr.modules.txt") file.remove("subsetof.genfile.txt") file.remove("subsetof.marfile.txt")
ssea.analyze.randgenes
simulates enrichment scores by
randomizing the genes from all modules (from database - db)
ssea.analyze.randgenes(db, targets, gene_sel)
ssea.analyze.randgenes(db, targets, gene_sel)
db |
database including the indexed identities for modules, genes and markers: modulesizes: gene counts for modules. modulelengths: distinct marker counts for modules. moduledensities: ratio between distinct and non-distinct markers. genesizes: marker count for each gene. module2genes: gene lists for each module. gene2loci: marker lists for each gene . locus2row: row indices in the marker data frame for each marker. observed: matrix of observed counts of values that exceed each quantile point for each marker. expected: 1.0 - quantile points. |
targets |
all modules |
gene_sel |
selected genes to be trimmed away to avoid signal inflation of null background in gene permutation. |
scores |
randomly simulated enrichment scores |
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
job.msea <- list() job.msea$label <- "hdlc" job.msea$folder <- "Results" job.msea$genfile <- system.file("extdata", "genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$marfile <- system.file("extdata", "marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$modfile <- system.file("extdata", "modules.mousecoexpr.liver.human.txt", package="Mergeomics") job.msea$inffile <- system.file("extdata", "coexpr.info.txt", package="Mergeomics") job.msea$nperm <- 100 ## default value is 20000 ## ssea.start() process takes long time while merging the genes sharing high ## amounts of markers (e.g. loci). it is performed with full module list in ## the vignettes. Here, we used a very subset of the module list (1st 10 mods ## from the original module file) and we collected the corresponding genes ## and markers belonging to these modules: moddata <- tool.read(job.msea$modfile) gendata <- tool.read(job.msea$genfile) mardata <- tool.read(job.msea$marfile) mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] gendata <- gendata[which(!is.na(match(gendata$GENE, unique(moddata$GENE)))),] mardata <- mardata[which(!is.na(match(mardata$MARKER, unique(gendata$MARKER)))),] ## save this to a temporary file and set its path as new job.msea$modfile: tool.save(moddata, "subsetof.coexpr.modules.txt") tool.save(gendata, "subsetof.genfile.txt") tool.save(mardata, "subsetof.marfile.txt") job.msea$modfile <- "subsetof.coexpr.modules.txt" job.msea$genfile <- "subsetof.genfile.txt" job.msea$marfile <- "subsetof.marfile.txt" ## run ssea.start() and prepare for this small set: (due to the huge runtime) job.msea <- ssea.start(job.msea) job.msea <- ssea.prepare(job.msea) job.msea <- ssea.control(job.msea) ## Observed enrichment scores. db <- job.msea$database gene2loci <- db$gene2loci locus2row <- db$locus2row observed <- db$observed #Calcuate individual gene enrichment score trim_scores <- rep(NA, length(gene2loci)) for(k in 1:length(trim_scores)) { genes <- k # Collect markers. loci <- integer() for(i in genes) loci <- c(loci, gene2loci[[i]]) # Determine data rows. loci <- unique(loci) rows <- locus2row[loci] nloci <- length(rows) # Calculate total counts. e <- (nloci/length(locus2row))*colSums(observed) o <- observed[rows,] if(nloci > 1) o <- colSums(o) # Estimate enrichment. trim_scores[k] <- ssea.analyze.statistic(o, e) } trim_start=0.002 # default trim_end=1-trim_start cutoff=as.numeric(quantile(trim_scores,probs=c(trim_start,trim_end))) gene_sel=which(trim_scores>cutoff[1]&trim_scores<cutoff[2]) scores <- ssea.analyze.observe(db) nmods <- length(scores) ## Simulated scores. nperm <- job.msea$nperm observ <- scores ## Include only non-empty modules for simulation. nmods <- length(db$modulesizes) targets <- which(db$modulesizes > 0) hits <- rep(NA, nmods) hits[targets] <- 0 ## Prepare data structures to hold null samples. keys <- rep(0, nperm) scores <- rep(NA, nperm) scoresets <- list() for(i in 1:nmods) scoresets[[i]] <- double() ## Simulate random scores. ## within a for loop: check capacity, find new statistics, update snull ## distribution (simulated null distr.) by permuting genes snull <- ssea.analyze.randgenes(db, targets, gene_sel) ## Remove the temporary files used for the test: file.remove("subsetof.coexpr.modules.txt") file.remove("subsetof.genfile.txt") file.remove("subsetof.marfile.txt")
job.msea <- list() job.msea$label <- "hdlc" job.msea$folder <- "Results" job.msea$genfile <- system.file("extdata", "genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$marfile <- system.file("extdata", "marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$modfile <- system.file("extdata", "modules.mousecoexpr.liver.human.txt", package="Mergeomics") job.msea$inffile <- system.file("extdata", "coexpr.info.txt", package="Mergeomics") job.msea$nperm <- 100 ## default value is 20000 ## ssea.start() process takes long time while merging the genes sharing high ## amounts of markers (e.g. loci). it is performed with full module list in ## the vignettes. Here, we used a very subset of the module list (1st 10 mods ## from the original module file) and we collected the corresponding genes ## and markers belonging to these modules: moddata <- tool.read(job.msea$modfile) gendata <- tool.read(job.msea$genfile) mardata <- tool.read(job.msea$marfile) mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] gendata <- gendata[which(!is.na(match(gendata$GENE, unique(moddata$GENE)))),] mardata <- mardata[which(!is.na(match(mardata$MARKER, unique(gendata$MARKER)))),] ## save this to a temporary file and set its path as new job.msea$modfile: tool.save(moddata, "subsetof.coexpr.modules.txt") tool.save(gendata, "subsetof.genfile.txt") tool.save(mardata, "subsetof.marfile.txt") job.msea$modfile <- "subsetof.coexpr.modules.txt" job.msea$genfile <- "subsetof.genfile.txt" job.msea$marfile <- "subsetof.marfile.txt" ## run ssea.start() and prepare for this small set: (due to the huge runtime) job.msea <- ssea.start(job.msea) job.msea <- ssea.prepare(job.msea) job.msea <- ssea.control(job.msea) ## Observed enrichment scores. db <- job.msea$database gene2loci <- db$gene2loci locus2row <- db$locus2row observed <- db$observed #Calcuate individual gene enrichment score trim_scores <- rep(NA, length(gene2loci)) for(k in 1:length(trim_scores)) { genes <- k # Collect markers. loci <- integer() for(i in genes) loci <- c(loci, gene2loci[[i]]) # Determine data rows. loci <- unique(loci) rows <- locus2row[loci] nloci <- length(rows) # Calculate total counts. e <- (nloci/length(locus2row))*colSums(observed) o <- observed[rows,] if(nloci > 1) o <- colSums(o) # Estimate enrichment. trim_scores[k] <- ssea.analyze.statistic(o, e) } trim_start=0.002 # default trim_end=1-trim_start cutoff=as.numeric(quantile(trim_scores,probs=c(trim_start,trim_end))) gene_sel=which(trim_scores>cutoff[1]&trim_scores<cutoff[2]) scores <- ssea.analyze.observe(db) nmods <- length(scores) ## Simulated scores. nperm <- job.msea$nperm observ <- scores ## Include only non-empty modules for simulation. nmods <- length(db$modulesizes) targets <- which(db$modulesizes > 0) hits <- rep(NA, nmods) hits[targets] <- 0 ## Prepare data structures to hold null samples. keys <- rep(0, nperm) scores <- rep(NA, nperm) scoresets <- list() for(i in 1:nmods) scoresets[[i]] <- double() ## Simulate random scores. ## within a for loop: check capacity, find new statistics, update snull ## distribution (simulated null distr.) by permuting genes snull <- ssea.analyze.randgenes(db, targets, gene_sel) ## Remove the temporary files used for the test: file.remove("subsetof.coexpr.modules.txt") file.remove("subsetof.genfile.txt") file.remove("subsetof.marfile.txt")
ssea.analyze.randloci
simulates enrichment scores by
randomizing the marker that mapped to genes from all modules
(from database, db)
ssea.analyze.randloci(db, targets)
ssea.analyze.randloci(db, targets)
db |
database including the indexed identities for modules, genes and markers: modulesizes: gene counts for modules. modulelengths: distinct marker counts for modules. moduledensities: ratio between distinct and non-distinct markers. genesizes: marker count for each gene. module2genes: gene lists for each module. gene2loci: marker lists for each gene . locus2row: row indices in the marker data frame for each marker. observed: matrix of observed counts of values that exceed each quantile point for each marker. expected: 1.0 - quantile points. |
targets |
all modules |
scores |
randomly simulated enrichment scores |
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
job.msea <- list() job.msea$label <- "hdlc" job.msea$folder <- "Results" job.msea$genfile <- system.file("extdata", "genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$marfile <- system.file("extdata", "marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$modfile <- system.file("extdata", "modules.mousecoexpr.liver.human.txt", package="Mergeomics") job.msea$inffile <- system.file("extdata", "coexpr.info.txt", package="Mergeomics") job.msea$nperm <- 100 ## default value is 20000 ## ssea.start() process takes long time while merging the genes sharing high ## amounts of markers (e.g. loci). it is performed with full module list in ## the vignettes. Here, we used a very subset of the module list (1st 10 mods ## from the original module file) and we collected the corresponding genes ## and markers belonging to these modules: moddata <- tool.read(job.msea$modfile) gendata <- tool.read(job.msea$genfile) mardata <- tool.read(job.msea$marfile) mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] gendata <- gendata[which(!is.na(match(gendata$GENE, unique(moddata$GENE)))),] mardata <- mardata[which(!is.na(match(mardata$MARKER, unique(gendata$MARKER)))),] ## save this to a temporary file and set its path as new job.msea$modfile: tool.save(moddata, "subsetof.coexpr.modules.txt") tool.save(gendata, "subsetof.genfile.txt") tool.save(mardata, "subsetof.marfile.txt") job.msea$modfile <- "subsetof.coexpr.modules.txt" job.msea$genfile <- "subsetof.genfile.txt" job.msea$marfile <- "subsetof.marfile.txt" ## run ssea.start() and prepare for this small set: (due to the huge runtime) job.msea <- ssea.start(job.msea) job.msea <- ssea.prepare(job.msea) job.msea <- ssea.control(job.msea) ## Observed enrichment scores. db <- job.msea$database scores <- ssea.analyze.observe(db) nmods <- length(scores) ## Simulated scores. nperm <- job.msea$nperm observ <- scores ## Include only non-empty modules for simulation. nmods <- length(db$modulesizes) targets <- which(db$modulesizes > 0) hits <- rep(NA, nmods) hits[targets] <- 0 ## Prepare data structures to hold null samples. keys <- rep(0, nperm) scores <- rep(NA, nperm) scoresets <- list() for(i in 1:nmods) scoresets[[i]] <- double() ## Simulate random scores. ## within a for loop: check capacity, find new statistics, update snull ## distribution (simulated null distr.) by permuting loci snull <- ssea.analyze.randloci(db, targets) ## Remove the temporary files used for the test: file.remove("subsetof.coexpr.modules.txt") file.remove("subsetof.genfile.txt") file.remove("subsetof.marfile.txt")
job.msea <- list() job.msea$label <- "hdlc" job.msea$folder <- "Results" job.msea$genfile <- system.file("extdata", "genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$marfile <- system.file("extdata", "marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$modfile <- system.file("extdata", "modules.mousecoexpr.liver.human.txt", package="Mergeomics") job.msea$inffile <- system.file("extdata", "coexpr.info.txt", package="Mergeomics") job.msea$nperm <- 100 ## default value is 20000 ## ssea.start() process takes long time while merging the genes sharing high ## amounts of markers (e.g. loci). it is performed with full module list in ## the vignettes. Here, we used a very subset of the module list (1st 10 mods ## from the original module file) and we collected the corresponding genes ## and markers belonging to these modules: moddata <- tool.read(job.msea$modfile) gendata <- tool.read(job.msea$genfile) mardata <- tool.read(job.msea$marfile) mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] gendata <- gendata[which(!is.na(match(gendata$GENE, unique(moddata$GENE)))),] mardata <- mardata[which(!is.na(match(mardata$MARKER, unique(gendata$MARKER)))),] ## save this to a temporary file and set its path as new job.msea$modfile: tool.save(moddata, "subsetof.coexpr.modules.txt") tool.save(gendata, "subsetof.genfile.txt") tool.save(mardata, "subsetof.marfile.txt") job.msea$modfile <- "subsetof.coexpr.modules.txt" job.msea$genfile <- "subsetof.genfile.txt" job.msea$marfile <- "subsetof.marfile.txt" ## run ssea.start() and prepare for this small set: (due to the huge runtime) job.msea <- ssea.start(job.msea) job.msea <- ssea.prepare(job.msea) job.msea <- ssea.control(job.msea) ## Observed enrichment scores. db <- job.msea$database scores <- ssea.analyze.observe(db) nmods <- length(scores) ## Simulated scores. nperm <- job.msea$nperm observ <- scores ## Include only non-empty modules for simulation. nmods <- length(db$modulesizes) targets <- which(db$modulesizes > 0) hits <- rep(NA, nmods) hits[targets] <- 0 ## Prepare data structures to hold null samples. keys <- rep(0, nperm) scores <- rep(NA, nperm) scoresets <- list() for(i in 1:nmods) scoresets[[i]] <- double() ## Simulate random scores. ## within a for loop: check capacity, find new statistics, update snull ## distribution (simulated null distr.) by permuting loci snull <- ssea.analyze.randloci(db, targets) ## Remove the temporary files used for the test: file.remove("subsetof.coexpr.modules.txt") file.remove("subsetof.genfile.txt") file.remove("subsetof.marfile.txt")
ssea.analyze.simulate
simulates enrichment scores by
randomly permuting database with respect to the specified permutation
type (either gene-level or marker-level).
ssea.analyze.simulate(db, observ, nperm, permtype, trim_start, trim_end)
ssea.analyze.simulate(db, observ, nperm, permtype, trim_start, trim_end)
db |
database including the indexed identities for modules, genes and markers (e.g. loci): modulesizes: gene counts for modules. modulelengths: distinct marker counts for modules. moduledensities: ratio between distinct and non-distinct markers. genesizes: marker count for each gene. module2genes: gene lists for each module. gene2loci: marker lists for each gene. locus2row: row indices in the marker data frame for each marker. observed: matrix of observed counts of values that exceed each quantile point for each marker. expected: 1.0 - quantile points. |
observ |
observed enrichment scores |
nperm |
maximum nubmer of permutations (for simulation) |
permtype |
permutation type (either gene or locus) |
trim_start |
percentile taken from the beginning for trimming away a defined proportion of genes with significant trait association to avoid signal inflation of null background in gene permutation. Default value is 0.002. |
trim_end |
percentile taken from the ending point for trimming away a defined proportion of genes with significant trait association to avoid signal inflation of null background in gene permutation. Default value is 0.998. |
scoresets |
simulated score lists for the statistically significant modules |
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
job.msea <- list() job.msea$label <- "hdlc" job.msea$folder <- "Results" job.msea$genfile <- system.file("extdata", "genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$marfile <- system.file("extdata", "marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$modfile <- system.file("extdata", "modules.mousecoexpr.liver.human.txt", package="Mergeomics") job.msea$inffile <- system.file("extdata", "coexpr.info.txt", package="Mergeomics") job.msea$nperm <- 100 ## default value is 20000 ## ssea.start() process takes long time while merging the genes sharing high ## amounts of markers (e.g. loci). it is performed with full module list in ## the vignettes. Here, we used a very subset of the module list (1st 10 mods ## from the original module file) and we collected the corresponding genes ## and markers belonging to these modules: moddata <- tool.read(job.msea$modfile) gendata <- tool.read(job.msea$genfile) mardata <- tool.read(job.msea$marfile) mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] gendata <- gendata[which(!is.na(match(gendata$GENE, unique(moddata$GENE)))),] mardata <- mardata[which(!is.na(match(mardata$MARKER, unique(gendata$MARKER)))),] ## save this to a temporary file and set its path as new job.msea$modfile: tool.save(moddata, "subsetof.coexpr.modules.txt") tool.save(gendata, "subsetof.genfile.txt") tool.save(mardata, "subsetof.marfile.txt") job.msea$modfile <- "subsetof.coexpr.modules.txt" job.msea$genfile <- "subsetof.genfile.txt" job.msea$marfile <- "subsetof.marfile.txt" ## run ssea.start() and prepare for this small set: (due to the huge runtime) job.msea <- ssea.start(job.msea) job.msea <- ssea.prepare(job.msea) job.msea <- ssea.control(job.msea) ## Observed enrichment scores. db <- job.msea$database scores <- ssea.analyze.observe(db) nmods <- length(scores) ## Simulated scores. nperm <- job.msea$nperm trim_start=0.002 # default trim_end=1-trim_start nullsets <- ssea.analyze.simulate(db, scores, nperm, job.msea$permtype, trim_start, trim_end) ## Remove the temporary files used for the test: file.remove("subsetof.coexpr.modules.txt") file.remove("subsetof.genfile.txt") file.remove("subsetof.marfile.txt")
job.msea <- list() job.msea$label <- "hdlc" job.msea$folder <- "Results" job.msea$genfile <- system.file("extdata", "genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$marfile <- system.file("extdata", "marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$modfile <- system.file("extdata", "modules.mousecoexpr.liver.human.txt", package="Mergeomics") job.msea$inffile <- system.file("extdata", "coexpr.info.txt", package="Mergeomics") job.msea$nperm <- 100 ## default value is 20000 ## ssea.start() process takes long time while merging the genes sharing high ## amounts of markers (e.g. loci). it is performed with full module list in ## the vignettes. Here, we used a very subset of the module list (1st 10 mods ## from the original module file) and we collected the corresponding genes ## and markers belonging to these modules: moddata <- tool.read(job.msea$modfile) gendata <- tool.read(job.msea$genfile) mardata <- tool.read(job.msea$marfile) mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] gendata <- gendata[which(!is.na(match(gendata$GENE, unique(moddata$GENE)))),] mardata <- mardata[which(!is.na(match(mardata$MARKER, unique(gendata$MARKER)))),] ## save this to a temporary file and set its path as new job.msea$modfile: tool.save(moddata, "subsetof.coexpr.modules.txt") tool.save(gendata, "subsetof.genfile.txt") tool.save(mardata, "subsetof.marfile.txt") job.msea$modfile <- "subsetof.coexpr.modules.txt" job.msea$genfile <- "subsetof.genfile.txt" job.msea$marfile <- "subsetof.marfile.txt" ## run ssea.start() and prepare for this small set: (due to the huge runtime) job.msea <- ssea.start(job.msea) job.msea <- ssea.prepare(job.msea) job.msea <- ssea.control(job.msea) ## Observed enrichment scores. db <- job.msea$database scores <- ssea.analyze.observe(db) nmods <- length(scores) ## Simulated scores. nperm <- job.msea$nperm trim_start=0.002 # default trim_end=1-trim_start nullsets <- ssea.analyze.simulate(db, scores, nperm, job.msea$permtype, trim_start, trim_end) ## Remove the temporary files used for the test: file.remove("subsetof.coexpr.modules.txt") file.remove("subsetof.genfile.txt") file.remove("subsetof.marfile.txt")
ssea.analyze.statistic
estimates the enrichment score based
on observed and expected ones.
ssea.analyze.statistic(o, e)
ssea.analyze.statistic(o, e)
o |
observed enrichment score |
e |
expected enrichment score |
score |
estimated enrichment score based on observed and expected scores |
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
## O and E the observed and expected counts of positive findings ## (enrichment scores) at a given cutoff: set.seed(1) o <- rnorm(1) e <- rnorm(1) ## find the final enrichment score from the observed and estimated scores: z <- ssea.analyze.statistic(o, e)
## O and E the observed and expected counts of positive findings ## (enrichment scores) at a given cutoff: set.seed(1) o <- rnorm(1) e <- rnorm(1) ## find the final enrichment score from the observed and estimated scores: z <- ssea.analyze.statistic(o, e)
ssea.control
adds positive control modules that includes the
top-scored genes based on the marker scores of these genes.
