Package 'MantelCorr'

Title: Compute Mantel Cluster Correlations
Description: Computes Mantel cluster correlations from a (p x n) numeric data matrix (e.g. microarray gene-expression data).
Authors: Brian Steinmeyer and William Shannon
Maintainer: Brian Steinmeyer <[email protected]>
License: GPL (>= 2)
Version: 1.77.0
Built: 2024-10-30 07:38:42 UTC
Source: https://github.com/bioc/MantelCorr

Help Index


Generate Genes from a Cluster List

Description

'ClusterGeneList' produces a list of both significant and nonsignificant genes from each respective cluster type

Usage

ClusterGeneList(clus, clustlist.sig, x.data)

Arguments

clus

'clusters' object returned by 'GetClusters'

clustlist.sig

'SignificantClusters' object returned by 'ClusterList'

x.data

original (p x n) numeric data matrix (e.g., gene-expression data)

Value

A list with components:

SignificantClusterGenes

significant cluster genes returned from 'ClusterList'

NonSignificantClusterGenes

nonsignificant cluster genes returned from 'ClusterList'

Note

argument 'x.data' should have an ID gene variable, 'probes', attached as a 'dimnames' attribute

Author(s)

Brian Steinmeyer

See Also

'GetClusters' 'ClusterList'

Examples

# simulate a p x n microarray expression dataset, where p = genes and n = samples
data.sep <- rbind(matrix(rnorm(1000), ncol=50), matrix(rnorm(1000, mean=5), ncol=50))
noise <- matrix(runif(40000), ncol=1000)
data <- t(cbind(data.sep, noise))
data <- data[1:200, ]
# data has p = 1,050 genes and n = 40 samples

clusters.result <- GetClusters(data, 100, 100)
dist.matrices <- DistMatrices(data, clusters.result$clusters)
mantel.corrs <- MantelCorrs(dist.matrices$Dfull, dist.matrices$Dsubsets)
permutation.result <- PermutationTest(dist.matrices$Dfull, dist.matrices$Dsubsets, 100, 40, 0.05)

# generate both significant and non-significant gene clusters
cluster.list <- ClusterList(permutation.result, clusters.result$cluster.sizes, mantel.corrs)

# significant and non-significant cluster genes (expression values)
cluster.genes <- ClusterGeneList(clusters.result$clusters, cluster.list$SignificantClusters, data)

Generate a Cluster List

Description

'ClusterList' generates a list of both significant and nonsignificant clusters, with cluster number, Mantel cluster correlation and size

Usage

ClusterList(p.val, clus.size, mantel.cors)

Arguments

p.val

permutation p-value returned from 'PermutationTest'

clus.size

vector of k cluster sizes returned from 'GetCluster'

mantel.cors

orignal, unpermuted k Mantel correlations returned from 'MantelCorrs'

Value

A list with components:

SignificantClusters

clusters with significant Mantel correlation, equal to or larger than the permutation p-value returned by 'PermutationTest'

NonSignificantClusters

clusters with nonsignificant Mantel correlation, smaller than the permutation p-value returned by 'PermutationTest'

Author(s)

Brian Steinmeyer

See Also

'PermutationTest'

Examples

# simulate a p x n microarray expression dataset, where p = genes and n = samples
data.sep <- rbind(matrix(rnorm(1000), ncol=50), matrix(rnorm(1000, mean=5), ncol=50))
noise <- matrix(runif(40000), ncol=1000)
data <- t(cbind(data.sep, noise))
data <- data[1:200, ]
# data has p = 1,050 genes and n = 40 samples

clusters.result <- GetClusters(data, 100, 100)
dist.matrices <- DistMatrices(data, clusters.result$clusters)
mantel.corrs <- MantelCorrs(dist.matrices$Dfull, dist.matrices$Dsubsets)
permutation.result <- PermutationTest(dist.matrices$Dfull, dist.matrices$Dsubsets, 100, 40, 0.05)

# generate both significant and non-significant gene clusters
cluster.list <- ClusterList(permutation.result, clusters.result$cluster.sizes, mantel.corrs)

Compute Dissimilarity Matrices

Description

'DistMatrices' uses 'dist' to compute dissimilarity matrices for 'data' and each cluster k from 'GetClusters'

Usage

DistMatrices(x.data, cluster.assignment)

Arguments

x.data

original 'data' matrix

cluster.assignment

cluster assignment vector, "clusters", returned by 'GetClusters'

Value

returns a list with two components:

Dsubsets

dissimilarity matrices for each cluster k

Dfull

dissimilarity matrix for the original 'data'

Note

'GetClusters' should be executed prior to 'DistMatrices'

Author(s)

Brian Steinmeyer

See Also

'GetClusters'

Examples

# simulate a p x n microarray expression dataset, where p = genes and n = samples
data.sep <- rbind(matrix(rnorm(1000), ncol=50), matrix(rnorm(1000, mean=5), ncol=50))
noise <- matrix(runif(40000), ncol=1000)
data <- t(cbind(data.sep, noise))
data <- data[1:200, ]
# data has p = 1,050 genes and n = 40 samples

clusters.result <- GetClusters(data, 100, 100)
dissimilarity.matrices <- DistMatrices(data, clusters.result$clusters)

Over-Partition a (p x n) Data Matrix using 'kmeans'

Description

'GetClusters' uses an overly large k with the 'kmeans' function to over-partition p variables (rows = genes) from n objects (cols = samples) from a given data matrix 'x.data'

Usage

GetClusters(x.data, num.k, num.iters)

Arguments

x.data

p x n data matrix of numeric values

num.k

number of k partitions desired

num.iters

number of iterations - recommend >= 100

Value

'GetClusters' returns a list with the following components:

clusters

cluster assignment from 'kmeans'

cluster.sizes

size of each cluster k from 'kmeans'