The database structure, including identities of the variables, is updated
properly.
ssea.control(job)
ssea.control(job)
job |
data list including module and gene identities as characters; also including database that has indexed identities for MSEA: modules: module identities as characters. genes: gene identities as characters. moddata: preprocessed module data (indexed identities). database: database including indexed identities for modules, genes, and markers. |
job |
data list including augmented internal control modules: modules: augmented module names moddata: augmented module data database: augmented database |
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
## Check the slots for control module; ## if it cannot find any control module, function throws an error, ## if can find control slots, updates the database identities (modules, ## genes, markers) properly: job.msea <- list() job.msea$label <- "hdlc" job.msea$folder <- "Results" job.msea$genfile <- system.file("extdata", "genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$marfile <- system.file("extdata", "marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$modfile <- system.file("extdata", "modules.mousecoexpr.liver.human.txt", package="Mergeomics") job.msea$inffile <- system.file("extdata", "coexpr.info.txt", package="Mergeomics") job.msea$nperm <- 100 ## default value is 20000 ## ssea.start() process takes long time while merging the genes sharing high ## amounts of markers (e.g. loci). it is performed with full module list in ## the vignettes. Here, we used a very subset of the module list (1st 10 mods ## from the original module file) and we collected the corresponding genes ## and markers belonging to these modules: moddata <- tool.read(job.msea$modfile) gendata <- tool.read(job.msea$genfile) mardata <- tool.read(job.msea$marfile) mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] gendata <- gendata[which(!is.na(match(gendata$GENE, unique(moddata$GENE)))),] mardata <- mardata[which(!is.na(match(mardata$MARKER, unique(gendata$MARKER)))),] ## save this to a temporary file and set its path as new job.msea$modfile: tool.save(moddata, "subsetof.coexpr.modules.txt") tool.save(gendata, "subsetof.genfile.txt") tool.save(mardata, "subsetof.marfile.txt") job.msea$modfile <- "subsetof.coexpr.modules.txt" job.msea$genfile <- "subsetof.genfile.txt" job.msea$marfile <- "subsetof.marfile.txt" ## run ssea.start() and prepare for this small set: (due to the huge runtime) job.msea <- ssea.start(job.msea) job.msea <- ssea.prepare(job.msea) job.msea <- ssea.control(job.msea) ## Remove the temporary files used for the test: file.remove("subsetof.coexpr.modules.txt") file.remove("subsetof.genfile.txt") file.remove("subsetof.marfile.txt")
## Check the slots for control module; ## if it cannot find any control module, function throws an error, ## if can find control slots, updates the database identities (modules, ## genes, markers) properly: job.msea <- list() job.msea$label <- "hdlc" job.msea$folder <- "Results" job.msea$genfile <- system.file("extdata", "genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$marfile <- system.file("extdata", "marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$modfile <- system.file("extdata", "modules.mousecoexpr.liver.human.txt", package="Mergeomics") job.msea$inffile <- system.file("extdata", "coexpr.info.txt", package="Mergeomics") job.msea$nperm <- 100 ## default value is 20000 ## ssea.start() process takes long time while merging the genes sharing high ## amounts of markers (e.g. loci). it is performed with full module list in ## the vignettes. Here, we used a very subset of the module list (1st 10 mods ## from the original module file) and we collected the corresponding genes ## and markers belonging to these modules: moddata <- tool.read(job.msea$modfile) gendata <- tool.read(job.msea$genfile) mardata <- tool.read(job.msea$marfile) mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] gendata <- gendata[which(!is.na(match(gendata$GENE, unique(moddata$GENE)))),] mardata <- mardata[which(!is.na(match(mardata$MARKER, unique(gendata$MARKER)))),] ## save this to a temporary file and set its path as new job.msea$modfile: tool.save(moddata, "subsetof.coexpr.modules.txt") tool.save(gendata, "subsetof.genfile.txt") tool.save(mardata, "subsetof.marfile.txt") job.msea$modfile <- "subsetof.coexpr.modules.txt" job.msea$genfile <- "subsetof.genfile.txt" job.msea$marfile <- "subsetof.marfile.txt" ## run ssea.start() and prepare for this small set: (due to the huge runtime) job.msea <- ssea.start(job.msea) job.msea <- ssea.prepare(job.msea) job.msea <- ssea.control(job.msea) ## Remove the temporary files used for the test: file.remove("subsetof.coexpr.modules.txt") file.remove("subsetof.genfile.txt") file.remove("subsetof.marfile.txt")
ssea.finish
organizes and stores the MSEA results into relevant
output files.
ssea.finish(job)
ssea.finish(job)
job |
data list including the results of MSEA process. label: unique identifier for the analysis. folder: output folder for results. resultsdata: frame including indexed module identities (MODULE) and enrichment P-values (P). database: database including indexed identities for modules, genes, and markers. |
ssea.finish
obtains module statistics (member genes, size, length,
density, enrichment scores, false discovery rates), finds the top marker
within genes, updates the gene scores and gene sizes (i.e. number of markers
for each gene), and saves the organized results regarding the modules and
genes into the relevant files.
job |
data list including the organized results of MSEA process: results: updated information of modules: number of distinct member genes (NGENES), number of distinct member markers (NLOCI), ratio of distinct to non-distinct markers (DENSITY), false discovery rates (FDR). generesults: updated gene-specific information including: indexed gene identity (GENE), gene size (NLOCI), unadjusted enrichment score (SCORE), marker with maximum value (LOCUS), marker value (VALUE). |
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
ssea.analyze
, ssea.control
,
ssea.prepare
, ssea.start
,
ssea2kda
job.msea <- list() job.msea$label <- "hdlc" job.msea$folder <- "Results" job.msea$genfile <- system.file("extdata", "genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$marfile <- system.file("extdata", "marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$modfile <- system.file("extdata", "modules.mousecoexpr.liver.human.txt", package="Mergeomics") job.msea$inffile <- system.file("extdata", "coexpr.info.txt", package="Mergeomics") job.msea$nperm <- 100 ## default value is 20000 ## ssea.start() process takes long time while merging the genes sharing high ## amounts of markers (e.g. loci). it is performed with full module list in ## the vignettes. Here, we used a very subset of the module list (1st 10 mods ## from the original module file) and we collected the corresponding genes ## and markers belonging to these modules: moddata <- tool.read(job.msea$modfile) gendata <- tool.read(job.msea$genfile) mardata <- tool.read(job.msea$marfile) mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] gendata <- gendata[which(!is.na(match(gendata$GENE, unique(moddata$GENE)))),] mardata <- mardata[which(!is.na(match(mardata$MARKER, unique(gendata$MARKER)))),] ## save this to a temporary file and set its path as new job.msea$modfile: tool.save(moddata, "subsetof.coexpr.modules.txt") tool.save(gendata, "subsetof.genfile.txt") tool.save(mardata, "subsetof.marfile.txt") job.msea$modfile <- "subsetof.coexpr.modules.txt" job.msea$genfile <- "subsetof.genfile.txt" job.msea$marfile <- "subsetof.marfile.txt" ## run ssea.start() and prepare for this small set: (due to the huge runtime) job.msea <- ssea.start(job.msea) job.msea <- ssea.prepare(job.msea) job.msea <- ssea.control(job.msea) job.msea <- ssea.analyze(job.msea) job.msea <- ssea.finish(job.msea) ## Remove the temporary files used for the test: file.remove("subsetof.coexpr.modules.txt") file.remove("subsetof.genfile.txt") file.remove("subsetof.marfile.txt")
job.msea <- list() job.msea$label <- "hdlc" job.msea$folder <- "Results" job.msea$genfile <- system.file("extdata", "genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$marfile <- system.file("extdata", "marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$modfile <- system.file("extdata", "modules.mousecoexpr.liver.human.txt", package="Mergeomics") job.msea$inffile <- system.file("extdata", "coexpr.info.txt", package="Mergeomics") job.msea$nperm <- 100 ## default value is 20000 ## ssea.start() process takes long time while merging the genes sharing high ## amounts of markers (e.g. loci). it is performed with full module list in ## the vignettes. Here, we used a very subset of the module list (1st 10 mods ## from the original module file) and we collected the corresponding genes ## and markers belonging to these modules: moddata <- tool.read(job.msea$modfile) gendata <- tool.read(job.msea$genfile) mardata <- tool.read(job.msea$marfile) mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] gendata <- gendata[which(!is.na(match(gendata$GENE, unique(moddata$GENE)))),] mardata <- mardata[which(!is.na(match(mardata$MARKER, unique(gendata$MARKER)))),] ## save this to a temporary file and set its path as new job.msea$modfile: tool.save(moddata, "subsetof.coexpr.modules.txt") tool.save(gendata, "subsetof.genfile.txt") tool.save(mardata, "subsetof.marfile.txt") job.msea$modfile <- "subsetof.coexpr.modules.txt" job.msea$genfile <- "subsetof.genfile.txt" job.msea$marfile <- "subsetof.marfile.txt" ## run ssea.start() and prepare for this small set: (due to the huge runtime) job.msea <- ssea.start(job.msea) job.msea <- ssea.prepare(job.msea) job.msea <- ssea.control(job.msea) job.msea <- ssea.analyze(job.msea) job.msea <- ssea.finish(job.msea) ## Remove the temporary files used for the test: file.remove("subsetof.coexpr.modules.txt") file.remove("subsetof.genfile.txt") file.remove("subsetof.marfile.txt")
ssea.finish.details
finds significant modules and their gene lists,
and top marker (with GWAS -log10 transformed p-vals) of these genes,
merge results of markers, genes and module statistics, sort results
according to first, module enrichment score, then marker P-value,
and saves these sorted results into the relevant files.
ssea.finish.details(job)
ssea.finish.details(job)
job |
data list including the results of MSEA process: label: unique identifier for the analysis. folder: output folder for results. modinfo: descriptions of the modules. resultsdata: frame including indexed module identities (MODULE) and enrichment P-values (P). database: database including indexed identities for modules, genes, and markers. |
None.
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
job.msea <- list() job.msea$label <- "hdlc" job.msea$folder <- "Results" job.msea$genfile <- system.file("extdata", "genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$marfile <- system.file("extdata", "marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$modfile <- system.file("extdata", "modules.mousecoexpr.liver.human.txt", package="Mergeomics") job.msea$inffile <- system.file("extdata", "coexpr.info.txt", package="Mergeomics") job.msea$nperm <- 100 ## default value is 20000 ## ssea.start() process takes long time while merging the genes sharing high ## amounts of markers (e.g. loci). it is performed with full module list in ## the vignettes. Here, we used a very subset of the module list (1st 10 mods ## from the original module file) and we collected the corresponding genes ## and markers belonging to these modules: moddata <- tool.read(job.msea$modfile) gendata <- tool.read(job.msea$genfile) mardata <- tool.read(job.msea$marfile) mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] gendata <- gendata[which(!is.na(match(gendata$GENE, unique(moddata$GENE)))),] mardata <- mardata[which(!is.na(match(mardata$MARKER, unique(gendata$MARKER)))),] ## save this to a temporary file and set its path as new job.msea$modfile: tool.save(moddata, "subsetof.coexpr.modules.txt") tool.save(gendata, "subsetof.genfile.txt") tool.save(mardata, "subsetof.marfile.txt") job.msea$modfile <- "subsetof.coexpr.modules.txt" job.msea$genfile <- "subsetof.genfile.txt" job.msea$marfile <- "subsetof.marfile.txt" ## run ssea.start() and prepare for this small set: (due to the huge runtime) job.msea <- ssea.start(job.msea) job.msea <- ssea.prepare(job.msea) job.msea <- ssea.control(job.msea) job.msea <- ssea.analyze(job.msea) job.msea <- ssea.finish(job.msea) ## Estimate mod FDR values, sort according to significance, save full results: job.msea <- ssea.finish.fdr(job.msea) ## Collect top markers(e.g.loci) within genes, save genes with top marker Pval job.msea <- ssea.finish.genes(job.msea) ## Find signficant modules, collect gene members of top modules, ## Merge gene results (with top marker info), ## Sort and save details according to enrichment and marker value: job.msea <- ssea.finish.details(job.msea) ## Remove the temporary files used for the test: file.remove("subsetof.coexpr.modules.txt") file.remove("subsetof.genfile.txt") file.remove("subsetof.marfile.txt")
job.msea <- list() job.msea$label <- "hdlc" job.msea$folder <- "Results" job.msea$genfile <- system.file("extdata", "genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$marfile <- system.file("extdata", "marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$modfile <- system.file("extdata", "modules.mousecoexpr.liver.human.txt", package="Mergeomics") job.msea$inffile <- system.file("extdata", "coexpr.info.txt", package="Mergeomics") job.msea$nperm <- 100 ## default value is 20000 ## ssea.start() process takes long time while merging the genes sharing high ## amounts of markers (e.g. loci). it is performed with full module list in ## the vignettes. Here, we used a very subset of the module list (1st 10 mods ## from the original module file) and we collected the corresponding genes ## and markers belonging to these modules: moddata <- tool.read(job.msea$modfile) gendata <- tool.read(job.msea$genfile) mardata <- tool.read(job.msea$marfile) mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] gendata <- gendata[which(!is.na(match(gendata$GENE, unique(moddata$GENE)))),] mardata <- mardata[which(!is.na(match(mardata$MARKER, unique(gendata$MARKER)))),] ## save this to a temporary file and set its path as new job.msea$modfile: tool.save(moddata, "subsetof.coexpr.modules.txt") tool.save(gendata, "subsetof.genfile.txt") tool.save(mardata, "subsetof.marfile.txt") job.msea$modfile <- "subsetof.coexpr.modules.txt" job.msea$genfile <- "subsetof.genfile.txt" job.msea$marfile <- "subsetof.marfile.txt" ## run ssea.start() and prepare for this small set: (due to the huge runtime) job.msea <- ssea.start(job.msea) job.msea <- ssea.prepare(job.msea) job.msea <- ssea.control(job.msea) job.msea <- ssea.analyze(job.msea) job.msea <- ssea.finish(job.msea) ## Estimate mod FDR values, sort according to significance, save full results: job.msea <- ssea.finish.fdr(job.msea) ## Collect top markers(e.g.loci) within genes, save genes with top marker Pval job.msea <- ssea.finish.genes(job.msea) ## Find signficant modules, collect gene members of top modules, ## Merge gene results (with top marker info), ## Sort and save details according to enrichment and marker value: job.msea <- ssea.finish.details(job.msea) ## Remove the temporary files used for the test: file.remove("subsetof.coexpr.modules.txt") file.remove("subsetof.genfile.txt") file.remove("subsetof.marfile.txt")
ssea.finish.fdr
estimates the FDR values of the enrichment P-values
belonging to the modules. It also gets the other module information such as
size (gene number), length (marker number), density, etc., sorts the modules
according to P-values, saves this information into relevant files.
ssea.finish.fdr(job)
ssea.finish.fdr(job)
job |
data list including module-realted results of MSEA process: folder: output folder for results. modules: module names. results: data frame including indexed module identities (MODULE) and enrichment P-values (P). database: database including indexed identities for modules, genes, and markers. |
job |
data list including the organized module-related results of MSEA process: results: updated information of modules: number of distinct member genes (NGENES), number of distinct member markers (NLOCI), ratio of distinct to non-distinct markers (DENSITY), false discovery rates (FDR). |
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
job.msea <- list() job.msea$label <- "hdlc" job.msea$folder <- "Results" job.msea$genfile <- system.file("extdata", "genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$marfile <- system.file("extdata", "marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$modfile <- system.file("extdata", "modules.mousecoexpr.liver.human.txt", package="Mergeomics") job.msea$inffile <- system.file("extdata", "coexpr.info.txt", package="Mergeomics") job.msea$nperm <- 100 ## default value is 20000 ## ssea.start() process takes long time while merging the genes sharing high ## amounts of markers (e.g. loci). it is performed with full module list in ## the vignettes. Here, we used a very subset of the module list (1st 10 mods ## from the original module file) and we collected the corresponding genes ## and markers belonging to these modules: moddata <- tool.read(job.msea$modfile) gendata <- tool.read(job.msea$genfile) mardata <- tool.read(job.msea$marfile) mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] gendata <- gendata[which(!is.na(match(gendata$GENE, unique(moddata$GENE)))),] mardata <- mardata[which(!is.na(match(mardata$MARKER, unique(gendata$MARKER)))),] ## save this to a temporary file and set its path as new job.msea$modfile: tool.save(moddata, "subsetof.coexpr.modules.txt") tool.save(gendata, "subsetof.genfile.txt") tool.save(mardata, "subsetof.marfile.txt") job.msea$modfile <- "subsetof.coexpr.modules.txt" job.msea$genfile <- "subsetof.genfile.txt" job.msea$marfile <- "subsetof.marfile.txt" ## run ssea.start() and prepare for this small set: (due to the huge runtime) job.msea <- ssea.start(job.msea) job.msea <- ssea.prepare(job.msea) job.msea <- ssea.control(job.msea) job.msea <- ssea.analyze(job.msea) job.msea <- ssea.finish(job.msea) ## Estimate mod FDR values, sort according to significance, save full results: job.msea <- ssea.finish.fdr(job.msea) ## Remove the temporary files used for the test: file.remove("subsetof.coexpr.modules.txt") file.remove("subsetof.genfile.txt") file.remove("subsetof.marfile.txt")
job.msea <- list() job.msea$label <- "hdlc" job.msea$folder <- "Results" job.msea$genfile <- system.file("extdata", "genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$marfile <- system.file("extdata", "marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$modfile <- system.file("extdata", "modules.mousecoexpr.liver.human.txt", package="Mergeomics") job.msea$inffile <- system.file("extdata", "coexpr.info.txt", package="Mergeomics") job.msea$nperm <- 100 ## default value is 20000 ## ssea.start() process takes long time while merging the genes sharing high ## amounts of markers (e.g. loci). it is performed with full module list in ## the vignettes. Here, we used a very subset of the module list (1st 10 mods ## from the original module file) and we collected the corresponding genes ## and markers belonging to these modules: moddata <- tool.read(job.msea$modfile) gendata <- tool.read(job.msea$genfile) mardata <- tool.read(job.msea$marfile) mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] gendata <- gendata[which(!is.na(match(gendata$GENE, unique(moddata$GENE)))),] mardata <- mardata[which(!is.na(match(mardata$MARKER, unique(gendata$MARKER)))),] ## save this to a temporary file and set its path as new job.msea$modfile: tool.save(moddata, "subsetof.coexpr.modules.txt") tool.save(gendata, "subsetof.genfile.txt") tool.save(mardata, "subsetof.marfile.txt") job.msea$modfile <- "subsetof.coexpr.modules.txt" job.msea$genfile <- "subsetof.genfile.txt" job.msea$marfile <- "subsetof.marfile.txt" ## run ssea.start() and prepare for this small set: (due to the huge runtime) job.msea <- ssea.start(job.msea) job.msea <- ssea.prepare(job.msea) job.msea <- ssea.control(job.msea) job.msea <- ssea.analyze(job.msea) job.msea <- ssea.finish(job.msea) ## Estimate mod FDR values, sort according to significance, save full results: job.msea <- ssea.finish.fdr(job.msea) ## Remove the temporary files used for the test: file.remove("subsetof.coexpr.modules.txt") file.remove("subsetof.genfile.txt") file.remove("subsetof.marfile.txt")
ssea.finish.genes
organizes and stores the gene-related MSEA
results into relevant output file. It finds the top markers within genes,
update gene scores and gene sizes, and save the results.
ssea.finish.genes(job)
ssea.finish.genes(job)
job |
data list including the information about the MSEA process: folder: output folder for results. database: database including indexed identities for modules, genes, and markers. |
job |
data list including the organized gene-related results of MSEA process: generesults: updated gene-specific information; indexed gene identity (GENE), gene size (NLOCI), unadjusted enrichment score (SCORE), marker with maximum value (LOCUS), marker value (VALUE). |
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
job.msea <- list() job.msea$label <- "hdlc" job.msea$folder <- "Results" job.msea$genfile <- system.file("extdata", "genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$marfile <- system.file("extdata", "marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$modfile <- system.file("extdata", "modules.mousecoexpr.liver.human.txt", package="Mergeomics") job.msea$inffile <- system.file("extdata", "coexpr.info.txt", package="Mergeomics") job.msea$nperm <- 100 ## default value is 20000 ## ssea.start() process takes long time while merging the genes sharing high ## amounts of markers (e.g. loci). it is performed with full module list in ## the vignettes. Here, we used a very subset of the module list (1st 10 mods ## from the original module file) and we collected the corresponding genes ## and markers belonging to these modules: moddata <- tool.read(job.msea$modfile) gendata <- tool.read(job.msea$genfile) mardata <- tool.read(job.msea$marfile) mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] gendata <- gendata[which(!is.na(match(gendata$GENE, unique(moddata$GENE)))),] mardata <- mardata[which(!is.na(match(mardata$MARKER, unique(gendata$MARKER)))),] ## save this to a temporary file and set its path as new job.msea$modfile: tool.save(moddata, "subsetof.coexpr.modules.txt") tool.save(gendata, "subsetof.genfile.txt") tool.save(mardata, "subsetof.marfile.txt") job.msea$modfile <- "subsetof.coexpr.modules.txt" job.msea$genfile <- "subsetof.genfile.txt" job.msea$marfile <- "subsetof.marfile.txt" ## run ssea.start() and prepare for this small set: (due to the huge runtime) job.msea <- ssea.start(job.msea) job.msea <- ssea.prepare(job.msea) job.msea <- ssea.control(job.msea) job.msea <- ssea.analyze(job.msea) job.msea <- ssea.finish(job.msea) ## Estimate mod FDR values, sort according to significance, save full results: job.msea <- ssea.finish.fdr(job.msea) ## Collect top markers(e.g.loci) within genes, save genes with top marker Pval job.msea <- ssea.finish.genes(job.msea) ## Remove the temporary files used for the test: file.remove("subsetof.coexpr.modules.txt") file.remove("subsetof.genfile.txt") file.remove("subsetof.marfile.txt")
job.msea <- list() job.msea$label <- "hdlc" job.msea$folder <- "Results" job.msea$genfile <- system.file("extdata", "genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$marfile <- system.file("extdata", "marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$modfile <- system.file("extdata", "modules.mousecoexpr.liver.human.txt", package="Mergeomics") job.msea$inffile <- system.file("extdata", "coexpr.info.txt", package="Mergeomics") job.msea$nperm <- 100 ## default value is 20000 ## ssea.start() process takes long time while merging the genes sharing high ## amounts of markers (e.g. loci). it is performed with full module list in ## the vignettes. Here, we used a very subset of the module list (1st 10 mods ## from the original module file) and we collected the corresponding genes ## and markers belonging to these modules: moddata <- tool.read(job.msea$modfile) gendata <- tool.read(job.msea$genfile) mardata <- tool.read(job.msea$marfile) mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] gendata <- gendata[which(!is.na(match(gendata$GENE, unique(moddata$GENE)))),] mardata <- mardata[which(!is.na(match(mardata$MARKER, unique(gendata$MARKER)))),] ## save this to a temporary file and set its path as new job.msea$modfile: tool.save(moddata, "subsetof.coexpr.modules.txt") tool.save(gendata, "subsetof.genfile.txt") tool.save(mardata, "subsetof.marfile.txt") job.msea$modfile <- "subsetof.coexpr.modules.txt" job.msea$genfile <- "subsetof.genfile.txt" job.msea$marfile <- "subsetof.marfile.txt" ## run ssea.start() and prepare for this small set: (due to the huge runtime) job.msea <- ssea.start(job.msea) job.msea <- ssea.prepare(job.msea) job.msea <- ssea.control(job.msea) job.msea <- ssea.analyze(job.msea) job.msea <- ssea.finish(job.msea) ## Estimate mod FDR values, sort according to significance, save full results: job.msea <- ssea.finish.fdr(job.msea) ## Collect top markers(e.g.loci) within genes, save genes with top marker Pval job.msea <- ssea.finish.genes(job.msea) ## Remove the temporary files used for the test: file.remove("subsetof.coexpr.modules.txt") file.remove("subsetof.genfile.txt") file.remove("subsetof.marfile.txt")
ssea.meta
merges MSEA results of modules, genes, and markers,
constructs hierarchical representation of genes and modules, calculates
meta P-values of the modules (based on z-scores), and save all statistics
results.
ssea.meta(jobs, label, folder)
ssea.meta(jobs, label, folder)
jobs |
data list including information and statistics about genes, markers, and modules |
label |
label (unique identifier) for meta job |
folder |
parent folder for meta job |
meta |
data list including meta-analyzing results for the modules, which enables analyzing the multiple MSEA results for the modules. |
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
## Create an object for multiple MSEAs: job.multiple.msea <- list() set.seed(1) for(i in 1:3){ ## make 3 trials, each time pick 10 random modules among the first 20 modules mod.indices <- sample(20, 10) job.msea <- list() job.msea$label <- "hdlc" job.msea$folder <- "Results" job.msea$genfile <- system.file("extdata", "genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$marfile <- system.file("extdata", "marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$modfile <- system.file("extdata", "modules.mousecoexpr.liver.human.txt", package="Mergeomics") job.msea$inffile <- system.file("extdata", "coexpr.info.txt", package="Mergeomics") job.msea$nperm <- 30 ## default value is 20000 ## ssea.start() process takes long time while merging the genes sharing high ## amounts of markers (e.g. loci). it is performed with full module list in ## the vignettes. Here, we used a very subset of the module list (1st 10 mods ## from the original module file) and we collected the corresponding genes ## and markers belonging to these modules: moddata <- tool.read(job.msea$modfile) gendata <- tool.read(job.msea$genfile) mardata <- tool.read(job.msea$marfile) mod.names <- unique(moddata$MODULE)[mod.indices] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] gendata <- gendata[which(!is.na(match(gendata$GENE, unique(moddata$GENE)))),] mardata <- mardata[which(!is.na(match(mardata$MARKER, unique(gendata$MARKER)))),] ## save this to a temporary file and set its path as new job.msea$modfile: tool.save(moddata, "subsetof.coexpr.modules.txt") tool.save(gendata, "subsetof.genfile.txt") tool.save(mardata, "subsetof.marfile.txt") job.msea$modfile <- "subsetof.coexpr.modules.txt" job.msea$genfile <- "subsetof.genfile.txt" job.msea$marfile <- "subsetof.marfile.txt" ## run ssea.start() and prepare for this small set: (due to the huge runtime) job.msea <- ssea.start(job.msea) job.msea <- ssea.prepare(job.msea) job.msea <- ssea.control(job.msea) job.msea <- ssea.analyze(job.msea) job.msea <- ssea.finish(job.msea) ## Remove the temporary files used for the test: file.remove("subsetof.coexpr.modules.txt") file.remove("subsetof.genfile.txt") file.remove("subsetof.marfile.txt") job.multiple.msea[[i]] <- job.msea } meta.results <- ssea.meta(job.multiple.msea, job.multiple.msea[[1]]$label, job.multiple.msea[[1]]$folder)
## Create an object for multiple MSEAs: job.multiple.msea <- list() set.seed(1) for(i in 1:3){ ## make 3 trials, each time pick 10 random modules among the first 20 modules mod.indices <- sample(20, 10) job.msea <- list() job.msea$label <- "hdlc" job.msea$folder <- "Results" job.msea$genfile <- system.file("extdata", "genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$marfile <- system.file("extdata", "marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$modfile <- system.file("extdata", "modules.mousecoexpr.liver.human.txt", package="Mergeomics") job.msea$inffile <- system.file("extdata", "coexpr.info.txt", package="Mergeomics") job.msea$nperm <- 30 ## default value is 20000 ## ssea.start() process takes long time while merging the genes sharing high ## amounts of markers (e.g. loci). it is performed with full module list in ## the vignettes. Here, we used a very subset of the module list (1st 10 mods ## from the original module file) and we collected the corresponding genes ## and markers belonging to these modules: moddata <- tool.read(job.msea$modfile) gendata <- tool.read(job.msea$genfile) mardata <- tool.read(job.msea$marfile) mod.names <- unique(moddata$MODULE)[mod.indices] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] gendata <- gendata[which(!is.na(match(gendata$GENE, unique(moddata$GENE)))),] mardata <- mardata[which(!is.na(match(mardata$MARKER, unique(gendata$MARKER)))),] ## save this to a temporary file and set its path as new job.msea$modfile: tool.save(moddata, "subsetof.coexpr.modules.txt") tool.save(gendata, "subsetof.genfile.txt") tool.save(mardata, "subsetof.marfile.txt") job.msea$modfile <- "subsetof.coexpr.modules.txt" job.msea$genfile <- "subsetof.genfile.txt" job.msea$marfile <- "subsetof.marfile.txt" ## run ssea.start() and prepare for this small set: (due to the huge runtime) job.msea <- ssea.start(job.msea) job.msea <- ssea.prepare(job.msea) job.msea <- ssea.control(job.msea) job.msea <- ssea.analyze(job.msea) job.msea <- ssea.finish(job.msea) ## Remove the temporary files used for the test: file.remove("subsetof.coexpr.modules.txt") file.remove("subsetof.genfile.txt") file.remove("subsetof.marfile.txt") job.multiple.msea[[i]] <- job.msea } meta.results <- ssea.meta(job.multiple.msea, job.multiple.msea[[1]]$label, job.multiple.msea[[1]]$folder)
ssea.prepare
prepares a database that includes hierarchical for
modules, i.e. it collects gene list and unique marker list of the modules
for MSEA process
ssea.prepare(job)
ssea.prepare(job)
job |
a data list with the following components: modules: module identities as characters. genesgene: identities as characters. loci: marker identities as characters. moddata: preprocessed module data (indexed identities). gendata: preprocessed mapping data (indexed identities). locdata: preprocessed marker data (indexed identities). mingenes: minimum module size allowed. maxgenes: maximum module size allowed. maxoverlap: maximum module overlap allowed (1.0 to skip). quantiles: quantile points for test statistic. |
ssea.prepare
removes extreme-sized modules, constructs a
hierarchical representation of genes and modules, obtains hit counts for
markers, and returns the finalized module, genes, markers, database
information.
job |
an updated data list with the following components: modules: finalized module names. moddata: finalized module data. gendata: finalized mapping data. locdata: finalized marker data. quantiles: verified quantile points. database$modulesizes: gene counts for modules. database$modulelengths: distinct markers counts for modules. database$moduledensities: ratio between distinct and non-distinct markers. database$genesizeslocus: count for each gene. database$module2genes: gene lists for each module. database$gene2locilocus: lists for each gene. database$locus2row: indices in the marker data frame for each marker. database$observed: matrix of observed counts of values that exceed each quantile point for each marker. database$expected: 1.0 - quantile points. |
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
ssea.analyze
, ssea.control
,
ssea.finish
, ssea.start
,
ssea2kda
job.msea <- list() job.msea$label <- "hdlc" job.msea$folder <- "Results" job.msea$genfile <- system.file("extdata", "genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$marfile <- system.file("extdata", "marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$modfile <- system.file("extdata", "modules.mousecoexpr.liver.human.txt", package="Mergeomics") job.msea$inffile <- system.file("extdata", "coexpr.info.txt", package="Mergeomics") job.msea$nperm <- 100 ## default value is 20000 ## ssea.start() process takes long time while merging the genes sharing high ## amounts of markers (e.g. loci). it is performed with full module list in ## the vignettes. Here, we used a very subset of the module list (1st 10 mods ## from the original module file) and we collected the corresponding genes ## and markers belonging to these modules: moddata <- tool.read(job.msea$modfile) gendata <- tool.read(job.msea$genfile) mardata <- tool.read(job.msea$marfile) mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] gendata <- gendata[which(!is.na(match(gendata$GENE, unique(moddata$GENE)))),] mardata <- mardata[which(!is.na(match(mardata$MARKER, unique(gendata$MARKER)))),] ## save this to a temporary file and set its path as new job.msea$modfile: tool.save(moddata, "subsetof.coexpr.modules.txt") tool.save(gendata, "subsetof.genfile.txt") tool.save(mardata, "subsetof.marfile.txt") job.msea$modfile <- "subsetof.coexpr.modules.txt" job.msea$genfile <- "subsetof.genfile.txt" job.msea$marfile <- "subsetof.marfile.txt" ## run ssea.start() and prepare for this small set: (due to the huge runtime) job.msea <- ssea.start(job.msea) job.msea <- ssea.prepare(job.msea) ## Remove the temporary files used for the test: file.remove("subsetof.coexpr.modules.txt") file.remove("subsetof.genfile.txt") file.remove("subsetof.marfile.txt")
job.msea <- list() job.msea$label <- "hdlc" job.msea$folder <- "Results" job.msea$genfile <- system.file("extdata", "genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$marfile <- system.file("extdata", "marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$modfile <- system.file("extdata", "modules.mousecoexpr.liver.human.txt", package="Mergeomics") job.msea$inffile <- system.file("extdata", "coexpr.info.txt", package="Mergeomics") job.msea$nperm <- 100 ## default value is 20000 ## ssea.start() process takes long time while merging the genes sharing high ## amounts of markers (e.g. loci). it is performed with full module list in ## the vignettes. Here, we used a very subset of the module list (1st 10 mods ## from the original module file) and we collected the corresponding genes ## and markers belonging to these modules: moddata <- tool.read(job.msea$modfile) gendata <- tool.read(job.msea$genfile) mardata <- tool.read(job.msea$marfile) mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] gendata <- gendata[which(!is.na(match(gendata$GENE, unique(moddata$GENE)))),] mardata <- mardata[which(!is.na(match(mardata$MARKER, unique(gendata$MARKER)))),] ## save this to a temporary file and set its path as new job.msea$modfile: tool.save(moddata, "subsetof.coexpr.modules.txt") tool.save(gendata, "subsetof.genfile.txt") tool.save(mardata, "subsetof.marfile.txt") job.msea$modfile <- "subsetof.coexpr.modules.txt" job.msea$genfile <- "subsetof.genfile.txt" job.msea$marfile <- "subsetof.marfile.txt" ## run ssea.start() and prepare for this small set: (due to the huge runtime) job.msea <- ssea.start(job.msea) job.msea <- ssea.prepare(job.msea) ## Remove the temporary files used for the test: file.remove("subsetof.coexpr.modules.txt") file.remove("subsetof.genfile.txt") file.remove("subsetof.marfile.txt")
Counts unique loci in a module, maps the marker data of a module to the all available markers by creating a bit matrix for values above the given quantiles. Created bit matrix contains either TRUE (above quantiles) or FALSE (below or equals to quantiles) values as a resuls of these comparisons. It returns the results (marker mapping and bit matrix)
ssea.prepare.counts(locdata, nloci, quantiles)
ssea.prepare.counts(locdata, nloci, quantiles)
locdata |
marker data |
nloci |
number of elements in markers list |
quantiles |
quantile points for test statistic |
res |
a data list with the following components: locus2row: mapped marker information observed: bit matrix that involves TRUEs and FALSEs |
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
job.msea <- list() job.msea$label <- "hdlc" job.msea$folder <- "Results" job.msea$genfile <- system.file("extdata", "genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$marfile <- system.file("extdata", "marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$modfile <- system.file("extdata", "modules.mousecoexpr.liver.human.txt", package="Mergeomics") job.msea$inffile <- system.file("extdata", "coexpr.info.txt", package="Mergeomics") job.msea$nperm <- 100 ## default value is 20000 ## ssea.start() process takes long time while merging the genes sharing high ## amounts of markers (e.g. loci). it is performed with full module list in ## the vignettes. Here, we used a very subset of the module list (1st 10 mods ## from the original module file) and we collected the corresponding genes ## and markers belonging to these modules: moddata <- tool.read(job.msea$modfile) gendata <- tool.read(job.msea$genfile) mardata <- tool.read(job.msea$marfile) mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] gendata <- gendata[which(!is.na(match(gendata$GENE, unique(moddata$GENE)))),] mardata <- mardata[which(!is.na(match(mardata$MARKER, unique(gendata$MARKER)))),] ## save this to a temporary file and set its path as new job.msea$modfile: tool.save(moddata, "subsetof.coexpr.modules.txt") tool.save(gendata, "subsetof.genfile.txt") tool.save(mardata, "subsetof.marfile.txt") job.msea$modfile <- "subsetof.coexpr.modules.txt" job.msea$genfile <- "subsetof.genfile.txt" job.msea$marfile <- "subsetof.marfile.txt" ## run ssea.start() and prepare for this small set: (due to the huge runtime) job.msea <- ssea.start(job.msea) ## Remove extremely big or small modules: st <- tool.aggregate(job.msea$moddata$MODULE) mask <- which((st$lengths >= job.msea$mingenes) & (st$lengths <= job.msea$maxgenes)) pos <- match(job.msea$moddata$MODULE, st$labels[mask]) job.msea$moddata <- job.msea$moddata[which(pos > 0),] ## Construct hierarchical representation for modules, genes, and markers: ngens <- length(job.msea$genes) nmods <- length(job.msea$modules) db <- ssea.prepare.structure(job.msea$moddata, job.msea$gendata, nmods, ngens) ## Determine test cutoffs: if(is.null(job.msea$quantiles)) { lengths <- db$modulelengths mu <- median(lengths[which(lengths > 0)]) job.msea$quantiles <- seq(0.5, (1.0 - 1.0/mu), length.out=10) } ## Calculate hit counts: nloci <- length(job.msea$loci) hits <- ssea.prepare.counts(job.msea$locdata, nloci, job.msea$quantiles) db <- c(db, hits) ## Remove the temporary files used for the test: file.remove("subsetof.coexpr.modules.txt") file.remove("subsetof.genfile.txt") file.remove("subsetof.marfile.txt")
job.msea <- list() job.msea$label <- "hdlc" job.msea$folder <- "Results" job.msea$genfile <- system.file("extdata", "genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$marfile <- system.file("extdata", "marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$modfile <- system.file("extdata", "modules.mousecoexpr.liver.human.txt", package="Mergeomics") job.msea$inffile <- system.file("extdata", "coexpr.info.txt", package="Mergeomics") job.msea$nperm <- 100 ## default value is 20000 ## ssea.start() process takes long time while merging the genes sharing high ## amounts of markers (e.g. loci). it is performed with full module list in ## the vignettes. Here, we used a very subset of the module list (1st 10 mods ## from the original module file) and we collected the corresponding genes ## and markers belonging to these modules: moddata <- tool.read(job.msea$modfile) gendata <- tool.read(job.msea$genfile) mardata <- tool.read(job.msea$marfile) mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] gendata <- gendata[which(!is.na(match(gendata$GENE, unique(moddata$GENE)))),] mardata <- mardata[which(!is.na(match(mardata$MARKER, unique(gendata$MARKER)))),] ## save this to a temporary file and set its path as new job.msea$modfile: tool.save(moddata, "subsetof.coexpr.modules.txt") tool.save(gendata, "subsetof.genfile.txt") tool.save(mardata, "subsetof.marfile.txt") job.msea$modfile <- "subsetof.coexpr.modules.txt" job.msea$genfile <- "subsetof.genfile.txt" job.msea$marfile <- "subsetof.marfile.txt" ## run ssea.start() and prepare for this small set: (due to the huge runtime) job.msea <- ssea.start(job.msea) ## Remove extremely big or small modules: st <- tool.aggregate(job.msea$moddata$MODULE) mask <- which((st$lengths >= job.msea$mingenes) & (st$lengths <= job.msea$maxgenes)) pos <- match(job.msea$moddata$MODULE, st$labels[mask]) job.msea$moddata <- job.msea$moddata[which(pos > 0),] ## Construct hierarchical representation for modules, genes, and markers: ngens <- length(job.msea$genes) nmods <- length(job.msea$modules) db <- ssea.prepare.structure(job.msea$moddata, job.msea$gendata, nmods, ngens) ## Determine test cutoffs: if(is.null(job.msea$quantiles)) { lengths <- db$modulelengths mu <- median(lengths[which(lengths > 0)]) job.msea$quantiles <- seq(0.5, (1.0 - 1.0/mu), length.out=10) } ## Calculate hit counts: nloci <- length(job.msea$loci) hits <- ssea.prepare.counts(job.msea$locdata, nloci, job.msea$quantiles) db <- c(db, hits) ## Remove the temporary files used for the test: file.remove("subsetof.coexpr.modules.txt") file.remove("subsetof.genfile.txt") file.remove("subsetof.marfile.txt")
ssea.prepare.structure
represents modules, genes, and markers in a
hierarchical structure.