Note

The input data matrix, x.data, must be numeric (e.g., gene-expression values). We recommend using 'num.k' = one-half the number of genes and 'num.iters' greater than 50

Author(s)

Brian Steinmeyer

See Also

'kmeans'

Examples

# simulate a p x n microarray expression dataset, where p = genes and n = samples
data.sep <- rbind(matrix(rnorm(1000), ncol=50), matrix(rnorm(1000, mean=5), ncol=50))
noise <- matrix(runif(40000), ncol=1000)
data <- t(cbind(data.sep, noise))
data <- data[1:200, ]
# data has p = 1,050 genes and n = 40 samples

clusters.result <- GetClusters(data, 100, 100)

Golub Training Set

Description

Samples were taken with Affymetrix Hgu6800 chips and expression levels measured on 7,129 genes (probes). The samples consist of 27 acute lymphoblastic leukemia (ALL) and 11 acute myeloid luekemia (AML) patients. The data values are raw (e.g. no standardization or gene filtering applied).

Usage

data(GolubTrain)

Format

A data frame of 7129 observations (genes) with the following 38 variables (samples):

X1

ALL

X2

ALL

X3

ALL

X4

ALL

X5

ALL

X6

ALL

X7

ALL

X8

ALL

X9

ALL

X10

ALL

X11

ALL

X12

ALL

X13

ALL

X14

ALL

X15

ALL

X16

ALL

X17

ALL

X18

ALL

X19

ALL

X20

ALL

X21

ALL

X22

ALL

X23

ALL

X24

ALL

X25

ALL

X26

ALL

X27

ALL

X28

AML

X29

AML

X30

AML

X31

AML

X32

AML

X33

AML

X34

AML

X35

AML

X36

AML

X37

AML

X38

AML

Source

http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi

References

Golub, T.R. Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring. Science, vol 286, 531-537, 1999.

Examples

data(GolubTrain)

Compute Mantel Correlation(s)

Description

'MantelCorrs' computes the Mantel correlation between two dissimilarity matrices

Usage

MantelCorrs(Dfull, Dsubsets)

Arguments

Dfull

distance matrix returned by 'DistMatrices' using original 'data'

Dsubsets

list of distance matrices from each k cluster or partition returned by 'DistMatrices'

Value

A list with k components

where component i

Mantel correlation for cluster i, i = 1,...,k

Warning

The function is meant to be executed AFTER 'GetClustes' and 'DistMatrices' (see example)

Note

the value 'k' corresponds to the parameter 'num.k' in 'GetClusters'

Author(s)

Brian Steinmeyer

References

Mantel N: The detection of disease clustering and a generalized regression approach. Cancer Research. 27(2), 209-220 (1967).

See Also

'GetClusters' 'DistMatrices' 'kmeans'

Examples

# simulate a p x n microarray expression dataset, where p = genes and n = samples
data.sep <- rbind(matrix(rnorm(1000), ncol=50), matrix(rnorm(1000, mean=5), ncol=50))
noise <- matrix(runif(40000), ncol=1000)
data <- t(cbind(data.sep, noise))
data <- data[1:200, ]
# data has p = 1,050 genes and n = 40 samples

clusters.result <- GetClusters(data, 100, 100)
dist.matrices <- DistMatrices(data, clusters.result$clusters)
mantel.corrs <- MantelCorrs(dist.matrices$Dfull, dist.matrices$Dsubsets)

Permutation Test for Dissimilarity Matrices

Description

'PermutationTest' computes and returns an empirical p-value from a null distribution generated by permuting 'Dfull' a total of 'num.per' times.

Usage

PermutationTest(Dfull, Dsubsets, num.per, num.chips, alpha)

Arguments

Dfull

dissimilarity matrix from the original (p x n) microarray expression data

Dsubsets

dissimilarity matrices from each k disjoint clusters returned by 'GetClusters'

num.per

number of permutations

num.chips

number of samples, 'n' from the original (p x n) data matrix

alpha

desired level of significance

Details

For each permutation, k Mantel correlations are computed by correlating the permuted 'Dfull' with each dissimilarity matrix 'Dsubsets' from the 'k' clusters returned by 'GetClusters'. The absolute value of the maximum Mantel cluster correlation is retained at each permutation. These 'num.per' maximum correlations are then used to generate a null distribution for distance metric independence, with the p-value taken from the (1 - 'alpha') percentile of this permutation distribution.

Value

returns the permuted p-value for the 'alpha' selected level of significance

Warning

(p x n) data matrix should be numeric (e.g. gene-expression levels)

Note

The function is meant to be executed AFTER 'GetClustes', 'DistMatrices' and 'MantelCorr' (see example)

Author(s)

Brian Steinmeyer

See Also

'GetClusters' 'DistMatrices' 'MantelCorrs'

Examples

# simulate a p x n microarray expression dataset, where p = genes and n = samples
data.sep <- rbind(matrix(rnorm(1000), ncol=50), matrix(rnorm(1000, mean=5), ncol=50))
noise <- matrix(runif(40000), ncol=1000)
data <- t(cbind(data.sep, noise))
data <- data[1:200, ]
# data has p = 1,050 genes and n = 40 samples

clusters.result <- GetClusters(data, 100, 100)
dist.matrices <- DistMatrices(data, clusters.result$clusters)
mantel.corrs <- MantelCorrs(dist.matrices$Dfull, dist.matrices$Dsubsets)
permutation.result <- PermutationTest(dist.matrices$Dfull, dist.matrices$Dsubsets, 100, 40, 0.05)