ssea.prepare.structure(moddata, gendata, nmods, ngens)
ssea.prepare.structure(moddata, gendata, nmods, ngens)
moddata |
module data (indexed identities) |
gendata |
mapping data (indexed identities) |
nmods |
number of modules |
ngens |
number of all genes |
ssea.prepare.structure
finds member genes of modules and marker
lists of genes; counts distinct markers within each module and obtains
module's density from this count; at the end, it returns hierarchically
structured results.
res |
a data list with the following components: modulesizes: module size modulelengths: module length moduledensities: module densities genesizes: gene sizes of module module2genesgene: list of module gene2loci: markers lists of genes |
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
job.msea <- list() job.msea$label <- "hdlc" job.msea$folder <- "Results" job.msea$genfile <- system.file("extdata", "genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$marfile <- system.file("extdata", "marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$modfile <- system.file("extdata", "modules.mousecoexpr.liver.human.txt", package="Mergeomics") job.msea$inffile <- system.file("extdata", "coexpr.info.txt", package="Mergeomics") job.msea$nperm <- 100 ## default value is 20000 ## ssea.start() process takes long time while merging the genes sharing high ## amounts of markers (e.g. loci). it is performed with full module list in ## the vignettes. Here, we used a very subset of the module list (1st 10 mods ## from the original module file) and we collected the corresponding genes ## and markers belonging to these modules: moddata <- tool.read(job.msea$modfile) gendata <- tool.read(job.msea$genfile) mardata <- tool.read(job.msea$marfile) mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] gendata <- gendata[which(!is.na(match(gendata$GENE, unique(moddata$GENE)))),] mardata <- mardata[which(!is.na(match(mardata$MARKER, unique(gendata$MARKER)))),] ## save this to a temporary file and set its path as new job.msea$modfile: tool.save(moddata, "subsetof.coexpr.modules.txt") tool.save(gendata, "subsetof.genfile.txt") tool.save(mardata, "subsetof.marfile.txt") job.msea$modfile <- "subsetof.coexpr.modules.txt" job.msea$genfile <- "subsetof.genfile.txt" job.msea$marfile <- "subsetof.marfile.txt" ## run ssea.start() and prepare for this small set: (due to the huge runtime) job.msea <- ssea.start(job.msea) ## Remove extremely big or small modules: st <- tool.aggregate(job.msea$moddata$MODULE) mask <- which((st$lengths >= job.msea$mingenes) & (st$lengths <= job.msea$maxgenes)) pos <- match(job.msea$moddata$MODULE, st$labels[mask]) job.msea$moddata <- job.msea$moddata[which(pos > 0),] ## Construct hierarchical representation for modules, genes, and markers: ngens <- length(job.msea$genes) nmods <- length(job.msea$modules) db <- ssea.prepare.structure(job.msea$moddata, job.msea$gendata, nmods, ngens) ## Remove the temporary files used for the test: file.remove("subsetof.coexpr.modules.txt") file.remove("subsetof.genfile.txt") file.remove("subsetof.marfile.txt")
job.msea <- list() job.msea$label <- "hdlc" job.msea$folder <- "Results" job.msea$genfile <- system.file("extdata", "genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$marfile <- system.file("extdata", "marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$modfile <- system.file("extdata", "modules.mousecoexpr.liver.human.txt", package="Mergeomics") job.msea$inffile <- system.file("extdata", "coexpr.info.txt", package="Mergeomics") job.msea$nperm <- 100 ## default value is 20000 ## ssea.start() process takes long time while merging the genes sharing high ## amounts of markers (e.g. loci). it is performed with full module list in ## the vignettes. Here, we used a very subset of the module list (1st 10 mods ## from the original module file) and we collected the corresponding genes ## and markers belonging to these modules: moddata <- tool.read(job.msea$modfile) gendata <- tool.read(job.msea$genfile) mardata <- tool.read(job.msea$marfile) mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] gendata <- gendata[which(!is.na(match(gendata$GENE, unique(moddata$GENE)))),] mardata <- mardata[which(!is.na(match(mardata$MARKER, unique(gendata$MARKER)))),] ## save this to a temporary file and set its path as new job.msea$modfile: tool.save(moddata, "subsetof.coexpr.modules.txt") tool.save(gendata, "subsetof.genfile.txt") tool.save(mardata, "subsetof.marfile.txt") job.msea$modfile <- "subsetof.coexpr.modules.txt" job.msea$genfile <- "subsetof.genfile.txt" job.msea$marfile <- "subsetof.marfile.txt" ## run ssea.start() and prepare for this small set: (due to the huge runtime) job.msea <- ssea.start(job.msea) ## Remove extremely big or small modules: st <- tool.aggregate(job.msea$moddata$MODULE) mask <- which((st$lengths >= job.msea$mingenes) & (st$lengths <= job.msea$maxgenes)) pos <- match(job.msea$moddata$MODULE, st$labels[mask]) job.msea$moddata <- job.msea$moddata[which(pos > 0),] ## Construct hierarchical representation for modules, genes, and markers: ngens <- length(job.msea$genes) nmods <- length(job.msea$modules) db <- ssea.prepare.structure(job.msea$moddata, job.msea$gendata, nmods, ngens) ## Remove the temporary files used for the test: file.remove("subsetof.coexpr.modules.txt") file.remove("subsetof.genfile.txt") file.remove("subsetof.marfile.txt")
Creates identities (for modules, member genes, and loci) to start MSEA process.
ssea.start(plan)
ssea.start(plan)
plan |
a data list with the following components: label: unique identifier for the analysis folder: output folder for results modfile: path to module file (cols: MODULE GENE) marfile: path to marker file (cols: MARKER VALUE) genfile: path to gene file (cols: GENE LOCUS) inffile: path to module info file (cols: MODULE DESCR) seed: seed for random number generator permtype: gene for gene-level, locus for marker-level nperm: max number of random permutations mingenes: min number of genes per module (after merging) maxgenes: max number of genes per module quantiles: cutoffs for test statistic maxoverlap: max overlap allowed between genes |
ssea.start
imports modules, genes-locus mapping, and locus values;
removes the genes with no locus values from the list, find identities for
modules, genes, loci components, and excludes missing data and factorize
identities for these components.
job |
a data list with the following components: modules: module identities as characters. genes: gene identities as characters. loci: marker identities as characters. moddata: preprocessed module data (indexed identities) modinfo: description of the modules. gendata: preprocessed mapping data between genes and markers (indexed identities). locdata: preprocessed marker data (indexed identities) geneclusters: genes with shared markers. |
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
ssea.analyze
, ssea.control
,
ssea.finish
, ssea.prepare
,
ssea2kda
job.msea <- list() job.msea$label <- "hdlc" job.msea$folder <- "Results" job.msea$genfile <- system.file("extdata", "genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$marfile <- system.file("extdata", "marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$modfile <- system.file("extdata", "modules.mousecoexpr.liver.human.txt", package="Mergeomics") job.msea$inffile <- system.file("extdata", "coexpr.info.txt", package="Mergeomics") job.msea$nperm <- 100 ## default value is 20000 ## ssea.start() process takes long time while merging the genes sharing high ## amounts of markers (e.g. loci). it is performed with full module list in ## the vignettes. Here, we used a very subset of the module list (1st 10 mods ## from the original module file) and we collected the corresponding genes ## and markers belonging to these modules: moddata <- tool.read(job.msea$modfile) gendata <- tool.read(job.msea$genfile) mardata <- tool.read(job.msea$marfile) mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] gendata <- gendata[which(!is.na(match(gendata$GENE, unique(moddata$GENE)))),] mardata <- mardata[which(!is.na(match(mardata$MARKER, unique(gendata$MARKER)))),] ## save this to a temporary file and set its path as new job.msea$modfile: tool.save(moddata, "subsetof.coexpr.modules.txt") tool.save(gendata, "subsetof.genfile.txt") tool.save(mardata, "subsetof.marfile.txt") job.msea$modfile <- "subsetof.coexpr.modules.txt" job.msea$genfile <- "subsetof.genfile.txt" job.msea$marfile <- "subsetof.marfile.txt" ## run ssea.start() for this small set:(due to the huge runtime we did not use ## full sets of modules, genes, and markers) job.msea <- ssea.start(job.msea) ## Remove the temporary files used for the test: file.remove("subsetof.coexpr.modules.txt") file.remove("subsetof.genfile.txt") file.remove("subsetof.marfile.txt")
job.msea <- list() job.msea$label <- "hdlc" job.msea$folder <- "Results" job.msea$genfile <- system.file("extdata", "genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$marfile <- system.file("extdata", "marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$modfile <- system.file("extdata", "modules.mousecoexpr.liver.human.txt", package="Mergeomics") job.msea$inffile <- system.file("extdata", "coexpr.info.txt", package="Mergeomics") job.msea$nperm <- 100 ## default value is 20000 ## ssea.start() process takes long time while merging the genes sharing high ## amounts of markers (e.g. loci). it is performed with full module list in ## the vignettes. Here, we used a very subset of the module list (1st 10 mods ## from the original module file) and we collected the corresponding genes ## and markers belonging to these modules: moddata <- tool.read(job.msea$modfile) gendata <- tool.read(job.msea$genfile) mardata <- tool.read(job.msea$marfile) mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] gendata <- gendata[which(!is.na(match(gendata$GENE, unique(moddata$GENE)))),] mardata <- mardata[which(!is.na(match(mardata$MARKER, unique(gendata$MARKER)))),] ## save this to a temporary file and set its path as new job.msea$modfile: tool.save(moddata, "subsetof.coexpr.modules.txt") tool.save(gendata, "subsetof.genfile.txt") tool.save(mardata, "subsetof.marfile.txt") job.msea$modfile <- "subsetof.coexpr.modules.txt" job.msea$genfile <- "subsetof.genfile.txt" job.msea$marfile <- "subsetof.marfile.txt" ## run ssea.start() for this small set:(due to the huge runtime we did not use ## full sets of modules, genes, and markers) job.msea <- ssea.start(job.msea) ## Remove the temporary files used for the test: file.remove("subsetof.coexpr.modules.txt") file.remove("subsetof.genfile.txt") file.remove("subsetof.marfile.txt")
ssea.start.configure
checks the input parameter before MSEA process
starts and assigns default values for non-exist fields of the input data
object.
ssea.start.configure(plan)
ssea.start.configure(plan)
plan |
a data list with the following components: label: unique identifier for the analysis folder: output folder for results modfile: path to module file (cols: MODULE GENE) marfile: path to marker file (cols: MARKER VALUE) genfile: path to gene file (cols: GENE MARKER) inffile: path to module info file (cols: MODULE DESCR) seed: seed for random number generator permtype: gene for gene-level, marker for marker-level nperm: max number of random permutations mingenes: min number of genes per module (after merging) maxgenes: max number of genes per module quantiles: cutoffs for test statistic maxoverlap: max overlap allowed between genes |
plan |
a data list including checked and assigned values (to non-existing fields) of the input parameter: label: unique identifier for the analysis folder: output folder for results modfile: path to module file (cols: MODULE GENE) marfile: path to marker file (cols: MARKER VALUE) genfile: path to gene file (cols: GENE MARKER) inffile: path to module info file (cols: MODULE DESCR) seed: seed for random number generator permtype: gene for gene-level, marker for marker-level nperm: max number of random permutations mingenes: min number of genes per module (after merging) maxgenes: max number of genes per module quantiles: cutoffs for test statistic maxoverlap: max overlap allowed between genes |
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
job.msea <- list() job.msea$label <- "hdlc" job.msea$folder <- "Results" job.msea$genfile <- system.file("extdata", "genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$marfile <- system.file("extdata", "marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$modfile <- system.file("extdata", "modules.mousecoexpr.liver.human.txt", package="Mergeomics") job.msea$inffile <- system.file("extdata", "coexpr.info.txt", package="Mergeomics") job.msea$nperm <- 100 ## default value is 20000 ## ssea.start() process takes long time while merging the genes sharing high ## amounts of markers (e.g. loci). it is performed with full module list in ## the vignettes. Here, we used a very subset of the module list (1st 10 mods ## from the original module file) and we collected the corresponding genes ## and markers belonging to these modules: moddata <- tool.read(job.msea$modfile) gendata <- tool.read(job.msea$genfile) mardata <- tool.read(job.msea$marfile) mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] gendata <- gendata[which(!is.na(match(gendata$GENE, unique(moddata$GENE)))),] mardata <- mardata[which(!is.na(match(mardata$MARKER, unique(gendata$MARKER)))),] ## save this to a temporary file and set its path as new job.msea$modfile: tool.save(moddata, "subsetof.coexpr.modules.txt") tool.save(gendata, "subsetof.genfile.txt") tool.save(mardata, "subsetof.marfile.txt") job.msea$modfile <- "subsetof.coexpr.modules.txt" job.msea$genfile <- "subsetof.genfile.txt" job.msea$marfile <- "subsetof.marfile.txt" ## run ssea.start() for this small set:(due to the huge runtime we did not use ## full sets of modules, genes, and markers) job.msea <- ssea.start.configure(job.msea) ## Remove the temporary files used for the test: file.remove("subsetof.coexpr.modules.txt") file.remove("subsetof.genfile.txt") file.remove("subsetof.marfile.txt")
job.msea <- list() job.msea$label <- "hdlc" job.msea$folder <- "Results" job.msea$genfile <- system.file("extdata", "genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$marfile <- system.file("extdata", "marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$modfile <- system.file("extdata", "modules.mousecoexpr.liver.human.txt", package="Mergeomics") job.msea$inffile <- system.file("extdata", "coexpr.info.txt", package="Mergeomics") job.msea$nperm <- 100 ## default value is 20000 ## ssea.start() process takes long time while merging the genes sharing high ## amounts of markers (e.g. loci). it is performed with full module list in ## the vignettes. Here, we used a very subset of the module list (1st 10 mods ## from the original module file) and we collected the corresponding genes ## and markers belonging to these modules: moddata <- tool.read(job.msea$modfile) gendata <- tool.read(job.msea$genfile) mardata <- tool.read(job.msea$marfile) mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] gendata <- gendata[which(!is.na(match(gendata$GENE, unique(moddata$GENE)))),] mardata <- mardata[which(!is.na(match(mardata$MARKER, unique(gendata$MARKER)))),] ## save this to a temporary file and set its path as new job.msea$modfile: tool.save(moddata, "subsetof.coexpr.modules.txt") tool.save(gendata, "subsetof.genfile.txt") tool.save(mardata, "subsetof.marfile.txt") job.msea$modfile <- "subsetof.coexpr.modules.txt" job.msea$genfile <- "subsetof.genfile.txt" job.msea$marfile <- "subsetof.marfile.txt" ## run ssea.start() for this small set:(due to the huge runtime we did not use ## full sets of modules, genes, and markers) job.msea <- ssea.start.configure(job.msea) ## Remove the temporary files used for the test: file.remove("subsetof.coexpr.modules.txt") file.remove("subsetof.genfile.txt") file.remove("subsetof.marfile.txt")
ssea.start.identify
finds matching identities for the given
variable name. It searches the members of dat
among the members of
labels
with respect to the varname
attribute, returns the
matching rows of the dat
.
ssea.start.identify(dat, varname, labels)
ssea.start.identify(dat, varname, labels)
dat |
data list (source) of the identities that will be searched. e.g. the information after merging of overlapped genes (containing shared markers) |
varname |
search and match will be performed with respect to which attribute (MODULE or NODE or MARKER) |
labels |
the place, where the identities of |
res |
matched rows of |
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
## Converts identities (either module names or gene names) to the indices aa<- data.frame(MODULE=c("Mod1", "Mod1", "Mod2", "Mod2", "Mod3"), NODE=c("GeneA", "GeneC", "GeneB", "GeneC", "GeneA")) aa bb <- ssea.start.identify(aa, "MODULE", c("Mod1")) bb cc <- ssea.start.identify(aa, "MODULE", c("Mod1", "Mod3")) cc dd <- ssea.start.identify(aa, "NODE", c("GeneA")) dd
## Converts identities (either module names or gene names) to the indices aa<- data.frame(MODULE=c("Mod1", "Mod1", "Mod2", "Mod2", "Mod3"), NODE=c("GeneA", "GeneC", "GeneB", "GeneC", "GeneA")) aa bb <- ssea.start.identify(aa, "MODULE", c("Mod1")) bb cc <- ssea.start.identify(aa, "MODULE", c("Mod1", "Mod3")) cc dd <- ssea.start.identify(aa, "NODE", c("GeneA")) dd
ssea.start.relabel
updates gene symbols within the modules after
merging overlapping genes that contain shared markers
ssea.start.relabel(dat, grp)
ssea.start.relabel(dat, grp)
dat |
module data corresponding gene sets |
grp |
gene data that is needed to be relabeled after the merging process of the overlapping markers |
dat |
relabeled module data of |
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
job.msea <- list() job.msea$label <- "hdlc" job.msea$folder <- "Results" job.msea$genfile <- system.file("extdata", "genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$marfile <- system.file("extdata", "marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$modfile <- system.file("extdata", "modules.mousecoexpr.liver.human.txt", package="Mergeomics") job.msea$inffile <- system.file("extdata", "coexpr.info.txt", package="Mergeomics") job.msea$nperm <- 100 ## default value is 20000 ## ssea.start() process takes long time while merging the genes sharing high ## amounts of markers (e.g. loci). it is performed with full module list in ## the vignettes. Here, we used a very subset of the module list (1st 10 mods ## from the original module file) and we collected the corresponding genes ## and markers belonging to these modules: moddata <- tool.read(job.msea$modfile) gendata <- tool.read(job.msea$genfile) mardata <- tool.read(job.msea$marfile) mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] gendata <- gendata[which(!is.na(match(gendata$GENE, unique(moddata$GENE)))),] mardata <- mardata[which(!is.na(match(mardata$MARKER, unique(gendata$MARKER)))),] ## save this to a temporary file and set its path as new job.msea$modfile: tool.save(moddata, "subsetof.coexpr.modules.txt") tool.save(gendata, "subsetof.genfile.txt") tool.save(mardata, "subsetof.marfile.txt") job.msea$modfile <- "subsetof.coexpr.modules.txt" job.msea$genfile <- "subsetof.genfile.txt" job.msea$marfile <- "subsetof.marfile.txt" ## run ssea.start() for this small set:(due to the huge runtime we did not use ## full sets of modules, genes, and markers) job.msea <- ssea.start.configure(job.msea) ## Import moddata: moddata <- tool.read(job.msea$modfile, c("MODULE", "GENE")) moddata <- unique(na.omit(moddata)) ## Import marker (e.g. locus) values: locdata <- tool.read(job.msea$locfile, c("LOCUS", "VALUE")) locdata$VALUE <- as.double(locdata$VALUE) rows <- which(0*(locdata$VALUE) == 0) locdata <- unique(na.omit(locdata[rows,])) locdata_ex <- locdata names(locdata_ex) <- c("MARKER","VALUE") ## Import mapping data between genes and markers: gendata <- tool.read(job.msea$genfile, c("GENE", "LOCUS")) gendata <- unique(na.omit(gendata)) gendata_ex <- gendata names(gendata_ex) <- c("GENE","MARKER") ## Remove genes with no marker values: pos <- match(gendata$LOCUS, locdata$LOCUS) gendata <- gendata[which(pos > 0),] ## Merge overlapping genes: gendata <- tool.coalesce(items=gendata$LOCUS, groups=gendata$GENE, rcutoff=job.msea$maxoverlap) job.msea$geneclusters <- gendata[,c("CLUSTER","GROUPS")] job.msea$geneclusters <- unique(job.msea$geneclusters) ## Update gene symbols after merging the overlapping ones: moddata <- ssea.start.relabel(moddata, gendata) gendata <- unique(gendata[,c("GROUPS", "ITEM")]) names(gendata) <- c("GENE", "LOCUS") ## Remove the temporary files used for the test: file.remove("subsetof.coexpr.modules.txt") file.remove("subsetof.genfile.txt") file.remove("subsetof.marfile.txt")
job.msea <- list() job.msea$label <- "hdlc" job.msea$folder <- "Results" job.msea$genfile <- system.file("extdata", "genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$marfile <- system.file("extdata", "marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$modfile <- system.file("extdata", "modules.mousecoexpr.liver.human.txt", package="Mergeomics") job.msea$inffile <- system.file("extdata", "coexpr.info.txt", package="Mergeomics") job.msea$nperm <- 100 ## default value is 20000 ## ssea.start() process takes long time while merging the genes sharing high ## amounts of markers (e.g. loci). it is performed with full module list in ## the vignettes. Here, we used a very subset of the module list (1st 10 mods ## from the original module file) and we collected the corresponding genes ## and markers belonging to these modules: moddata <- tool.read(job.msea$modfile) gendata <- tool.read(job.msea$genfile) mardata <- tool.read(job.msea$marfile) mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] gendata <- gendata[which(!is.na(match(gendata$GENE, unique(moddata$GENE)))),] mardata <- mardata[which(!is.na(match(mardata$MARKER, unique(gendata$MARKER)))),] ## save this to a temporary file and set its path as new job.msea$modfile: tool.save(moddata, "subsetof.coexpr.modules.txt") tool.save(gendata, "subsetof.genfile.txt") tool.save(mardata, "subsetof.marfile.txt") job.msea$modfile <- "subsetof.coexpr.modules.txt" job.msea$genfile <- "subsetof.genfile.txt" job.msea$marfile <- "subsetof.marfile.txt" ## run ssea.start() for this small set:(due to the huge runtime we did not use ## full sets of modules, genes, and markers) job.msea <- ssea.start.configure(job.msea) ## Import moddata: moddata <- tool.read(job.msea$modfile, c("MODULE", "GENE")) moddata <- unique(na.omit(moddata)) ## Import marker (e.g. locus) values: locdata <- tool.read(job.msea$locfile, c("LOCUS", "VALUE")) locdata$VALUE <- as.double(locdata$VALUE) rows <- which(0*(locdata$VALUE) == 0) locdata <- unique(na.omit(locdata[rows,])) locdata_ex <- locdata names(locdata_ex) <- c("MARKER","VALUE") ## Import mapping data between genes and markers: gendata <- tool.read(job.msea$genfile, c("GENE", "LOCUS")) gendata <- unique(na.omit(gendata)) gendata_ex <- gendata names(gendata_ex) <- c("GENE","MARKER") ## Remove genes with no marker values: pos <- match(gendata$LOCUS, locdata$LOCUS) gendata <- gendata[which(pos > 0),] ## Merge overlapping genes: gendata <- tool.coalesce(items=gendata$LOCUS, groups=gendata$GENE, rcutoff=job.msea$maxoverlap) job.msea$geneclusters <- gendata[,c("CLUSTER","GROUPS")] job.msea$geneclusters <- unique(job.msea$geneclusters) ## Update gene symbols after merging the overlapping ones: moddata <- ssea.start.relabel(moddata, gendata) gendata <- unique(gendata[,c("GROUPS", "ITEM")]) names(gendata) <- c("GENE", "LOCUS") ## Remove the temporary files used for the test: file.remove("subsetof.coexpr.modules.txt") file.remove("subsetof.genfile.txt") file.remove("subsetof.marfile.txt")
ssea2kda
forwards MSEA results to weighted key driver analysis (wKDA)
from the first MSEA results, merges the overlapped modules according to
a given overlapping ratio to obtain a relatively independent module set,
apply a second MSEA on the merged modules (supersets), updates and saves
the second MSEA results properly for wKDA process.
ssea2kda(job, symbols = NULL, rmax = NULL, min.module.count=NULL)
ssea2kda(job, symbols = NULL, rmax = NULL, min.module.count=NULL)
job |
data list including the organized results of MSEA process. It has following components: results: updated information of modules including: number of distinct member genes (NGENES), number of distinct member markers (NLOCI), ratio of distinct to non-distinct markers (DENSITY), false discovery rates (FDR). generesults: updated gene-specific information including: indexed gene identity (GENE), gene size (NLOCI), unadjusted enrichment score (SCORE), marker with max value (LOCUS), marker value (VALUE). |
symbols |
dataframe for translating gene symbols |
rmax |
maximum allowed overlap ratio between gene sets |
min.module.count |
minimum number of the pathways to be taken from the MSEA results to merge.
Default value is NULL. If it is not specified, all the pathways having MSEA-FDR
value less than 0.25 will be considered for merging if they are overlapping
with the given ratio |
ssea2kda
gets genes and top markers from input files, selects
significant modules with respect to ordered p-values, gets identities of
modules and genes, merges and trims the overlapping modules (either having FDR
less than 0.25 or top min.module.count
modules when ranked up to the
P-values), obtains enrichment scores for merged modules, translates the gene
symbols (between species) if needed, and finally saves the module, gene, node,
and marker information into relevant output files.
plan |
an updated data list with the following components: label: unique identifier for the analysis. parent: parent folder for results. modfile: path of module file (columns: MODULE NODE). inffile: path of module information file (columns: MODULE DESCR). nodfile: path of node selection file (columns: NODE). |
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
job.msea <- list() job.msea$label <- "hdlc" job.msea$folder <- "Results" job.msea$genfile <- system.file("extdata", "genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$marfile <- system.file("extdata", "marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$modfile <- system.file("extdata", "modules.mousecoexpr.liver.human.txt", package="Mergeomics") job.msea$inffile <- system.file("extdata", "coexpr.info.txt", package="Mergeomics") job.msea$nperm <- 100 ## default value is 20000 ## ssea.start() process takes long time while merging the genes sharing high ## amounts of markers (e.g. loci). it is performed with full module list in ## the vignettes. Here, we used a very subset of the module list (1st 10 mods ## from the original module file) and we collected the corresponding genes ## and markers belonging to these modules: moddata <- tool.read(job.msea$modfile) gendata <- tool.read(job.msea$genfile) mardata <- tool.read(job.msea$marfile) mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] gendata <- gendata[which(!is.na(match(gendata$GENE, unique(moddata$GENE)))),] mardata <- mardata[which(!is.na(match(mardata$MARKER, unique(gendata$MARKER)))),] ## save this to a temporary file and set its path as new job.msea$modfile: tool.save(moddata, "subsetof.coexpr.modules.txt") tool.save(gendata, "subsetof.genfile.txt") tool.save(mardata, "subsetof.marfile.txt") job.msea$modfile <- "subsetof.coexpr.modules.txt" job.msea$genfile <- "subsetof.genfile.txt" job.msea$marfile <- "subsetof.marfile.txt" ## run ssea.start() and prepare for this small set: (due to the huge runtime) job.msea <- ssea.start(job.msea) job.msea <- ssea.prepare(job.msea) job.msea <- ssea.control(job.msea) job.msea <- ssea.analyze(job.msea) job.msea <- ssea.finish(job.msea) ############### Create intermediary datasets for KDA ################## syms <- tool.read(system.file("extdata", "symbols.txt", package="Mergeomics")) syms <- syms[,c("HUMAN", "MOUSE")] names(syms) <- c("FROM", "TO") job.ssea2kda <- ssea2kda(job.msea, symbols=syms) ## Remove the temporary files used for the test: file.remove("subsetof.coexpr.modules.txt") file.remove("subsetof.genfile.txt") file.remove("subsetof.marfile.txt")
job.msea <- list() job.msea$label <- "hdlc" job.msea$folder <- "Results" job.msea$genfile <- system.file("extdata", "genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$marfile <- system.file("extdata", "marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$modfile <- system.file("extdata", "modules.mousecoexpr.liver.human.txt", package="Mergeomics") job.msea$inffile <- system.file("extdata", "coexpr.info.txt", package="Mergeomics") job.msea$nperm <- 100 ## default value is 20000 ## ssea.start() process takes long time while merging the genes sharing high ## amounts of markers (e.g. loci). it is performed with full module list in ## the vignettes. Here, we used a very subset of the module list (1st 10 mods ## from the original module file) and we collected the corresponding genes ## and markers belonging to these modules: moddata <- tool.read(job.msea$modfile) gendata <- tool.read(job.msea$genfile) mardata <- tool.read(job.msea$marfile) mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] gendata <- gendata[which(!is.na(match(gendata$GENE, unique(moddata$GENE)))),] mardata <- mardata[which(!is.na(match(mardata$MARKER, unique(gendata$MARKER)))),] ## save this to a temporary file and set its path as new job.msea$modfile: tool.save(moddata, "subsetof.coexpr.modules.txt") tool.save(gendata, "subsetof.genfile.txt") tool.save(mardata, "subsetof.marfile.txt") job.msea$modfile <- "subsetof.coexpr.modules.txt" job.msea$genfile <- "subsetof.genfile.txt" job.msea$marfile <- "subsetof.marfile.txt" ## run ssea.start() and prepare for this small set: (due to the huge runtime) job.msea <- ssea.start(job.msea) job.msea <- ssea.prepare(job.msea) job.msea <- ssea.control(job.msea) job.msea <- ssea.analyze(job.msea) job.msea <- ssea.finish(job.msea) ############### Create intermediary datasets for KDA ################## syms <- tool.read(system.file("extdata", "symbols.txt", package="Mergeomics")) syms <- syms[,c("HUMAN", "MOUSE")] names(syms) <- c("FROM", "TO") job.ssea2kda <- ssea2kda(job.msea, symbols=syms) ## Remove the temporary files used for the test: file.remove("subsetof.coexpr.modules.txt") file.remove("subsetof.genfile.txt") file.remove("subsetof.marfile.txt")
ssea2kda.analyze
performs a second MSEA for the updated modules
after merging the highly overlapped modules (according to a specified
overlapping ratio)
ssea2kda.analyze(job, moddata)
ssea2kda.analyze(job, moddata)
job |
the data list including the information of modules, genes, and
markers, and also involving the database that uses indexed identities for
modules, genes, and markers |
moddata |
merged modules including MODULE, GENE, and OVERLAP information |
ssea2kda.analyze
constructs new gene lists for merged modules and
updates module database including module sizes, lengths, densities (based
on marker sizes), and gene list. Then, it runs a second MSEA and returns
the enrichment scores of the updated module database.
res |
data list including updated information (after merge) such as, enrichment scores of merged modules |
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
job.msea <- list() job.msea$label <- "hdlc" job.msea$folder <- "Results" job.msea$genfile <- system.file("extdata", "genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$marfile <- system.file("extdata", "marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$modfile <- system.file("extdata", "modules.mousecoexpr.liver.human.txt", package="Mergeomics") job.msea$inffile <- system.file("extdata", "coexpr.info.txt", package="Mergeomics") job.msea$nperm <- 100 ## default value is 20000 ## ssea.start() process takes long time while merging the genes sharing high ## amounts of markers (e.g. loci). it is performed with full module list in ## the vignettes. Here, we used a very subset of the module list (1st 10 mods ## from the original module file) and we collected the corresponding genes ## and markers belonging to these modules: moddata <- tool.read(job.msea$modfile) gendata <- tool.read(job.msea$genfile) mardata <- tool.read(job.msea$marfile) mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] gendata <- gendata[which(!is.na(match(gendata$GENE, unique(moddata$GENE)))),] mardata <- mardata[which(!is.na(match(mardata$MARKER, unique(gendata$MARKER)))),] ## save this to a temporary file and set its path as new job.msea$modfile: tool.save(moddata, "subsetof.coexpr.modules.txt") tool.save(gendata, "subsetof.genfile.txt") tool.save(mardata, "subsetof.marfile.txt") job.msea$modfile <- "subsetof.coexpr.modules.txt" job.msea$genfile <- "subsetof.genfile.txt" job.msea$marfile <- "subsetof.marfile.txt" ## run ssea.start() and prepare for this small set: (due to the huge runtime) job.msea <- ssea.start(job.msea) job.msea <- ssea.prepare(job.msea) job.msea <- ssea.control(job.msea) job.msea <- ssea.analyze(job.msea) job.msea <- ssea.finish(job.msea) ############### Create intermediary datasets for KDA ################## syms <- tool.read(system.file("extdata", "symbols.txt", package="Mergeomics")) syms <- syms[,c("HUMAN", "MOUSE")] names(syms) <- c("FROM", "TO") ## Collect genes and top markers from original files. noddata <- ssea2kda.import(job.msea$genfile, job.msea$locfile) ## Select candidate modules (significant ones according to FDRs) res <- job.msea$results res <- res[order(res$P),] rows <- which(res$FDR < 0.25) res <- res[rows,] ## Collect member genes. moddata <- job.msea$moddata pos <- match(moddata$MODULE, res$MODULE) moddata <- moddata[which(pos > 0),] ## Restore original identities. modinfo <- job.msea$modinfo modinfo$MODULE <- job.msea$modules[modinfo$MODULE] moddata$MODULE <- job.msea$modules[moddata$MODULE] moddata$GENE <- job.msea$genes[moddata$GENE] ## Merge and trim overlapping modules. moddata$OVERLAP <- moddata$MODULE rmax <- 0.33 moddata <- tool.coalesce(items=moddata$GENE, groups=moddata$MODULE, rcutoff=rmax) moddata$MODULE <- moddata$CLUSTER moddata$GENE <- moddata$ITEM moddata$OVERLAP <- moddata$GROUPS moddata <- moddata[,c("MODULE", "GENE", "OVERLAP")] moddata <- unique(moddata) ## Calculate enrichment scores for merged modules. tmp <- unique(moddata[,c("MODULE","OVERLAP")]) res <- ssea2kda.analyze(job.msea, moddata) ## Remove the temporary files used for the test: file.remove("subsetof.coexpr.modules.txt") file.remove("subsetof.genfile.txt") file.remove("subsetof.marfile.txt")
job.msea <- list() job.msea$label <- "hdlc" job.msea$folder <- "Results" job.msea$genfile <- system.file("extdata", "genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$marfile <- system.file("extdata", "marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$modfile <- system.file("extdata", "modules.mousecoexpr.liver.human.txt", package="Mergeomics") job.msea$inffile <- system.file("extdata", "coexpr.info.txt", package="Mergeomics") job.msea$nperm <- 100 ## default value is 20000 ## ssea.start() process takes long time while merging the genes sharing high ## amounts of markers (e.g. loci). it is performed with full module list in ## the vignettes. Here, we used a very subset of the module list (1st 10 mods ## from the original module file) and we collected the corresponding genes ## and markers belonging to these modules: moddata <- tool.read(job.msea$modfile) gendata <- tool.read(job.msea$genfile) mardata <- tool.read(job.msea$marfile) mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] gendata <- gendata[which(!is.na(match(gendata$GENE, unique(moddata$GENE)))),] mardata <- mardata[which(!is.na(match(mardata$MARKER, unique(gendata$MARKER)))),] ## save this to a temporary file and set its path as new job.msea$modfile: tool.save(moddata, "subsetof.coexpr.modules.txt") tool.save(gendata, "subsetof.genfile.txt") tool.save(mardata, "subsetof.marfile.txt") job.msea$modfile <- "subsetof.coexpr.modules.txt" job.msea$genfile <- "subsetof.genfile.txt" job.msea$marfile <- "subsetof.marfile.txt" ## run ssea.start() and prepare for this small set: (due to the huge runtime) job.msea <- ssea.start(job.msea) job.msea <- ssea.prepare(job.msea) job.msea <- ssea.control(job.msea) job.msea <- ssea.analyze(job.msea) job.msea <- ssea.finish(job.msea) ############### Create intermediary datasets for KDA ################## syms <- tool.read(system.file("extdata", "symbols.txt", package="Mergeomics")) syms <- syms[,c("HUMAN", "MOUSE")] names(syms) <- c("FROM", "TO") ## Collect genes and top markers from original files. noddata <- ssea2kda.import(job.msea$genfile, job.msea$locfile) ## Select candidate modules (significant ones according to FDRs) res <- job.msea$results res <- res[order(res$P),] rows <- which(res$FDR < 0.25) res <- res[rows,] ## Collect member genes. moddata <- job.msea$moddata pos <- match(moddata$MODULE, res$MODULE) moddata <- moddata[which(pos > 0),] ## Restore original identities. modinfo <- job.msea$modinfo modinfo$MODULE <- job.msea$modules[modinfo$MODULE] moddata$MODULE <- job.msea$modules[moddata$MODULE] moddata$GENE <- job.msea$genes[moddata$GENE] ## Merge and trim overlapping modules. moddata$OVERLAP <- moddata$MODULE rmax <- 0.33 moddata <- tool.coalesce(items=moddata$GENE, groups=moddata$MODULE, rcutoff=rmax) moddata$MODULE <- moddata$CLUSTER moddata$GENE <- moddata$ITEM moddata$OVERLAP <- moddata$GROUPS moddata <- moddata[,c("MODULE", "GENE", "OVERLAP")] moddata <- unique(moddata) ## Calculate enrichment scores for merged modules. tmp <- unique(moddata[,c("MODULE","OVERLAP")]) res <- ssea2kda.analyze(job.msea, moddata) ## Remove the temporary files used for the test: file.remove("subsetof.coexpr.modules.txt") file.remove("subsetof.genfile.txt") file.remove("subsetof.marfile.txt")
ssea2kda.import
gets marker values from marker information file and
mapping data (between genes and markers) from gene file, merges the imported
information, and returns the merged data for top significant markers.
ssea2kda.import(genfile, locfile)
ssea2kda.import(genfile, locfile)
genfile |
gene information file |
locfile |
marker information file |
data |
merged gene and corresponding marker data for top significant markers |
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
job.msea <- list() job.msea$label <- "hdlc" job.msea$folder <- "Results" job.msea$genfile <- system.file("extdata", "genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$marfile <- system.file("extdata", "marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$modfile <- system.file("extdata", "modules.mousecoexpr.liver.human.txt", package="Mergeomics") job.msea$inffile <- system.file("extdata", "coexpr.info.txt", package="Mergeomics") job.msea$nperm <- 100 ## default value is 20000 ## ssea.start() process takes long time while merging the genes sharing high ## amounts of markers (e.g. loci). it is performed with full module list in ## the vignettes. Here, we used a very subset of the module list (1st 10 mods ## from the original module file) and we collected the corresponding genes ## and markers belonging to these modules: moddata <- tool.read(job.msea$modfile) gendata <- tool.read(job.msea$genfile) mardata <- tool.read(job.msea$marfile) mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] gendata <- gendata[which(!is.na(match(gendata$GENE, unique(moddata$GENE)))),] mardata <- mardata[which(!is.na(match(mardata$MARKER, unique(gendata$MARKER)))),] ## save this to a temporary file and set its path as new job.msea$modfile: tool.save(moddata, "subsetof.coexpr.modules.txt") tool.save(gendata, "subsetof.genfile.txt") tool.save(mardata, "subsetof.marfile.txt") job.msea$modfile <- "subsetof.coexpr.modules.txt" job.msea$genfile <- "subsetof.genfile.txt" job.msea$marfile <- "subsetof.marfile.txt" ## run ssea.start() and prepare for this small set: (due to the huge runtime) job.msea <- ssea.start(job.msea) job.msea <- ssea.prepare(job.msea) job.msea <- ssea.control(job.msea) job.msea <- ssea.analyze(job.msea) job.msea <- ssea.finish(job.msea) ############### Create intermediary datasets for KDA ################## syms <- tool.read(system.file("extdata", "symbols.txt", package="Mergeomics")) syms <- syms[,c("HUMAN", "MOUSE")] names(syms) <- c("FROM", "TO") ## Collect genes and top markers from original files. noddata <- ssea2kda.import(job.msea$genfile, job.msea$locfile) ## Remove the temporary files used for the test: file.remove("subsetof.coexpr.modules.txt") file.remove("subsetof.genfile.txt") file.remove("subsetof.marfile.txt")
job.msea <- list() job.msea$label <- "hdlc" job.msea$folder <- "Results" job.msea$genfile <- system.file("extdata", "genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$marfile <- system.file("extdata", "marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$modfile <- system.file("extdata", "modules.mousecoexpr.liver.human.txt", package="Mergeomics") job.msea$inffile <- system.file("extdata", "coexpr.info.txt", package="Mergeomics") job.msea$nperm <- 100 ## default value is 20000 ## ssea.start() process takes long time while merging the genes sharing high ## amounts of markers (e.g. loci). it is performed with full module list in ## the vignettes. Here, we used a very subset of the module list (1st 10 mods ## from the original module file) and we collected the corresponding genes ## and markers belonging to these modules: moddata <- tool.read(job.msea$modfile) gendata <- tool.read(job.msea$genfile) mardata <- tool.read(job.msea$marfile) mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] gendata <- gendata[which(!is.na(match(gendata$GENE, unique(moddata$GENE)))),] mardata <- mardata[which(!is.na(match(mardata$MARKER, unique(gendata$MARKER)))),] ## save this to a temporary file and set its path as new job.msea$modfile: tool.save(moddata, "subsetof.coexpr.modules.txt") tool.save(gendata, "subsetof.genfile.txt") tool.save(mardata, "subsetof.marfile.txt") job.msea$modfile <- "subsetof.coexpr.modules.txt" job.msea$genfile <- "subsetof.genfile.txt" job.msea$marfile <- "subsetof.marfile.txt" ## run ssea.start() and prepare for this small set: (due to the huge runtime) job.msea <- ssea.start(job.msea) job.msea <- ssea.prepare(job.msea) job.msea <- ssea.control(job.msea) job.msea <- ssea.analyze(job.msea) job.msea <- ssea.finish(job.msea) ############### Create intermediary datasets for KDA ################## syms <- tool.read(system.file("extdata", "symbols.txt", package="Mergeomics")) syms <- syms[,c("HUMAN", "MOUSE")] names(syms) <- c("FROM", "TO") ## Collect genes and top markers from original files. noddata <- ssea2kda.import(job.msea$genfile, job.msea$locfile) ## Remove the temporary files used for the test: file.remove("subsetof.coexpr.modules.txt") file.remove("subsetof.genfile.txt") file.remove("subsetof.marfile.txt")
tool.aggregate
aggregates the entries with respect to the given
feature. It first finds raw indices (either genes or markers), then sorts
them, and finds the blocks (segments) of identical entries.
tool.aggregate(entries, limit = 1)
tool.aggregate(entries, limit = 1)
entries |
an array that will be sorted and aggregated within blocks |
limit |
minimum block size to be included |
res |
a data list with the following components: labels: shared values within blocks lengths: numbers of entries in blocks blocks: integer arrays of entry positions within blocks ranks: entry positions included in blocks |
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
aa <- data.frame(MODULE=c("Mod1", "Mod1", "Mod2", "Mod2", "Mod3"), GENE=c("GeneA", "GeneC", "GeneB", "GeneC", "GeneA")) ## aggregate according to the module names: bb <- tool.aggregate(aa$MODULE) bb ## aggregate according to the gene names: cc <- tool.aggregate(aa$GENE) cc
aa <- data.frame(MODULE=c("Mod1", "Mod1", "Mod2", "Mod2", "Mod3"), GENE=c("GeneA", "GeneC", "GeneB", "GeneC", "GeneA")) ## aggregate according to the module names: bb <- tool.aggregate(aa$MODULE) bb ## aggregate according to the gene names: cc <- tool.aggregate(aa$GENE) cc
tool.cluster
performs agglomerative hierarchical clustering for
nodes (genes)
tool.cluster(edges, cutoff = NULL)
tool.cluster(edges, cutoff = NULL)
edges |
edge (weight) list among two group, whose overlapping information (overlapping ratio based on shared entries of two groups, number of members in both group) had been assesed previously |
cutoff |
cutting level of dendrogram for hierarchical clustering |
tool.cluster
takes overlapping information between two groups,
produces distance matrix based on 1-strength(overlap) ratio between
two groups, and apply agglomerative hierarchical clustering based on the
distance matrix.
res |
data list including clustering results: CLUSTER: cluster label NODE: item (node) name |
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
## read the coexpr module file as an example: moddata <- tool.read(system.file("extdata", "modules.mousecoexpr.liver.human.txt", package="Mergeomics")) ## let us cluster the first 10 modules in the module file: mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] ## Find clusters. rmax = 0.33 edges <- tool.overlap(items=moddata$GENE, groups=moddata$MODULE) clustdat <- tool.cluster(edges, cutoff=rmax) nclust <- length(unique(clustdat$CLUSTER)) nnodes <- length(unique(clustdat$NODE))
## read the coexpr module file as an example: moddata <- tool.read(system.file("extdata", "modules.mousecoexpr.liver.human.txt", package="Mergeomics")) ## let us cluster the first 10 modules in the module file: mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] ## Find clusters. rmax = 0.33 edges <- tool.overlap(items=moddata$GENE, groups=moddata$MODULE) clustdat <- tool.cluster(edges, cutoff=rmax) nclust <- length(unique(clustdat$CLUSTER)) nnodes <- length(unique(clustdat$NODE))
tool.cluster.static
takes dendrogram (clustering tree) and its
cutting height; then, obtains cluster labels for the nodes of the tree.
tool.cluster.static(dendro, hlim)
tool.cluster.static(dendro, hlim)
dendro |
dendrogram (tree) |
hlim |
cutting height of the dendrogram |
clusters |
cluster labels of the components after static clustering |
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
set.seed(1) ## assume that we have a dataset including several samples ## with distinct features dataset <- matrix(rnorm(20), ncol=5) ## 4 samples with 5 features ## Find the distances between each sample pair to cluster them d <- dist(dataset, method = "euclidean", upper=TRUE, diag=TRUE) tree <- hclust(d) ## Height cutoff. hlim <- max(tree$height) ## Find clusters. clusters <- tool.cluster.static(tree, hlim)
set.seed(1) ## assume that we have a dataset including several samples ## with distinct features dataset <- matrix(rnorm(20), ncol=5) ## 4 samples with 5 features ## Find the distances between each sample pair to cluster them d <- dist(dataset, method = "euclidean", upper=TRUE, diag=TRUE) tree <- hclust(d) ## Height cutoff. hlim <- max(tree$height) ## Find clusters. clusters <- tool.cluster.static(tree, hlim)
tool.coalesce
is utilized to merge and trim either overlapping
modules (containing shared genes) or overlapping genes (containing
shared markers)
tool.coalesce(items, groups, rcutoff = 0, ncore = NULL)
tool.coalesce(items, groups, rcutoff = 0, ncore = NULL)
items |
array of item identities |
groups |
array of group identities for items |
rcutoff |
maximum overlap not coalesced |
ncore |
minimum number of items required for trimming |
a data list with the following components:
CLUSTER |
cluster identities after merging and triming (a subset of group identities) |
ITEM |
item identities |
GROUPS |
comma separated overlapping group identities |
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
## read the coexpr module file as an example: moddata <- tool.read(system.file("extdata", "modules.mousecoexpr.liver.human.txt", package="Mergeomics")) ## let us find the overlapping ratio between first 10 modules in the file: ## to merge overlapping modules first collect member genes: mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] ## Merge and trim overlapping modules.(max allowed overlap ratio is 0.33) rmax <- 0.33 moddata$OVERLAP <- moddata$MODULE moddata <- tool.coalesce(items=moddata$GENE, groups=moddata$MODULE, rcutoff=rmax) moddata$MODULE <- moddata$CLUSTER moddata$GENE <- moddata$ITEM moddata$OVERLAP <- moddata$GROUPS moddata <- moddata[,c("MODULE", "GENE", "OVERLAP")] moddata <- unique(moddata)
## read the coexpr module file as an example: moddata <- tool.read(system.file("extdata", "modules.mousecoexpr.liver.human.txt", package="Mergeomics")) ## let us find the overlapping ratio between first 10 modules in the file: ## to merge overlapping modules first collect member genes: mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] ## Merge and trim overlapping modules.(max allowed overlap ratio is 0.33) rmax <- 0.33 moddata$OVERLAP <- moddata$MODULE moddata <- tool.coalesce(items=moddata$GENE, groups=moddata$MODULE, rcutoff=rmax) moddata$MODULE <- moddata$CLUSTER moddata$GENE <- moddata$ITEM moddata$OVERLAP <- moddata$GROUPS moddata <- moddata[,c("MODULE", "GENE", "OVERLAP")] moddata <- unique(moddata)
tool.coalesce.exec
searchs overlaps, iteratively merges and trims
overlapping clusters (by using tool.coalesce.find
and
tool.coalesce.merge
, respectively) until no more overlap is
available, and assigns representative label for the merged clusters.
tool.coalesce.exec(items, groups, rcutoff, ncore)
tool.coalesce.exec(items, groups, rcutoff, ncore)
items |
array of item identities |
groups |
array of group identities for items |
rcutoff |
maximum overlap not coalesced |
ncore |
minimum number of items required for trimming |
a data list with the following components:
CLUSTER |
cluster identities after merging and triming (a subset of group identities) |
GROUPS |
comma separated overlapping group identities |
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
## Generate item and group labels for 100 items: ## Assume that unique gene number (items) is 60: members <- 1:100 ## will be updated modules <- 1:100 ## will be updated set.seed(1) for (i in 1:10){ ## each time pick 10 items (genes) from 60 unique item labels members[(i*10-9):(i*10)] <- sample(60,10) } ## Assume that unique group labels is 30: for (i in 1:10){ ## each time pick 10 items (genes) from 30 unique group labels modules[(i*10-9):(i*10)] <- sample(30, 10) } rcutoff <- 0.33 ncore <- length(members) ## Find and trim clusters after iteratively merging the overlapping ones: res <- tool.coalesce.exec(members, modules, rcutoff, ncore)
## Generate item and group labels for 100 items: ## Assume that unique gene number (items) is 60: members <- 1:100 ## will be updated modules <- 1:100 ## will be updated set.seed(1) for (i in 1:10){ ## each time pick 10 items (genes) from 60 unique item labels members[(i*10-9):(i*10)] <- sample(60,10) } ## Assume that unique group labels is 30: for (i in 1:10){ ## each time pick 10 items (genes) from 30 unique group labels modules[(i*10-9):(i*10)] <- sample(30, 10) } rcutoff <- 0.33 ncore <- length(members) ## Find and trim clusters after iteratively merging the overlapping ones: res <- tool.coalesce.exec(members, modules, rcutoff, ncore)
tool.coalesce.find
finds overlapped clusters of the given
data
according to a given overlapping ratio by using
tool.overlap
and tool.cluster
, respectively.
tool.coalesce.find(data, rmax)
tool.coalesce.find(data, rmax)
data |
a list including ITEM identities and their GROUP identities |
rmax |
maximum overlap not coalesced |
data list including clustering results and following components:
CLUSTER |
cluster label |
NODE |
item (node) name |
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
## Generate item and group labels for 100 items: ## Assume that unique gene number (items) is 60: members <- 1:100 ## will be updated modules <- 1:100 ## will be updated set.seed(1) for (i in 1:10){ ## each time pick 10 items (genes) from 60 unique item labels members[(i*10-9):(i*10)] <- sample(60,10) } ## Assume that unique group labels is 30: for (i in 1:10){ ## each time pick 10 items (genes) from 30 unique group labels modules[(i*10-9):(i*10)] <- sample(30, 10) } rcutoff <- 0.33 ncore <- length(members) ## Default output. res <- data.frame(CLUSTER=modules, GROUPS=modules, ITEM=members, stringsAsFactors=FALSE) ## Iterative merging and trimming. res$COUNT <- 0.0 while(TRUE) { clust <- tool.coalesce.find(res, rcutoff) if(is.null(clust)) break res <- tool.coalesce.merge(clust, ncore) }
## Generate item and group labels for 100 items: ## Assume that unique gene number (items) is 60: members <- 1:100 ## will be updated modules <- 1:100 ## will be updated set.seed(1) for (i in 1:10){ ## each time pick 10 items (genes) from 60 unique item labels members[(i*10-9):(i*10)] <- sample(60,10) } ## Assume that unique group labels is 30: for (i in 1:10){ ## each time pick 10 items (genes) from 30 unique group labels modules[(i*10-9):(i*10)] <- sample(30, 10) } rcutoff <- 0.33 ncore <- length(members) ## Default output. res <- data.frame(CLUSTER=modules, GROUPS=modules, ITEM=members, stringsAsFactors=FALSE) ## Iterative merging and trimming. res$COUNT <- 0.0 while(TRUE) { clust <- tool.coalesce.find(res, rcutoff) if(is.null(clust)) break res <- tool.coalesce.merge(clust, ncore) }
tool.coalesce.merge
determines combinable groups and trims clusters
by removing rarest items.
tool.coalesce.merge(data, ncore)
tool.coalesce.merge(data, ncore)
data |
data list including following components: CLUSTER: cluster label NODE: item (node) name |
ncore |
minimum number of items required for trimming |
res |
data list including GROUPS, ITEMs, and their hit COUNTs |
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
## Generate item and group labels for 100 items: ## Assume that unique gene number (items) is 60: members <- 1:100 ## will be updated modules <- 1:100 ## will be updated set.seed(1) for (i in 1:10){ ## each time pick 10 items (genes) from 60 unique item labels members[(i*10-9):(i*10)] <- sample(60,10) } ## Assume that unique group labels is 30: for (i in 1:10){ ## each time pick 10 items (genes) from 30 unique group labels modules[(i*10-9):(i*10)] <- sample(30, 10) } rcutoff <- 0.33 ncore <- length(members) ## Default output. res <- data.frame(CLUSTER=modules, GROUPS=modules, ITEM=members, stringsAsFactors=FALSE) ## Iterative merging and trimming. res$COUNT <- 0.0 while(TRUE) { clust <- tool.coalesce.find(res, rcutoff) if(is.null(clust)) break res <- tool.coalesce.merge(clust, ncore) }
## Generate item and group labels for 100 items: ## Assume that unique gene number (items) is 60: members <- 1:100 ## will be updated modules <- 1:100 ## will be updated set.seed(1) for (i in 1:10){ ## each time pick 10 items (genes) from 60 unique item labels members[(i*10-9):(i*10)] <- sample(60,10) } ## Assume that unique group labels is 30: for (i in 1:10){ ## each time pick 10 items (genes) from 30 unique group labels modules[(i*10-9):(i*10)] <- sample(30, 10) } rcutoff <- 0.33 ncore <- length(members) ## Default output. res <- data.frame(CLUSTER=modules, GROUPS=modules, ITEM=members, stringsAsFactors=FALSE) ## Iterative merging and trimming. res$COUNT <- 0.0 while(TRUE) { clust <- tool.coalesce.find(res, rcutoff) if(is.null(clust)) break res <- tool.coalesce.merge(clust, ncore) }
tool.fdr
estimates FDRs for modules as another module statistic.
tool.fdr(p, f = NULL)
tool.fdr(p, f = NULL)
p |
p-values of modules |
f |
pre-defined threshold for FDR |
FDRs of modules can be obtained by using either empirical method or Benjamini and Hochberg method.
res |
data list including the estimated false discovery rates of modules |
Ville-Petteri Makinen
tool.fdr.empirical
, tool.fdr.bh
## let us assume we have a set of pvalues ## and would like to find FDR values: set.seed(1) p <- abs(rnorm(10))*1e-2 FDRs <- tool.fdr(p) ## default method is Benjamini Hochberg
## let us assume we have a set of pvalues ## and would like to find FDR values: set.seed(1) p <- abs(rnorm(10))*1e-2 FDRs <- tool.fdr(p) ## default method is Benjamini Hochberg
tool.fdr.bh
estimates FDRs of modules by using Benjamini and
Hochberg method.
tool.fdr.bh(p)
tool.fdr.bh(p)
p |
p-values of modules |
res |
data list including the estimated false discovery rates of modules |
Ville-Petteri Makinen
## let us assume we have a set of pvalues ## and would like to find FDR values: set.seed(1) p <- abs(rnorm(10))*1e-2 FDRs <- tool.fdr.bh(p) ## the default method is already Benjamini Hochberg
## let us assume we have a set of pvalues ## and would like to find FDR values: set.seed(1) p <- abs(rnorm(10))*1e-2 FDRs <- tool.fdr.bh(p) ## the default method is already Benjamini Hochberg
tool.fdr.empirical
estimates empirical FDR for modules
tool.fdr.empirical(p, f0)
tool.fdr.empirical(p, f0)
p |
p-values of modules |
f0 |
pre-defined threshold for FDR |
res |
data list including the estimated false discovery rates of modules |
Ville-Petteri Makinen
## let us assume we have a set of pvalues ## and would like to find FDR values: set.seed(1) p <- abs(rnorm(10))*1e-2 f = 0.05 ## pre-defined threshold for FDR FDRs <- tool.fdr.empirical(p, f)
## let us assume we have a set of pvalues ## and would like to find FDR values: set.seed(1) p <- abs(rnorm(10))*1e-2 f = 0.05 ## pre-defined threshold for FDR FDRs <- tool.fdr.empirical(p, f)
tool.graph
translates an edge list including TAIL, HEAD and WEIGHT
information into a graph representation-adapted data list. It also
provides in-degree and out-degree statistics for nodes.
tool.graph(edges)
tool.graph(edges)
edges |
a data frame with three columns TAIL, HEAD and WEIGHT |
a datalist including following components:
nodes |
N-element array of node names |
tails |
K-element array of node indices |
heads |
K-element array of node indices |
weights |
K-element array of edge weights |
tail2edge |
N-element list of adjacent edge indices |
head2edge |
N-element list of adjacent edge indices |
outstats |
N-row data frame of out-degree node statistics |
instats |
N-row data frame of in-degree node statistics |
stats |
N-row data frame of node statistics |
Ville-Petteri Makinen
job.kda <- list() job.kda$label<-"HDLC" ## parent folder for results job.kda$folder<-"Results" ## Input a network ## columns: TAIL HEAD WEIGHT job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt", package="Mergeomics") ## module file: job.kda$modfile<- system.file("extdata","mergedModules.txt", package="Mergeomics") ## "0" means we do not consider edge weights while 1 is opposite. job.kda$edgefactor<-0.0 ## The searching depth for the KDA job.kda$depth<-1 ## 0 means we do not consider the directions of the regulatory interactions ## while 1 is opposite. job.kda$direction <- 1 job.kda$nperm <- 20 # the default value is 2000, use 20 for unit tests ## kda.start() process takes long time while seeking hubs in the given net ## Here, we used a very small subset of the module list (1st 10 mods ## from the original module file): moddata <- tool.read(job.kda$modfile) mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] ## save this to a temporary file and set its path as new job.kda$modfile: tool.save(moddata, "subsetof.supersets.txt") job.kda$modfile <- "subsetof.supersets.txt" job.kda <- kda.configure(job.kda) ## Import data for weighted key driver analysis: ## Import topology. edgdata <- kda.start.edges(job.kda) ## Create an indexed graph structure. job.kda$graph <- tool.graph(edgdata) ## Remove the temporary files used for the test: file.remove("subsetof.supersets.txt")
job.kda <- list() job.kda$label<-"HDLC" ## parent folder for results job.kda$folder<-"Results" ## Input a network ## columns: TAIL HEAD WEIGHT job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt", package="Mergeomics") ## module file: job.kda$modfile<- system.file("extdata","mergedModules.txt", package="Mergeomics") ## "0" means we do not consider edge weights while 1 is opposite. job.kda$edgefactor<-0.0 ## The searching depth for the KDA job.kda$depth<-1 ## 0 means we do not consider the directions of the regulatory interactions ## while 1 is opposite. job.kda$direction <- 1 job.kda$nperm <- 20 # the default value is 2000, use 20 for unit tests ## kda.start() process takes long time while seeking hubs in the given net ## Here, we used a very small subset of the module list (1st 10 mods ## from the original module file): moddata <- tool.read(job.kda$modfile) mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] ## save this to a temporary file and set its path as new job.kda$modfile: tool.save(moddata, "subsetof.supersets.txt") job.kda$modfile <- "subsetof.supersets.txt" job.kda <- kda.configure(job.kda) ## Import data for weighted key driver analysis: ## Import topology. edgdata <- kda.start.edges(job.kda) ## Create an indexed graph structure. job.kda$graph <- tool.graph(edgdata) ## Remove the temporary files used for the test: file.remove("subsetof.supersets.txt")
tool.graph.degree
finds in-degree and out-degree statistics of the
network by using edge lists of the nodes. It also obtains the strenghts
of the degrees by using edge weights.
tool.graph.degree(node2edge, weights)
tool.graph.degree(node2edge, weights)
node2edge |
edge list of each node |
weights |
strengths of the edges |
Degree of a node means number of the neighbors belonging to that node. Hence, out-degree statistics are applicable for tail nodes; while in-degree statistics are applicable for the heads.
res |
a data list including degree and its strength for each node |
Ville-Petteri Makinen
job.kda <- list() job.kda$label<-"HDLC" ## parent folder for results job.kda$folder<-"Results" ## Input a network ## columns: TAIL HEAD WEIGHT job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt", package="Mergeomics") ## module file: job.kda$modfile<- system.file("extdata","mergedModules.txt", package="Mergeomics") ## "0" means we do not consider edge weights while 1 is opposite. job.kda$edgefactor<-0.0 ## The searching depth for the KDA job.kda$depth<-1 ## 0 means we do not consider the directions of the regulatory interactions ## while 1 is opposite. job.kda$direction <- 1 job.kda$nperm <- 20 # the default value is 2000, use 20 for unit tests ## kda.start() process takes long time while seeking hubs in the given net ## Here, we used a very small subset of the module list (1st 10 mods ## from the original module file): moddata <- tool.read(job.kda$modfile) mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] ## save this to a temporary file and set its path as new job.kda$modfile: tool.save(moddata, "subsetof.supersets.txt") job.kda$modfile <- "subsetof.supersets.txt" job.kda <- kda.configure(job.kda) ## Import data for weighted key driver analysis: ## Import topology. edges <- kda.start.edges(job.kda) ## Create an indexed graph structure. tails <- as.character(edges$TAIL) heads <- as.character(edges$HEAD) wdata <- as.double(edges$WEIGHT) nedges <- length(tails) # Create factorized representation. labels <- as.character(c(tails, heads)) labels <- as.factor(labels) labelsT <- as.integer(labels[1:nedges]) labelsH <- as.integer(labels[(nedges+1):(2*nedges)]) # Create edge lists. nodnames <- levels(labels) nnodes <- length(nodnames) elistT <- tool.graph.list(labelsT, nnodes) elistH <- tool.graph.list(labelsH, nnodes) ## Collect edge degree stats: res <- list() res$nodes <- as.character(nodnames) res$outstats <- tool.graph.degree(elistT, wdata) ## out degrees res$instats <- tool.graph.degree(elistH, wdata) ## in degrees res$stats <- (res$outstats + res$instats) ## Remove the temporary files used for the test: file.remove("subsetof.supersets.txt")
job.kda <- list() job.kda$label<-"HDLC" ## parent folder for results job.kda$folder<-"Results" ## Input a network ## columns: TAIL HEAD WEIGHT job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt", package="Mergeomics") ## module file: job.kda$modfile<- system.file("extdata","mergedModules.txt", package="Mergeomics") ## "0" means we do not consider edge weights while 1 is opposite. job.kda$edgefactor<-0.0 ## The searching depth for the KDA job.kda$depth<-1 ## 0 means we do not consider the directions of the regulatory interactions ## while 1 is opposite. job.kda$direction <- 1 job.kda$nperm <- 20 # the default value is 2000, use 20 for unit tests ## kda.start() process takes long time while seeking hubs in the given net ## Here, we used a very small subset of the module list (1st 10 mods ## from the original module file): moddata <- tool.read(job.kda$modfile) mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] ## save this to a temporary file and set its path as new job.kda$modfile: tool.save(moddata, "subsetof.supersets.txt") job.kda$modfile <- "subsetof.supersets.txt" job.kda <- kda.configure(job.kda) ## Import data for weighted key driver analysis: ## Import topology. edges <- kda.start.edges(job.kda) ## Create an indexed graph structure. tails <- as.character(edges$TAIL) heads <- as.character(edges$HEAD) wdata <- as.double(edges$WEIGHT) nedges <- length(tails) # Create factorized representation. labels <- as.character(c(tails, heads)) labels <- as.factor(labels) labelsT <- as.integer(labels[1:nedges]) labelsH <- as.integer(labels[(nedges+1):(2*nedges)]) # Create edge lists. nodnames <- levels(labels) nnodes <- length(nodnames) elistT <- tool.graph.list(labelsT, nnodes) elistH <- tool.graph.list(labelsH, nnodes) ## Collect edge degree stats: res <- list() res$nodes <- as.character(nodnames) res$outstats <- tool.graph.degree(elistT, wdata) ## out degrees res$instats <- tool.graph.degree(elistH, wdata) ## in degrees res$stats <- (res$outstats + res$instats) ## Remove the temporary files used for the test: file.remove("subsetof.supersets.txt")
tool.graph.list
finds and returns the edge list of each node for
both tail and head node lists.
tool.graph.list(entries, nnodes)
tool.graph.list(entries, nnodes)
entries |
either tail nodes list or head nodes list |
nnodes |
total number of all nodes including both tails and heads |
groups |
a data list including edge list of each node |
Ville-Petteri Makinen
job.kda <- list() job.kda$label<-"HDLC" ## parent folder for results job.kda$folder<-"Results" ## Input a network ## columns: TAIL HEAD WEIGHT job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt", package="Mergeomics") ## module file: job.kda$modfile<- system.file("extdata","mergedModules.txt", package="Mergeomics") ## "0" means we do not consider edge weights while 1 is opposite. job.kda$edgefactor<-0.0 ## The searching depth for the KDA job.kda$depth<-1 ## 0 means we do not consider the directions of the regulatory interactions ## while 1 is opposite. job.kda$direction <- 1 job.kda$nperm <- 20 # the default value is 2000, use 20 for unit tests ## kda.start() process takes long time while seeking hubs in the given net ## Here, we used a very small subset of the module list (1st 10 mods ## from the original module file): moddata <- tool.read(job.kda$modfile) mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] ## save this to a temporary file and set its path as new job.kda$modfile: tool.save(moddata, "subsetof.supersets.txt") job.kda$modfile <- "subsetof.supersets.txt" job.kda <- kda.configure(job.kda) ## Import data for weighted key driver analysis: ## Import topology. edges <- kda.start.edges(job.kda) ## Create an indexed graph structure. tails <- as.character(edges$TAIL) heads <- as.character(edges$HEAD) wdata <- as.double(edges$WEIGHT) nedges <- length(tails) # Create factorized representation. labels <- as.character(c(tails, heads)) labels <- as.factor(labels) labelsT <- as.integer(labels[1:nedges]) labelsH <- as.integer(labels[(nedges+1):(2*nedges)]) # Create edge lists. nodnames <- levels(labels) nnodes <- length(nodnames) elistT <- tool.graph.list(labelsT, nnodes) elistH <- tool.graph.list(labelsH, nnodes) ## Remove the temporary files used for the test: file.remove("subsetof.supersets.txt")
job.kda <- list() job.kda$label<-"HDLC" ## parent folder for results job.kda$folder<-"Results" ## Input a network ## columns: TAIL HEAD WEIGHT job.kda$netfile<-system.file("extdata","network.mouseliver.mouse.txt", package="Mergeomics") ## module file: job.kda$modfile<- system.file("extdata","mergedModules.txt", package="Mergeomics") ## "0" means we do not consider edge weights while 1 is opposite. job.kda$edgefactor<-0.0 ## The searching depth for the KDA job.kda$depth<-1 ## 0 means we do not consider the directions of the regulatory interactions ## while 1 is opposite. job.kda$direction <- 1 job.kda$nperm <- 20 # the default value is 2000, use 20 for unit tests ## kda.start() process takes long time while seeking hubs in the given net ## Here, we used a very small subset of the module list (1st 10 mods ## from the original module file): moddata <- tool.read(job.kda$modfile) mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] ## save this to a temporary file and set its path as new job.kda$modfile: tool.save(moddata, "subsetof.supersets.txt") job.kda$modfile <- "subsetof.supersets.txt" job.kda <- kda.configure(job.kda) ## Import data for weighted key driver analysis: ## Import topology. edges <- kda.start.edges(job.kda) ## Create an indexed graph structure. tails <- as.character(edges$TAIL) heads <- as.character(edges$HEAD) wdata <- as.double(edges$WEIGHT) nedges <- length(tails) # Create factorized representation. labels <- as.character(c(tails, heads)) labels <- as.factor(labels) labelsT <- as.integer(labels[1:nedges]) labelsH <- as.integer(labels[(nedges+1):(2*nedges)]) # Create edge lists. nodnames <- levels(labels) nnodes <- length(nodnames) elistT <- tool.graph.list(labelsT, nnodes) elistH <- tool.graph.list(labelsH, nnodes) ## Remove the temporary files used for the test: file.remove("subsetof.supersets.txt")
tool.metap
returns the meta p-values of given datasets with
multiple p-values.
tool.metap(datasets, idcolumn, pcolumn, weights = NULL)
tool.metap(datasets, idcolumn, pcolumn, weights = NULL)
datasets |
data list, whose meta p-values will be obtained |
idcolumn |
column number of the datasets that includes identities |
pcolumn |
column number of the datasets that includes p-values |
weights |
weight list of the data list |
res |
data list including identities and meta p-values of the
given |
Ville-Petteri Makinen
set.seed(1) ## let us assume we have p-values for the coexpr modules obtained from ## distinct analyses by using different gene-marker mapping sets (e.g. eQTLs ## from diff tissues) and we would like to make a meta-analysis for ## these multiple Pvalues of the modules: datasets=list() ## we have 3 datasets and 3 diff result sets datasets[[1]] <- data.frame(MODULE=c("Mod1", "Mod2", "Mod3", "Mod4"), P=c(rnorm(4))) datasets[[2]] <- data.frame(MODULE=c("Mod1", "Mod2", "Mod3", "Mod4"), P=c(rnorm(4))) datasets[[3]] <- data.frame(MODULE=c("Mod1", "Mod2", "Mod3", "Mod4"), P=c(rnorm(4))) idcolumn <- "MODULE" ## identifiers of the modules are in the 1st col pcolumn <- "P" ## p values of the modules are in the 2nd col tool.metap(datasets, idcolumn, pcolumn)
set.seed(1) ## let us assume we have p-values for the coexpr modules obtained from ## distinct analyses by using different gene-marker mapping sets (e.g. eQTLs ## from diff tissues) and we would like to make a meta-analysis for ## these multiple Pvalues of the modules: datasets=list() ## we have 3 datasets and 3 diff result sets datasets[[1]] <- data.frame(MODULE=c("Mod1", "Mod2", "Mod3", "Mod4"), P=c(rnorm(4))) datasets[[2]] <- data.frame(MODULE=c("Mod1", "Mod2", "Mod3", "Mod4"), P=c(rnorm(4))) datasets[[3]] <- data.frame(MODULE=c("Mod1", "Mod2", "Mod3", "Mod4"), P=c(rnorm(4))) idcolumn <- "MODULE" ## identifiers of the modules are in the 1st col pcolumn <- "P" ## p values of the modules are in the 2nd col tool.metap(datasets, idcolumn, pcolumn)
To estimate the both pre-liminary and final p-values,
tool.normalize
normalizes the given data, x
, based on
Gaussian distribution defined by prm
if it is provided. If
prm
is not provided tool.normalize
utilizes the mean and
std dev of x
.
tool.normalize(x, prm = NULL, inverse = FALSE)
tool.normalize(x, prm = NULL, inverse = FALSE)
x |
data that is aimed to be normalized and produced by a simulation process |
prm |
normalization will take place according to the specified
Gaussian distribution parameters, i.e. mean and std dev. If it is not
specified, Gaussian statistics of |
inverse |
specifies whether the normalization takes place in reverse order |
prm |
transformed (normalized) parameters for either enrichment score or p-values |
Ville-Petteri Makinen
set.seed(1) ## let us assume we have a set of simulated enrichment scores and ## one observed score x <- rnorm(10) ## obtained from 1st permutation test obs <- rnorm(1) ## Estimate preliminary P-value: param <- tool.normalize(x) z <- tool.normalize(obs, param) p <- pnorm(z, lower.tail=FALSE) ## Estimate final P-value. y <- rnorm(10) ## obtained from 2nd permutation test param <- tool.normalize(c(x, y)) z <- tool.normalize(obs, param) p <- pnorm(z, lower.tail=FALSE) p <- max(p, .Machine$double.xmin)
set.seed(1) ## let us assume we have a set of simulated enrichment scores and ## one observed score x <- rnorm(10) ## obtained from 1st permutation test obs <- rnorm(1) ## Estimate preliminary P-value: param <- tool.normalize(x) z <- tool.normalize(obs, param) p <- pnorm(z, lower.tail=FALSE) ## Estimate final P-value. y <- rnorm(10) ## obtained from 2nd permutation test param <- tool.normalize(c(x, y)) z <- tool.normalize(obs, param) p <- pnorm(z, lower.tail=FALSE) p <- max(p, .Machine$double.xmin)
tool.normalize.quality
checks transformation quality by using
Kolmogorov-Smirnov Test. It seeks the best log transform parameter within
the previously specified upper and lower limits, and applies the log
transform with the best log parameter.
tool.normalize.quality(g, z)
tool.normalize.quality(g, z)
g |
normalization quality control will take place according to the
normal distribution parameters defined by |
z |
transformed data, i.e. either p-value or enrichment score |
res |
statitics of Kolmogorov-Smirnov Test result obtained for
|
Ville-Petteri Makinen
set.seed(1) ## let us assume we have a set of normalized scores: z <- abs(rnorm(10)) ## it should be positive and at least 10 length-vector z <- z/median(z) ## Find the best log transform. gamma <- optim(par=1.0, fn=tool.normalize.quality, gr=NULL, z, lower=-9, upper=9, control=list(reltol=1e-3)) ## After finding the best log transform, apply transform: z <- log(exp(gamma$par)*z + 1.0)
set.seed(1) ## let us assume we have a set of normalized scores: z <- abs(rnorm(10)) ## it should be positive and at least 10 length-vector z <- z/median(z) ## Find the best log transform. gamma <- optim(par=1.0, fn=tool.normalize.quality, gr=NULL, z, lower=-9, upper=9, control=list(reltol=1e-3)) ## After finding the best log transform, apply transform: z <- log(exp(gamma$par)*z + 1.0)
tool.overlap
checks each pair of blocks, finds number of shared
items, and obtains significance values of the sharings for block pairs.
tool.overlap(items, groups, nbackground = NULL)
tool.overlap(items, groups, nbackground = NULL)
items |
array of item identities |
groups |
array of group identities for items |
nbackground |
total number of items |
a data list including following components
A |
group name |
B |
group name |
POSa |
group name rank |
POSb |
group name rank |
Na |
group A size |
Nb |
group B size |
Nab |
shared items |
R |
overlap ratio |
F |
fold change to null expectation |
P |
overlap P-value (Fisher's test) |
Ville-Petteri Makinen
## read the coexpr module file as an example: moddata <- tool.read(system.file("extdata", "modules.mousecoexpr.liver.human.txt", package="Mergeomics")) ## let us find the overlapping ratio between two modules: ## pick the first and last modules: mod.names <- unique(moddata$MODULE)[c(1,length(unique(moddata$MODULE)))] if(length(mod.names) > 0){ modA.members <- moddata[which(moddata$MODULE == mod.names[1]),] modB.members <- moddata[which(moddata$MODULE == mod.names[2]),] } mod.pool <- rbind(modA.members, modB.members) overlap.stats <- tool.overlap(mod.pool[,2], mod.pool[,1])
## read the coexpr module file as an example: moddata <- tool.read(system.file("extdata", "modules.mousecoexpr.liver.human.txt", package="Mergeomics")) ## let us find the overlapping ratio between two modules: ## pick the first and last modules: mod.names <- unique(moddata$MODULE)[c(1,length(unique(moddata$MODULE)))] if(length(mod.names) > 0){ modA.members <- moddata[which(moddata$MODULE == mod.names[1]),] modB.members <- moddata[which(moddata$MODULE == mod.names[2]),] } mod.pool <- rbind(modA.members, modB.members) overlap.stats <- tool.overlap(mod.pool[,2], mod.pool[,1])
tool.read
reads contents of given input file.
tool.read(file, vars = NULL)
tool.read(file, vars = NULL)
file |
file name to be read |
vars |
if we want to read particular attributes (columns) from the
input file, we need to specify names of these attributes within list
|
All lines with NAs are excluded.
dat |
data frame including content of the given file. If |
Ville-Petteri Makinen
## read the network file as an example: net.info <- tool.read(system.file("extdata","network.mouseliver.mouse.txt", package="Mergeomics")) dim(net.info) names(net.info)
## read the network file as an example: net.info <- tool.read(system.file("extdata","network.mouseliver.mouse.txt", package="Mergeomics")) dim(net.info) names(net.info)
tool.save
saves a given data frame into a specified file within a
given directory.
tool.save(frame, file, directory = NULL, verbose = TRUE, compression = FALSE)
tool.save(frame, file, directory = NULL, verbose = TRUE, compression = FALSE)
frame |
data frame to be saved into file |
file |
name of the output file to be written |
directory |
path of the directory for the file |
verbose |
specifies whether the information about file saving process will be displayed to user |
compression |
specifies whether the file is compressed while saving. Applicable for only UNIX-family systems with gzip. |
fname |
returns file name with full path |
Compression only works on UNIX-family systems with gzip.
Ville-Petteri Makinen
aa<- data.frame(MODULE=c("Mod1", "Mod1", "Mod2", "Mod2", "Mod3"), NODE=c("GeneA", "GeneC", "GeneB", "GeneC", "GeneA")) tool.save(aa, "aa.save.txt") file.remove("aa.save.txt") ## delete the saved file!
aa<- data.frame(MODULE=c("Mod1", "Mod1", "Mod2", "Mod2", "Mod3"), NODE=c("GeneA", "GeneC", "GeneB", "GeneC", "GeneA")) tool.save(aa, "aa.save.txt") file.remove("aa.save.txt") ## delete the saved file!
tool.subgraph
finds the sub-network, i.e. neighborhood, for a given
seed node list with a specified depth. It also provides graph statistics
(degrees and strengths) for seed nodes.
tool.subgraph(graph, seeds, depth = 1, direction = 0)
tool.subgraph(graph, seeds, depth = 1, direction = 0)
graph |
a datalist including following components: nodes: N-element array of node names tails: K-element array of node indices heads: K-element array of node indices weights: K-element array of edge weights tail2edge: N-element list of adjacent edge indices head2edge: N-element list of adjacent edge indices outstats: N-row data frame of out-degree node statistics instats: N-row data frame of in-degree node statistics stats: N-row data frame of node statistics |
seeds |
list of seed node names |
depth |
the maximum number of links to connect neighbors |
direction |
sets the directionality: use a negative value for dowstream, positive for upstream or zero for undirected |
a data list including following components:
RANK |
indices of neighboring nodes (including seeds) |
LEVEL |
number of edges away from seed |
STRENG |
sum of adjacent edge weights within neighborhood |
DEGREE |
number of adjacent edges within neighborhood |
Ville-Petteri Makinen
data(job_kda_analyze) ## take the first node in the graph as the seed, find its neighborhood: center.node = job.kda$graph$nodes[1] subnet = tool.subgraph(job.kda$graph, center.node, depth=1, direction=0)
data(job_kda_analyze) ## take the first node in the graph as the seed, find its neighborhood: center.node = job.kda$graph$nodes[1] subnet = tool.subgraph(job.kda$graph, center.node, depth=1, direction=0)
tool.subgraph.find
finds the edge lists between given seed nodes
and their neighbors
tool.subgraph.find(seeds, edgemap, heads, visited)
tool.subgraph.find(seeds, edgemap, heads, visited)
seeds |
seed nodes' indices |
edgemap |
list of adjacent edge information for entire graph.
|
heads |
list of either head (destination) or tail (source) nodes of the entire graph |
visited |
flag holding already visited node indices during neighborhood searching |
neighbors |
neighbor edge lists of seed nodes (for either tails or heads) |
Neighbor edge lists of the seed nodes should be obtained separately for tail and head nodes.
Ville-Petteri Makinen
data(job_kda_analyze) depth <- 1 direction <- 0 ## Take one or multiple center nodes (seeds) to search the neighborhoods: ## e.g. take the first node in the graph as the seed, find its neighborhood: center.node = job.kda$graph$nodes[1] ## Convert center node (seed) names to indices: nodes <- job.kda$graph$nodes ranks <- match(center.node, nodes) ranks <- ranks[which(ranks > 0)] ## we already know that rank is 1, since we took the first node in the graph ## as an example: ranks <- as.integer(ranks) ## Find edges to adjacent nodes. (both up- and down-stream searches) visited <- ranks foundT <- tool.subgraph.find(ranks, job.kda$graph$tail2edge, job.kda$graph$heads, visited) foundH <- tool.subgraph.find(ranks, job.kda$graph$head2edge, job.kda$graph$tails, visited)
data(job_kda_analyze) depth <- 1 direction <- 0 ## Take one or multiple center nodes (seeds) to search the neighborhoods: ## e.g. take the first node in the graph as the seed, find its neighborhood: center.node = job.kda$graph$nodes[1] ## Convert center node (seed) names to indices: nodes <- job.kda$graph$nodes ranks <- match(center.node, nodes) ranks <- ranks[which(ranks > 0)] ## we already know that rank is 1, since we took the first node in the graph ## as an example: ranks <- as.integer(ranks) ## Find edges to adjacent nodes. (both up- and down-stream searches) visited <- ranks foundT <- tool.subgraph.find(ranks, job.kda$graph$tail2edge, job.kda$graph$heads, visited) foundH <- tool.subgraph.find(ranks, job.kda$graph$head2edge, job.kda$graph$tails, visited)
tool.subgraph.search
looks for both upstream and downstream
neighborhoods of given seed node list for a given depth, gets the directed
edge information among seed nodes and their neighbors, obtains statistics
(degrees and strengths) for seed nodes.
tool.subgraph.search(graph, seeds, depth, direction)
tool.subgraph.search(graph, seeds, depth, direction)
graph |
a datalist including following components: nodes: N-element array of node names tails: K-element array of node indices heads: K-element array of node indices weights: K-element array of edge weights tail2edge: N-element list of adjacent edge indices head2edge: N-element list of adjacent edge indices outstats: N-row data frame of out-degree node statistics instats: N-row data frame of in-degree node statistics stats: N-row data frame of node statistics |
seeds |
seed nodes' indices |
depth |
the maximum number of links to connect neighbors |
direction |
sets the directionality: use a negative value for dowstream, positive for upstream or zero for undirected |
a data list including seed nodes neighborhood information with following components:
RANK |
indices of neighboring nodes (including seeds) |
LEVEL |
number of edges away from seed |
STRENG |
sum of adjacent edge weights within neighborhood |
DEGREE |
number of adjacent edges within neighborhood |
Ville-Petteri Makinen
data(job_kda_analyze) depth <- 1 direction <- 0 ## Take one or multiple center nodes (seeds) to search the neighborhoods: ## e.g. take the first node in the graph as the seed, find its neighborhood: center.node = job.kda$graph$nodes[1] ## Convert center node (seed) names to indices: nodes <- job.kda$graph$nodes ranks <- match(center.node, nodes) ranks <- ranks[which(ranks > 0)] ## we already know that rank is 1, since we took the first node in the graph ## as an example: ranks <- as.integer(ranks) ## Find neighbors. res <- tool.subgraph.search(job.kda$graph, ranks, depth, direction)
data(job_kda_analyze) depth <- 1 direction <- 0 ## Take one or multiple center nodes (seeds) to search the neighborhoods: ## e.g. take the first node in the graph as the seed, find its neighborhood: center.node = job.kda$graph$nodes[1] ## Convert center node (seed) names to indices: nodes <- job.kda$graph$nodes ranks <- match(center.node, nodes) ranks <- ranks[which(ranks > 0)] ## we already know that rank is 1, since we took the first node in the graph ## as an example: ranks <- as.integer(ranks) ## Find neighbors. res <- tool.subgraph.search(job.kda$graph, ranks, depth, direction)
tool.subgraph.stats
graph statistics (degrees and strengths) of the
seed nodes obtained from their neighborhoods.
tool.subgraph.stats(frame, edgemap, heads, weights)
tool.subgraph.stats(frame, edgemap, heads, weights)
frame |
a data frame including following components: RANK: indices of neighboring nodes (including seeds) LEVEL: number of edges away from seed STRENG: sum of adjacent edge weights within neighborhood DEGREE: number of adjacent edges within neighborhood |
edgemap |
list of adjacent edge information for detected neighborhoods
of seed nodes. |
heads |
list of either head (destination) or tail (source) nodes for neighborhoods of the seed nodes |
weights |
weights of the edges in the entire graph |
a data list including seed nodes neighborhood information with following components:
RANK |
indices of neighboring nodes (including seeds) |
LEVEL |
number of edges away from seed |
STRENG |
sum of adjacent edge weights within neighborhood |
DEGREE |
number of adjacent edges within neighborhood |
Ville-Petteri Makinen
data(job_kda_analyze) depth <- 1 direction <- 0 ## Take one or multiple center nodes (seeds) to search the neighborhoods: ## e.g. take the first node in the graph as the seed, find its neighborhood: center.node = job.kda$graph$nodes[1] ## Convert center node (seed) names to indices: nodes <- job.kda$graph$nodes ranks <- match(center.node, nodes) ranks <- ranks[which(ranks > 0)] ## we already know that rank is 1, since we took the first node in the graph ## as an example: ranks <- as.integer(ranks) ## Find edges to adjacent nodes. (both up- and down-stream searches) visited <- ranks levels <- 0*ranks for(i in 1:depth) { ## Find edges to adjacent nodes. foundT <- tool.subgraph.find(ranks, job.kda$graph$tail2edge, job.kda$graph$heads, visited) foundH <- tool.subgraph.find(ranks, job.kda$graph$head2edge, job.kda$graph$tails, visited) ## Expand neighborhood for the further depths of the neighborhood search ranks <- unique(c(foundT, foundH)) visited <- c(visited, ranks) levels <- c(levels, (0*ranks + i)) ## level shows the depth if(length(ranks) < 1) break } ## Calculate node degrees and strengths. res <- data.frame(RANK=visited, LEVEL=levels, DEGREE=0, STRENG=0.0, stringsAsFactors=FALSE) res <- tool.subgraph.stats(res, job.kda$graph$tail2edge, job.kda$graph$heads, job.kda$graph$weights) res <- tool.subgraph.stats(res, job.kda$graph$head2edge, job.kda$graph$tails, job.kda$graph$weights)
data(job_kda_analyze) depth <- 1 direction <- 0 ## Take one or multiple center nodes (seeds) to search the neighborhoods: ## e.g. take the first node in the graph as the seed, find its neighborhood: center.node = job.kda$graph$nodes[1] ## Convert center node (seed) names to indices: nodes <- job.kda$graph$nodes ranks <- match(center.node, nodes) ranks <- ranks[which(ranks > 0)] ## we already know that rank is 1, since we took the first node in the graph ## as an example: ranks <- as.integer(ranks) ## Find edges to adjacent nodes. (both up- and down-stream searches) visited <- ranks levels <- 0*ranks for(i in 1:depth) { ## Find edges to adjacent nodes. foundT <- tool.subgraph.find(ranks, job.kda$graph$tail2edge, job.kda$graph$heads, visited) foundH <- tool.subgraph.find(ranks, job.kda$graph$head2edge, job.kda$graph$tails, visited) ## Expand neighborhood for the further depths of the neighborhood search ranks <- unique(c(foundT, foundH)) visited <- c(visited, ranks) levels <- c(levels, (0*ranks + i)) ## level shows the depth if(length(ranks) < 1) break } ## Calculate node degrees and strengths. res <- data.frame(RANK=visited, LEVEL=levels, DEGREE=0, STRENG=0.0, stringsAsFactors=FALSE) res <- tool.subgraph.stats(res, job.kda$graph$tail2edge, job.kda$graph$heads, job.kda$graph$weights) res <- tool.subgraph.stats(res, job.kda$graph$head2edge, job.kda$graph$tails, job.kda$graph$weights)
tool.translate
converts the symbols given in the list from
into the list to
. e.g. we can translate human gene symbols into the
mouse orthologs (or vice versa) if the symbol mapping file is provided.
tool.translate(words, from, to)
tool.translate(words, from, to)
words |
translation table including words (i.e. gene symbols) that will be translated |
from |
a list denoting the words will be translated from which symbols |
to |
a list denoting the words will be translated to which symbols |
words |
translated table (words) |
Ville-Petteri Makinen
syms <- tool.read(system.file("extdata", "symbols.txt", package="Mergeomics")) syms <- syms[,c("HUMAN", "MOUSE")] names(syms) <- c("FROM", "TO") moddata <- tool.read(system.file("extdata", "modules.mousecoexpr.liver.human.txt", package="Mergeomics")) moddata$NODE <- moddata$GENE moddata$NODE <- tool.translate(words=moddata$NODE, from=syms$FROM, to=syms$TO)
syms <- tool.read(system.file("extdata", "symbols.txt", package="Mergeomics")) syms <- syms[,c("HUMAN", "MOUSE")] names(syms) <- c("FROM", "TO") moddata <- tool.read(system.file("extdata", "modules.mousecoexpr.liver.human.txt", package="Mergeomics")) moddata$NODE <- moddata$GENE moddata$NODE <- tool.translate(words=moddata$NODE, from=syms$FROM, to=syms$TO)
tool.unify
converts a distribution to uniform ranks with respect
to a background distribution (or self if no background available).
tool.unify(xtrait, xnull = NULL)
tool.unify(xtrait, xnull = NULL)
xtrait |
the distribution that will be standardized, i.e. uniformly distributed |
xnull |
background distribution to be used to distribute
|
y |
uniformly distributed form of |
Ville-Petteri Makinen
x <- rnorm(10) y <- tool.unify(x) ## uniformly distributed form of x when null dist is x z <- tool.unify(x, y) ## uniformly distributed form of x when null dist is y
x <- rnorm(10) y <- tool.unify(x) ## uniformly distributed form of x when null dist is x z <- tool.unify(x, y) ## uniformly distributed form of x when null dist is y